
EAI Endorsed Transactions
on Digital Transformation of Industrial Processes Research Article

1

Cloud-Based Data-Driven Behavior Model Recovery for
Distributed Automation Systems
Xian Wu1, Chuanyang Yu2,3, Likuan Zhang2,3, Hui Zhang2,3 and Wenbin Dai1,3*

1Shanghai Jiao Tong University, Chima, 800 Dongchuan Road, Minhang District, Shanghai, China
2Beijing Urban Construction Intelligent Control Co., Ltd, China, Building 4, Courtyard 2, Liulijing Road, Yongdingmenwai
Street, Dongcheng District, Beijing, China.
3Shanghai Jiao Tong University School of Electrical, Information and Electronic Engineering-Beijing Urban Construction
Intelligent Control Joint Research Lab on Universal Automation.

Abstract

INTRODUCTION: Industrial cyber-physical systems provide a bridge between legacy controllers and new edge devices
that are usually equipped with massive computing power and storage capacity. The migration from legacy control systems
to industrial cyber-physical systems is facing challenges as control code and design documents of legacy systems may not
be available.
OBJECTIVES: This paper proposes a data-driven behavior model recovery method for the black-box distributed
manufacturing system based on cloud computing.
METHODS: This method adopts the IEC 61499 function blocks as meta-models to describe system behaviors. The proposed
framework includes three parts: data mining, logic restoration, and application construction. Raw collected data are
processed and encapsulated into function block sets, then execution control charts, and finally function block types.
RESULTS: This model recovery method is validated with a process control system of the food and beverage industry.
CONCLUSION: A deployable function block network is generated by instantiating and connecting these function blocks.

Keywords: Model-Driven Engineering, IEC 61499 Function Blocks, Model Recovery, Finite-State Machine, Data-Driven Model
Generation

Received on 02 February 2025, accepted on 16 March 2025, published on 19 March 2025

Copyright © 2025 X. Wu et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/_______________

1. Introduction

Industrial automation systems are shifting from massive
production to massive customization by introducing the
industrial cyber-physical system (ICPS) [1]. The ICPS aims
to improve flexibility and interoperability by enabling
information exchange between various field devices. On the
other hand, the majority of legacy automation systems are still
running as black boxes and cannot be easily migrated. One
feasible solution is to recover the control software model
from operating data based on the model-driven engineering

*Corresponding author. Email: w.dai@sjtu.edu.cn

(MDE) technology [2]. The MDE is commonly used in
automatic code generation to improve the efficiency and
quality of the software development process [3].

In the MDE, software behavior models (platform-
independent) are transformed into executable code (platform-
dependent) by using model transformation methods.
However, it is extremely difficult to update the behavior
model using rule-based algorithms to capture changes made
in the code. One reason is that the code pattern may be
changed completely and no pre-defined rule can be matched.
As a result, even with a simple code change request, complete
regeneration of the entire code is compulsory which is
extremely inefficient.

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:w.dai@sjtu.edu.cn

X. Wu et al.

 2

 Another approach is to recover the software behavior model
by using the data-driven approach. These approaches are
based on pre-defined models or meta-model templates
generated from data to refactor executable modules [4][5].
The major challenge is to capture control logic and data
structure from system inputs and outputs. The internal logic
in the controller remains as a black box. With an unknown
internal structure, it is challenging to compose a behavior
model that is 100% equivalent to the original model.

Cloud computing bridges distributed system behavior
models with real-time data collected from controllers on the
shop floor. With a large process automation system like
nuclear plants, the number of I/Os and variables could
generate 10MB per I/O scan (in tens of milliseconds). The
data-driven behavior model recovery method utilizes cloud
computing power to classify massive historical data into
various software components and regenerate internal logic for
each component. The overall system behavior is
characterized as an ordered execution sequence of process
operations. These components are composed of a complete
application with support from domain-specific models.

This paper's main contribution is to propose a framework
to recover the system behavior model from historical
operation data for migrating legacy automation systems
without source code available. The behavior model is
reconstructed as an IEC 61499 function block (FB) network
with state-machine encapsulated in FBs to provide human-
understandable system behaviors with hierarchical levels of
components for abstraction. The IEC 61499 standard offers a
component-based open architecture for distributed
automation systems in which a distributed application can be
composed of event-driven FBs. The IEC 61499 standard [6]
has been proven a perfect fit for rapid prototyping distributed
automation systems. The function block network can be
directly deployed and executed on a group of connected
devices to improve the efficiency of migration processes [7].
Several data processing steps are proposed to regenerate IEC
61499-based system behavior model. As a result, the control
logic in the black box can be migrated to any new edge
computing device with minimum effort.
The rest of this paper is structured as follows. Section II
provides a review of related works for MDE and behavior
model recovery. In Section III, details of the behavior model
recovery method are discussed. Section IV demonstrates the
proposed method with a dairy production process. Finally,
Section V concludes the paper and provides future research
directions.

