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Abstract 

INTRODUCTION: Industrial cyber-physical systems provide a bridge between legacy controllers and new edge devices 
that are usually equipped with massive computing power and storage capacity. The migration from legacy control systems 
to industrial cyber-physical systems is facing challenges as control code and design documents of legacy systems may not 
be available. 
OBJECTIVES: This paper proposes a data-driven behavior model recovery method for the black-box distributed 
manufacturing system based on cloud computing. 
METHODS: This method adopts the IEC 61499 function blocks as meta-models to describe system behaviors. The proposed 
framework includes three parts: data mining, logic restoration, and application construction. Raw collected data are 
processed and encapsulated into function block sets, then execution control charts, and finally function block types. 
RESULTS: This model recovery method is validated with a process control system of the food and beverage industry. 
CONCLUSION: A deployable function block network is generated by instantiating and connecting these function blocks. 
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1. Introduction

Industrial automation systems are shifting from massive 
production to massive customization by introducing the 
industrial cyber-physical system (ICPS) [1]. The ICPS aims 
to improve flexibility and interoperability by enabling 
information exchange between various field devices. On the 
other hand, the majority of legacy automation systems are still 
running as black boxes and cannot be easily migrated. One 
feasible solution is to recover the control software model 
from operating data based on the model-driven engineering 

*Corresponding author. Email: w.dai@sjtu.edu.cn 

(MDE) technology [2]. The MDE is commonly used in 
automatic code generation to improve the efficiency and 
quality of the software development process [3]. 

In the MDE, software behavior models (platform-
independent) are transformed into executable code (platform-
dependent) by using model transformation methods. 
However, it is extremely difficult to update the behavior 
model using rule-based algorithms to capture changes made 
in the code. One reason is that the code pattern may be 
changed completely and no pre-defined rule can be matched. 
As a result, even with a simple code change request, complete 
regeneration of the entire code is compulsory which is 
extremely inefficient. 
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  Another approach is to recover the software behavior model 
by using the data-driven approach. These approaches are 
based on pre-defined models or meta-model templates 
generated from data to refactor executable modules [4][5]. 
The major challenge is to capture control logic and data 
structure from system inputs and outputs. The internal logic 
in the controller remains as a black box. With an unknown 
internal structure, it is challenging to compose a behavior 
model that is 100% equivalent to the original model. 

Cloud computing bridges distributed system behavior 
models with real-time data collected from controllers on the 
shop floor. With a large process automation system like 
nuclear plants, the number of I/Os and variables could 
generate 10MB per I/O scan (in tens of milliseconds). The 
data-driven behavior model recovery method utilizes cloud 
computing power to classify massive historical data into 
various software components and regenerate internal logic for 
each component. The overall system behavior is 
characterized as an ordered execution sequence of process 
operations. These components are composed of a complete 
application with support from domain-specific models.  

This paper's main contribution is to propose a framework 
to recover the system behavior model from historical 
operation data for migrating legacy automation systems 
without source code available. The behavior model is 
reconstructed as an IEC 61499 function block (FB) network 
with state-machine encapsulated in FBs to provide human-
understandable system behaviors with hierarchical levels of 
components for abstraction. The IEC 61499 standard offers a 
component-based open architecture for distributed 
automation systems in which a distributed application can be 
composed of event-driven FBs.  The IEC 61499 standard [6] 
has been proven a perfect fit for rapid prototyping distributed 
automation systems. The function block network can be 
directly deployed and executed on a group of connected 
devices to improve the efficiency of migration processes [7]. 
Several data processing steps are proposed to regenerate IEC 
61499-based system behavior model. As a result, the control 
logic in the black box can be migrated to any new edge 
computing device with minimum effort.  
The rest of this paper is structured as follows. Section II 
provides a review of related works for MDE and behavior 
model recovery. In Section III, details of the behavior model 
recovery method are discussed. Section IV demonstrates the 
proposed method with a dairy production process. Finally, 
Section V concludes the paper and provides future research 