2. Related Works

The key to accelerating cloud-edge collaborated ICPS is the
migration of legacy control systems. Currently, industrial
automation control systems are programmed according to the
IEC 61131-3 standard [8]. The IEC 61131-3 programmable
logic controllers (PLCs) are widely used but are limited to the
scope of a single device without a clear system-level view and
interoperability between multiple devices. There is no
existing work on data-driven recovering control logic for IEC

61499-based control applications. However, some existing
data mining and model recovery algorithms were used during
the I/O partitioning process.

 A framework was proposed for automatic reverse
engineering binary codes from industrial control systems by
Keliris et al [9]. A structured methodology was used to extract
information including header, subroutine, symbol tables, and
data sections from PLCs. The original program structure was
recovered by detecting subroutines from binary code. Also,
the pattern of known function blocks was matched. Keller et.
al. [10] proposed a pattern-based reverse engineering method
with abstract UML metamodels and source code. Three
different methods including template, factory, and bridge
were compared. Manual efforts were still required for pattern
recognition. A framework that recovers execution semantics
from embedded IoT controller software binaries was
proposed by Sun et. al [11]. Control Flow Graph and
Symbolic Controller abstraction methods were used to
recover semantic models from code binaries. The approach
still required domain-specific knowledge.

There are lots of existing works on the migration of legacy
control systems into IEC 61499 system configurations based
on model-driven engineering (MDE) approaches. The key
concept of MDE is to employ high-level, domain-specific
models in the implementation, integration, maintenance, and
testing during the full life cycle of software systems. The IEC
61499 standard is a typical MDE practice that uses event-
trigger function blocks as the basic programming
organization unit. The function block defined in this standard
is a software entity that encapsulates algorithms with a
generic interface that consists of event and data variables.
These FBs are suitable for the system-level design for ICPS
[12]. Currently, most model-driven design patterns of the IEC
61499 standard focus on the organization of the function
blocks at the application level [13][14].

Many researchers propose migration and transformation
rules by encapsulating existing Structured Text (ST) based
IEC 61131–3 functions in IEC 61499 FBs [15] and
integrating IEC 61131-3 execution into IEC 61499 FBs [16].
These methods mainly focus on module conversion with
embedded code that the source code of the legacy system
must be provided.

Chivilikhin et al. [17] proposed a framework that generates
state machines that can be incorporated into IEC 61499 FBs
from collected PLC data when the original program is
unavailable. This framework takes the trace of raw PLC data
and produces a set of candidate state machines using Boolean
satisfiability solvers. It synthesizes a global controller by
modular decomposition. This method is exemplified in a
grasping system that contains only Boolean input/output
variables from a single controller with no hierarchy.

Ladiges et al. [18] proposed learning behavior models of
discrete event production systems based on I/O signals. A
machine state presented by Petri Nets was generated from
recorded event traces. All I/O signals were expressed in
Boolean variables and timing information was considered.
Further, these state machines were automatically organized
into material flow also presented in Petri Nets [19].

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

Cloud-Based Data-Driven Behavior Model Recovery for Distributed Automation Systems

3

Similar to the previous work, Lesage et al. [20] generated
interpreted Petri net models of the discrete event
manufacturing systems from observed input/output (I/O)
signal vectors. Direct relations between I/O events and the
internal state evolutions are identified. Besides, an algorithm
inspired by clustering methods is proposed to partition a
complex distributed system [21]. This research is highly
relevant to the restoration of legacy system behavior models,
although the generated Petri net was not directly executable
code and I/O data were limited to Boolean variables.

This paper proposes a methodology suited for legacy
automation systems with linear process flow with several
independent workstations. These workstations can be
operated in a certain order to process a dedicated task within
a fixed period. During this period, products are transported
between workstations to complete different processes at each
workstation. The model analysis of non-Boolean variables
and the relevance of time-shift sequences are covered.
Besides, specific data changes are defined as events.
Compared to existing works, this approach uses IEC 61499
FB network as the recovered model to ensure all behaviors
are completely modularized. This encapsulation provides
better reusability and software components recovered from
the data can be deployed directly to any device without any
code modification.

3. Behavior Model Recovery

As shown in Fig. 1, the behavior model recovery process
contains three modules: data mining, logic restoration, and
application reconstruction. Raw data are collected by directly
reading values from legacy Programmable Logic Controllers
(PLC) for every I/O scan cycle. These data cached on edge
gateways are transferred back to the cloud and clustered as

independent variable sets. Then these variable sets are
reconstructed as finite-state machines (Execution Control
Charts in IEC 61499) encapsulated by function blocks.
Challenges include data redundancy, state-space explosion,
and uncertain system structure.

Figure 1 The Cloud-based behavior model recovery
framework for distributed control system

According to ANSI/ISA S88 standard, a procedure system
is a typical procedural and divisible system that directs
separate equipment-oriented actions to take place in an

Figure 2 Process & Instrument Diagram of the TLT model

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

X. Wu et al.

 4

ordered sequence [22]. To balance multi-usability and
domain-specification, this section applies a Tank-Link-Tank
(TLT) model shown in Fig. 2 as an illustrative example. The
TLT model is a design paradigm commonly used in the
pipeline process which is suitable for most process control
systems, especially for the Food and Beverage (F&B)
industry.

This system is controlled by Schneider Electric Modicon

M251 PLCs with a program the cycle time is set to 100ms.
No data packets got lost during the transmission and only
changes in the I/O sequences are recorded. Table I lists all
collected data to the cloud of three equipment modules and
functional system inputs.

TABLE I
 COLLECTED DATA OF THE TLT SYSTEM

3.1 I/O Data Partitioning

The IEC 61131-3 defines elementary data types such as
BOOL, INT, REAL, etc [8]. Non-boolean variables are
classified and decomposed into Boolean signals representing
device or process states.

For the TLT model, control signals of valves and motors
are defined as on-off BOOL variables. Sensing variables are
observed REAL type state signals, and system inputs are
periodic constants except for the internal clock Timer. Non-
boolean state variables (e.g., sensing variables, feedback
variables) are abstracted as Boolean signals representing
states. For example, liquid level sensing variables of Tank
T01 are decomposed as T01_level_up and T01_level_down,
which indicate the rising and falling state of the liquid level.
Non-boolean condition variables (e.g., control variables,
timing variables) are decomposed into multiple event
sequences. For example, the Timer in the TLT model is
decomposed into three event sequences (Timer_20s,
Timer_15s, and Timer_12s) since three timing cycles are built

into the system clock. The simplified I/O sequences are stated
as (1) and (2) without state variables.

A distributed control system usually contains a large

number of interconnected and data-sharing devices.
Redundant sequences may occur due to synchronous or
asynchronous equivalent changes with a small timeshift.
Therefore, dynamic time warping (DTW) is utilized to
measure the similarity of collected data [23]. This method
calculates an optimal match between two sequences where
the mapping of the indices must be monotonically increasing
within a time window. Given two time series 𝑋𝑋 =
(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑁𝑁) and 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2 ,⋯ ,𝑦𝑦𝑀𝑀) of length 𝑁𝑁 and 𝑀𝑀 ,
define the local cost matrix for their alignment as:

The symbol 𝑑𝑑𝑖𝑖,𝑗𝑗 denotes the entry in the i th row and j th

column of the matrix D. Once the local cost matrix 𝐷𝐷 is built,
the DTW algorithm finds the warping path which defines the
correspondence of an element 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 to 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌 as (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗) .
𝑊𝑊 is the set of warping paths that satisfy the boundary,
monotonicity, and continuity conditions defined in [24]. Then,
the similarity between time series 𝑋𝑋 and 𝑌𝑌 is defined with the
shortest warping path 𝑤𝑤∗:

The DTW(X,Y) is negatively correlated with the similarity
between time series X and Y. To further identify time-shifted
sequences, the other attribute Collinearity is defined by
referring to the least squares method [25]:

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

Cloud-Based Data-Driven Behavior Model Recovery for Distributed Automation Systems

5

After the similarity match, all collected data are divided

into an independent set and a residual set by the decision tree
model as shown in Fig. 3. The independent variable set
contains no matched sequences. Each variable in the residual
set can find its matched sequence in the independent variable
set.

 Figure 3 Decision tree model of the similar sequences
matching

 Figure 4 DTW results of matched sequences (Left),
time-shifted sequences (Middle), and independent

sequences (Right).

Fig. 4 shows three matching results. Here, Manhattan
distance [26] is used as the local cost measure. The smaller
the distance of the indice pair is, the darker its color is in the
distance matrix. White areas are indice pairs outside the time
window. The red line in the middle is the warping path. In the
TLT model, T01_V01 is correlated with T01_L01_V01 and
synchronized with L01_V02. These three matched variables
are merged and kept as T01_V in the independent set. Besides,
T02_V01 is correlated with T02_L01_V01 which are merged
as T02_V. Therefore, the total data volume has been reduced
by 37.5% and the final independent set is as follows:

The next step is the Hierarchical clustering. The

independent set may need to be decomposed into several
subsets representing multiple subsystems due to the system
complexity. Similar to the I/O partitioning approach in [20],
the changing pattern of variables is analyzed before the
hierarchical clustering. This step adapts their strategies and
includes domain-specific knowledge such as physical and
process models to divide subsets. A Boolean sequence named
Change Sequence is introduced to analyze the changing laws
of variables in the independent set. In a distributed system,
each variable has its own changing law during different
process operations or actions. The Change Sequence marks
the start time of each stage as 1, and others as 0. The Change
Sequence of the variable v is calculated as:

The Change Sequence describes the changing law of each

independent variable. Then, the K-means time shift clustering
[27] is utilized to identify their correlation. The cluster
number k is equal to the number of generated FBs. It can be
manually defined or automatically generated by minimizing
the average within-cluster deviation. The clustered subsets of
independent variables need to meet the following rules:

Rule 1: For any variable 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗) in the same
subset, there is 𝐷𝐷𝐷𝐷𝑊𝑊(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) ≥ 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖ℎ𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑.

Rule 2: For any subset 𝑟𝑟𝑖𝑖𝑖𝑖1 and 𝑟𝑟𝑖𝑖𝑖𝑖2, there is 𝑟𝑟𝑖𝑖𝑖𝑖1 ∩
𝑟𝑟𝑖𝑖𝑖𝑖2 = ∅.

Rule 3: For all subsets 𝑟𝑟𝑖𝑖𝑖𝑖1 , 𝑟𝑟𝑖𝑖𝑖𝑖2 , ⋯, 𝑟𝑟𝑖𝑖𝑖𝑖𝑘𝑘 , there is 𝑟𝑟𝑖𝑖𝑖𝑖1 ∪
𝑟𝑟𝑖𝑖𝑖𝑖2 ∪ ⋯∪ 𝑟𝑟𝑖𝑖𝑖𝑖𝑘𝑘 = 𝐼𝐼 ∪ 𝑂𝑂 .In addition to data correlation
analysis, some prior knowledge of the system is also taken
into account. In this case, both physical and process models
of such a process control system are defined in the ISA-88
standard to identify equipment groupings and describe
hierarchical elements of the procedure. Fig. 5 shows the

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

X. Wu et al.

 6

mapping relationship of these models in the TLT-based
system and subsystems are the source tank, pipeline, and
target tank as the data associations defined in Table I.

 Figure 5 The mapping relationship between the
physical model (physical system) and the process
model (IEC 61499 framework) in the TLT-based

system

After data mining, collected I/O sequences are classified,
simplified, and finally encapsulated into several subsets.
Non-Boolean sequences are disassembled into multiple
Boolean subsequences, and matched sequences are merged
and distributed into different subsets. These steps are all to
reduce the potential state space.

3.2 Logic Restoration

In the previous step, collected data are classified into
multiple subsets. Each subset can be corresponding to one
IEC 61499 FB with an ECC inside. The ECC is a
deterministic finite-state machine defined in the IEC 61499.
Its mathematical expression is defined as 𝐸𝐸𝐸𝐸𝐸𝐸 =< 𝑆𝑆, 𝑟𝑟0, 𝜆𝜆,
𝐷𝐷 > [28]. The 𝑆𝑆 is a set of observed EC states and 𝑟𝑟0 is the
initial state. 𝜆𝜆: 𝑆𝑆 → (𝐴𝐴𝐿𝐿 ∪ 𝐸𝐸𝑂𝑂) is an action function that
represents mapping relationships between states and actions.
𝐷𝐷: 𝑆𝑆 → 2(𝐸𝐸𝐼𝐼∪{1})×𝐶𝐶(𝑉𝑉)×𝑆𝑆 is a transition function where 𝐸𝐸𝐼𝐼 is
the set of input events and 𝐸𝐸(𝑉𝑉) refers to a Boolean
expression over I/O data and internal variables. The
regeneration of the control logic consists of three steps: state
abstraction, condition analysis, and transition mapping.

1) State abstraction: The EC state is an abstract description
of the process operation in an equipment module or a unit.
OS(t) is an ordered state sequence that describes system
behaviors during a production cycle. Different systems vary
in state descriptions, and one system may have various sets of
state descriptions. An ideal state set S obey the completeness
and uniqueness rules:

Rule 1:∀𝑖𝑖 ∈ [0,𝐷𝐷], ∃𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆 that system state 𝑂𝑂𝑆𝑆(𝑖𝑖)
could be represented by 𝑟𝑟𝑖𝑖, which is defined as
𝑂𝑂𝑆𝑆(𝑖𝑖) → 𝑟𝑟𝑖𝑖 .

Rule 2: If 𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆 and 𝑂𝑂𝑆𝑆(𝑖𝑖) → 𝑟𝑟𝑖𝑖, then there is no 𝑟𝑟𝑗𝑗 ∈
 𝑆𝑆 that 𝑂𝑂𝑆𝑆(𝑖𝑖) → 𝑟𝑟𝑗𝑗 .

According to ANSI/ISA S88 standard and engineer

experience, a complete state set of the TLT system is 𝑆𝑆 =
{𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖00, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖10, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖30, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖40, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖60, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖255} as
listed in Table II. Some steps are redundant for specific
control modules. The system-level observed state sequence
is as follows:

TABLE II
DEFINED STATES AND CORRESPONDING PROCESS OPERATIONS OF THE

TLT SYSTEM

2) Condition analysis: The condition of the EC transition

consists of a trigger event with/without a guard condition.

𝑖𝑖𝑖𝑖𝑗𝑗: 𝑟𝑟𝑖𝑖
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)∙(𝑐𝑐𝑖𝑖𝑖𝑖)
�⎯⎯⎯⎯⎯⎯� 𝑟𝑟𝑗𝑗 is a transition template in which the object

leaves the current state s_i and enters the next state s_j when
the input event ie_ij reaches and the guard condition c_ij is
satisfied. The trigger event ie is either a particular input event
or 1 (any event). The guard condition c is a Boolean
expression that applies logical operators to logical or
arithmetic expressions over I/O and internal variables.
If each transition has its input signal (condition satisfied or
event triggered), the observed system is considered as
controllable. If each transition has its output signal (output
variable changed or output event triggered), the observed
system is considered as measurable. I/O mismatches may
occur due to sampling truncation, invalid input, internal
behavior, etc., and can be circumvented by repeated sampling.
This paper focuses on the ideal sampling of controllable
objective systems. The mapping relationships between the
observed state sequence OS(t) and input/output event
sequence IE(t)/ OE(t) are given as:

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

Cloud-Based Data-Driven Behavior Model Recovery for Distributed Automation Systems

7

The TLT model has an input event set 𝐸𝐸𝐼𝐼 =

{𝐼𝐼𝑁𝑁𝐼𝐼𝐷𝐷,𝑅𝑅𝐸𝐸𝑅𝑅, 𝑆𝑆𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷,𝐹𝐹𝐼𝐼𝑁𝑁𝐼𝐼𝑆𝑆𝐹𝐹, 𝑆𝑆𝐷𝐷𝑂𝑂𝑆𝑆} which contains
collected I/O data {𝑆𝑆𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷,𝐹𝐹𝐼𝐼𝑁𝑁𝐼𝐼𝑆𝑆𝐹𝐹}, function block basic
event {𝐼𝐼𝑁𝑁𝐼𝐼𝐷𝐷,𝑅𝑅𝐸𝐸𝑅𝑅} , and a hidden event STOP. The guard
condition set 𝐸𝐸(𝑉𝑉) contains only one expression
(𝐷𝐷02. 𝐿𝐿𝑖𝑖𝑣𝑣𝑖𝑖𝑜𝑜. 𝑎𝑎𝑑𝑑𝑑𝑑 == 𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖𝑖𝑖) . Therefore, an ECC
template of the general pipeline transportation process is
generated based on domain-specific knowledge. This
template listed all process operations from 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖00 to
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖250 as EC states. Each state has one undefined normal
execution action and one Error action designed to throw a
fault. No I/O variables but some abstract conditional directed
arrows are involved to indicate the execution order.

 Figure 6 ECC template of general pipeline
transportation process

As shown in Fig. 6, Step00 will jump to Step10 when the
input event START is triggered after initialization is
completed. Secondly, Step10 will jump to Step30 after a set
time delay. When the raw material reaches the set value,
Step30 will jump to the stop state Step255, waiting for the
next instruction. If the input signal is START, repeat Step30;
if the input signal is FINISH, go to Step40. Step40 transitions
to Step60 and then Step 255 all after a set time delay. Error
responses are not covered in this state machine. Here, the
generated ECC only gives feedback based on the status of
each step. The current state will return to the initial state and
throw an output event ERROR when a fault occurs.

3) Transition mapping: The generated ECC template needs to
be parameterized and mapped before deployment. Here,
global and internal variables in the original PLC code are
replaced with a pair of input/output variables. Algorithm 1
restores the missing parameters in the template and optimizes
the final ECC by analyzing I/O and state sequences. 𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑗𝑗
are pre-defined EC states in the set 𝑆𝑆. The action function 𝜆𝜆
is generated by mapping the destination state with
synchronized outputs. The state transition 𝑖𝑖𝑖𝑖𝑗𝑗 is generated by

applying the operator AND to synchronously triggered input
events and guard conditions. Transition conditions of the
recurring state transition are connected by the operator OR.
Then, an ECC is generated by merging all state transitions
and action execution.

It should be noted that a valid ECC has only one active

state at the same time. Therefore, concurrent transitions need
to be prevented. With the priority of EC transitions introduced
in the IEC 61499 second edition, each EC transition will be
assigned with a different priority. If more than one EC
transition condition is met, the EC transition with the highest
priority will be activated. If no priority options are provided
in the IEC 61499 platform, manual modification of transition
conditions is required. The final ECC satisfies the observed
state sequence and outputs the same results under the same
input as the original system.

The introduction of domain-specific templates makes the
identification problem nondeterministic polynomial. Fig. 7
and Fig. 8 show the generated ECC of the source and
destination tank FB. The ECCs of the two FBs are very

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

X. Wu et al.

 8

similar except the STEP20 in the source tank FB is replaced
with the STEP30 in the destination FB. In general, 7 transition
parameters (mostly the time durations) in the original
template are restored and 4 instance states are removed.

 Figure 7 Generated ECC of the source tank in the
TLT system

 Figure 8 Generated ECC of the destination tank in the
TLT system

3.3 System Model Recovery

The final step is to recover the entire system model which
can be divided into three steps: interface recovery,
instantiating, and connection establishment.

 Figure 9 Designed interface of the TANKCTRL
function block (left) and the LINECTRL function block

(right)

1) Interface recovery: A function block interface 𝐼𝐼 =<
𝐸𝐸𝐼𝐼 ,𝑉𝑉𝐼𝐼,𝛼𝛼𝐼𝐼 ,𝐸𝐸𝑂𝑂 ,𝑉𝑉𝑂𝑂 ,𝛼𝛼𝑂𝑂 > is defined as a tuple where 𝐸𝐸𝐼𝐼 , 𝑉𝑉𝐼𝐼 ,
𝐸𝐸𝑂𝑂 and 𝑉𝑉𝑂𝑂 are finite sets of I/O events and data, while 𝛼𝛼𝐼𝐼 ⊆
𝐸𝐸𝐼𝐼 × 𝑉𝑉𝐼𝐼 and 𝛼𝛼𝑂𝑂 ⊆ 𝐸𝐸𝑂𝑂 × 𝑉𝑉𝑂𝑂 are the sets of input and output
associations [27]. The reconstruction of the external FB
interface mainly depends on the variables required by
internal functions in each mapped device. For the TLT-based
pattern, equipment modules are mapped into two function
block types: TANKCTRL and LINECTRL. Fig.9 shows the
designed interface of these two FBs.

 𝐷𝐷𝐴𝐴𝑁𝑁𝑇𝑇𝐸𝐸𝐷𝐷𝑅𝑅𝐿𝐿.𝐷𝐷𝐼𝐼𝐷𝐷 and 𝐿𝐿𝐼𝐼𝑁𝑁𝐸𝐸𝐸𝐸𝐷𝐷𝑅𝑅𝐿𝐿. 𝐿𝐿𝐼𝐼𝐷𝐷 identify the
equipment modules after instantiating. RSP is a combined
input signal structure, including all user inputs on the HMI.
Other variables are less relevant to the production process but
highly related to system monitoring and safety.
2) Instantiating: The purpose of instantiation is to instantiate
and reconstruct (if necessary) the generated function block
types as FB instances. The key to instantiation is matching
the existing function block types to specific system behaviors
and then allocating them to specified devices.

 Figure 10 The FB sub-network of the source tank in
the TLT model

Fig. 10 shows the sub-network of the source tank and
downstream devices in the TLT model. The valve control
module ValveCtl and the motor control module Motor1S1D
are applied here to handle I/O modules.
3) Connection establishment: A FB network consists of
several FB instances interconnected by event and data [6].
The data connections aim to exchange information, while the
event connections aim to propagate control signals. Events
are connected according to the system structure and execution
logic, while data are connected according to the paired
sequences in the previous similarity match.

The IEC 61499 standard provides a flexible deployment
plan in that FBs are mapped to various resources at the
runtime stage. These resources could be controllers on site,
edge gateways, or even cloud servers. With flexible
deployment ability provided, a cloud-edge collaborated
hierarchical application architecture is proposed.

As illustrated in Fig.11, the reconstructed FB application
network contains three hierarchical layers: central control,
equipment modules, and control modules. The central
control monitors system states and handles errors. Equipment
modules get the upstream outputs and send control signals to
control modules mapped to downstream devices like valves

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

Cloud-Based Data-Driven Behavior Model Recovery for Distributed Automation Systems

9

and motors. Two reusable FB types (TANKCTRL and
LINECTRL) are generated with built-in ECC templates
suitable for most pipeline transportation scenarios. Users
only need to modify state outputs and device mapping for

instantiation.

 Figure 11 The reconstructed FB network of the TLT-
based system

Overall, a deployable FB network is reconstructed semi-
automatically. Raw operation data are processed and
clustered automatically. ECCs of these independent sets are
reconstructed via model-driven transformation and data-
driven parameter recovery. The third module designs the
external interface and instantiates FB types manually. Finally,
FB instances are interconnected to a complete network
following the semantics of the system behavior.

4. Case Study and Implementation

A case study of the milk canning system is used to prove the
proposed method as shown in Fig.12. The milk canning

system is a typical process control system, which contains all
essential components, including valves, tanks, and pumps,
that exists for all types of process control systems. This
system contains eight equipment modules (two source tanks
R1BA and R1BB, two pipelines A1L01 and A1L02, four
target tanks TA11-14) and 22 control modules (twelve one-
way valves, eight two-way valves, two motors). Raw
materials can be transported from any milk cart (R1BA or
R1BB) to any milk tank (TA11-14) via any combination of
pipeline (TA11-14_V01 to TA11-14_V02). For example, the
original milk can be filled from the R1BA via the pipeline
A1L01_V01 and add cold water by A1L01_V02 and then
flow into the milk tank TA11 via the value
TA11_A1L01_V01 and TA11_V01. The chocolate powder
can be added and mixed with the original milk, and finally
sent to the filling lines via the pipeline A1L01.

Fig.13 shows the entire cloud-edge collaborated
architecture. More than 10,000 pieces of production data and
HMI signals from 8 production processes are collected from
Schneider Electric Modicon M580 PLCs to the cloud
platform. The production data contain sensor signals and
control signals of all devices listed in Fig.12. The HMI signals
are the same as the TLT system.

Figure 12 Process & Instrument Diagram of the milk canning system

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

X. Wu et al.

 10

 Figure 13 Cloud-based architecture for application
and validation

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

Cloud-Based Data-Driven Behavior Model Recovery for Distributed Automation Systems

11

The method proposed in Section III is implemented. Two

Figure 14(a) The FB Network of the milk cart control

Figure 14(b) Part of the FB sub-network of the pipeline control

EAI Endorsed Transactions

on Digital Transformation of Industrial Processes
| Volume 1 | Issue 1 | 2025 |

X. Wu et al.

 12

pairs of correlated sequences are identified. The control
signal R1B_A1L01_V01 of the valve at the junction of the
milk cart and the pipeline A1L01 is matched with
A1L01_V01 which controls the ice water inlet valve.
Similarly, R1B_A1L02_V01 is matched with A1L02_V01 in
the pipeline A1L02. Therefore, independent variables are
finally clustered into eight equipment modules.

This system acts as a combination of multiple freely
matched TLT systems. Two milk cart modules and four milk
tank modules are instantiated as TANKCTRL instances. Two
pipelines are instantiated as LINECTRL instances in which
valve control outputs are combined into a defined structure
VALVES and decoded by a basic FB VALVES_DECODE.
Fig.14a and Fig.14b show the network of the milk cart control
and the pipeline control.

The hierarchical structure of this system is similar to the
TLT system. The only difference is that the equipment
modules are divided into three sub-networks: milkCart,
pipeline, and milkTank to facilitate management. These sub-
networks are cascaded, while their internal function blocks
are controlled in a distributed manner. The control flow
diagram (a simplified version of the FB network) of the entire
system is given in Fig. 15. The logic inside FBs are
implemented using the IEC 61131-3 ST language.

Qualitative and quantitative analyses of the generated
results are presented in Fig. 16 and Table III. Indicators of
Timeliness and Accuracy are applied to validate that
requirements are satisfied on time and correctly. Timeliness
calculates the sum of the time difference when the milk tank
reaches the required liquid level (marked as red rectangles in

TABLE III

GENERATION RESULTS AND OUTPUT VALIDATION

Figure 15 Control Flow Diagram of the raw milk canning system

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

Cloud-Based Data-Driven Behavior Model Recovery for Distributed Automation Systems

13

Fig.17), while Accuracy compares the output similarity of
each process operation. Repeated simulation results show that
the generated FB network completed the transmission tasks
100% as the original system within the required time. The
restoration rate of input conditions other than the collected
data drops to 95% due to failure to detect wrong input.

Figure 16 Comparison between the outputs of the
generated FB networks and the original control code

for a certain period of time

The accuracy results proved that the proposed framework
can be applied to any process control automation system with
only Boolean inputs and outputs. Although the accuracy
cannot achieve 100%, with IEC 61499 FBs, the missing part
can be manually adjusted.

5. Conclusions and Future Work

Migration from legacy automation systems is quite
challenging due to hidden complexities in internal structures.
This paper proposed a data-driven recovery method that is
suited for refactoring the control logic of distributed legacy
systems with linear process flow with independent
workstations. The goal of restoration is to generate a function
block network that executes the same actions and outputs the
same results under the same inputs. A generic TLT pattern is
proposed to model process control systems. This approach
not only recovers state machine-based reusable software
components for process control industries but also generates
a complete system application based on the IEC 61499 which
can be directly deployed. The proposed approach provides a
generic approach to migrate legacy automation systems
without source code available to avoid re-implementing the
entire logic again. Also, with the IEC 61499 FB models, the
recovered model can be distributed across multiple devices
without modifying any logic that is a hassle in multiple PLC
programming.

To achieve fully automatic migration from legacy control
systems, several improvements could be investigated. Firstly,
the proposed logic restoration method still highly relies on
domain-specific knowledge. Unseen input data need to be
inferred based on empirical requirements. Common methods
for discrete manufacturing and process automation will be

investigated to reduce the dependency on domain models.
This approach needs to be extended to achieve a fully
automatic process for migrating both process control and
discrete manufacturing systems. Secondly, automatic
systematic validation and formal verification algorithms must
be introduced to ensure system safety. Finally, the recovery
process can be linked with the automatic code generation
process to achieve a closed-loop framework that can
automatically optimize behavior from operation data.

Acknowledgements.
This research work is sponsored by the National Natural Science
Foundation of China, Project No. 92467301.

References
[1] A. Colombo, S. Karnouskos, and T. Bangemann, “Towards the

next generation of industrial cyber-physical systems”,
Industrial cloud-based cyber-physical systems. Springer, pp.
1-22, 2014.

[2] J. O. Ringert, B. Rumpe, C. Schulze and A. Wortmann,
“Teaching agile model-driven engineering for cyber-physical
systems,” 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering Education and
Training Track (ICSE-SEET), Buenos Aires, pp. 127-136,
2017.

[3] M. A. Garzo´n, H. Aljamaan and T. C. Lethbridge, “Umple: A
framework for Model Driven Development of Object-Oriented
Systems,” 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER),
Montreal, QC, 2015, pp. 494-498.

[4] F. Ding, J. Simpson and Y. Zhang, “A Transparent Translation
from Legacy System Model into Common Information
Model,” 2018 IEEE/PES Transmission and Distribution
Conference and Exposition (T&D), Denver, CO, pp. 1-5, 2018.

[5] T. Dharmawan and S. Rochimah, “Systematic literature
review: Model refactoring,” 2017 4th International Conference
on Computer Applications and Information Processing
Technology (CAIPT), Kuta Bali, pp. 1-5, 2017.

[6] IEC 61499-1: Function Blocks Part 1: Architecture,
International Electrotechnical Commission, 2012.

[7] G. Lyu and R. W. Brennan, “Towards IEC 61499-Based
Distributed Intelligent Automation: A Literature Review,” in
IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp.
2295-2306, April 2021.

[8] IEC 61131–3: Programmable controllers Part, International
Electrotechnical Commission, 2013.

[9] A. Keliris and M. Maniatakos, “ICSREF: A Framework for
Automated Reverse Engineering of Industrial Control Systems
Binaries”, Network and Distributed Systems Security
Symposium, pp 1-16, 2018.

[10] R. Keller, R. Schauer, S. Robitaille and P. Pagé, “Pattern-based
reverse-engineering of design components”, In Proceedings of
the 21st international conference on Software engineering, pp.
226-235, 1999.

[11] P. Sun, L. Garcia and S. Zonouz, “Tell Me More Than Just
Assemble! Reversing Cyber-physical Execution Semantics of
Embedded IoT Controller Software Binaries”, 49th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks, pp 349-361, 2019.

[12] S. Patil, D. Drozdov and V. Vyatkin, “Adapting Software
Design Patterns To Develop Reusable IEC 61499 Function
Block Applications,” 2018 IEEE 16th International

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

X. Wu et al.

 14

Conference on Industrial Informatics (INDIN), Porto, pp. 725-
732, 2018.

[13] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Kuo, Model-
driven Design Using Iec 61499: A Synchronous Approach for
Embedded and Automation Systems. Springer, 2014.

[14] F. Andrén, T. Strasser, and W. Kastner, “Engineering Smart
Grids: Applying Model-Driven Development from Use Case
Design to Deployment,” Energies, vol. 10, no. 3, p. 374, Mar.
2017

[15] M. Wenger and A. Zoitl, “Re-use of IEC 61131-3 Structured
Text for IEC 61499,” 2012 IEEE International Conference on
Industrial Technology, Athens, pp. 78-83, 2012.

[16] P. Gsellmann, M. Melik-Merkumians, A. Zoitl and G. Schitter,
“A Novel Approach for Integrating IEC 61131-3 Engineering
and Execution into IEC 61499,” in IEEE Transactions on
Industrial Informatics, Vol. 17, No. 8, pp. 5411-5418, 2020.

[17] D. Chivilikhin, S. Patil, K. Chukharev, A. Cordonnier and V.
Vyatkin, “Automatic State Machine Reconstruction From
Legacy Programmable Logic Controller Using Data Collection
and SAT Solver,” in IEEE Transactions on Industrial
Informatics, vol. 16, no. 12, pp. 7821-7831, Dec. 2020.

[18] J. Ladiges, C. Haubeck, A. Fay and W. Lamersdorf, “Learning
Behaviour Models of Discrete Event Production Systems from
Observing Input/Output Signals”, International Federation of
Automatic Control, 48(3), pp 1565-1572, 2015.

[19] J. Ladiges, A. Fulber, E. Arroyo, A. Fay, C. Haubeck and W.
Lambersdorf, “Learning Material Flow Models for
Manufacturing Plants from Data Traces”, IEEE 13th
International Conference on Industrial Informatics, pp 294-
301, 2015.

[20] A. P. Estrada-Vargas, E. López-Mellado and J. Lesage, “A
Black-Box Identification Method for Automated Discrete-
Event Systems,” in IEEE Transactions on Automation Science
and Engineering, vol. 14, no. 3, pp. 1321-1336, July 2017.

[21] J. Saives, G. Faraut and J. Lesage, “Automated Partitioning of
Concurrent Discrete-Event Systems for Distributed Behavioral
Identification,” in IEEE Transactions on Automation Science
and Engineering, vol. 15, no. 2, pp. 832-841, April 2018.

[22] D. Ivanova, G. Frey and I. Batchkova, "Intelligent component
based batch control using IEC61499 and ANSI/ISA S88,"
2008 4th International IEEE Conference Intelligent Systems,
2008, pp. 4-44-4-49.

[23] P. Senin, “Dynamic time warping algorithm review,”
Information and Computer Science Department University of
Hawaii at Manoa Honolulu, USA, vol. 855, no. 1-23, p. 40,
2008.

[24] S. Seto, W. Zhang and Y. Zhou, “Multivariate Time Series
Classification Using Dynamic Time Warping Template
Selection for Human Activity Recognition,” 2015 IEEE
Symposium Series on Computational Intelligence, pp. 1399-
1406, 2015.

[25] R. V. Lenth, “Least-squares means: the r package lsmeans,”
Journal of statistical software, vol. 69, pp. 1–33, 2016.

[26] W. Chiu, G. G. Yen and T. Juan, "Minimum Manhattan
Distance Approach to Multiple Criteria Decision Making in
Multiobjective Optimization Problems," in IEEE Transactions
on Evolutionary Computation, vol. 20, no. 6, pp. 972-985, Dec.
2016.

[27] M. Roux, “A Comparative Study of Divisive and
Agglomerative Hierarchical Clustering Algorithms”, Journal
of Classification, vol. 35, No. 2, pp.345-366, 2018.

[28] R. Sinha, P. S. Roop, G. Shaw, Z. Salcic and M. M. Y. Kuo,
“Hierarchical and Concurrent ECCs for IEC 61499 Function
Blocks,” in IEEE Transactions on Industrial Informatics, vol.
12, no. 1, pp. 59-68, Feb. 2016.

EAI Endorsed Transactions
on Digital Transformation of Industrial Processes

| Volume 1 | Issue 1 | 2025 |

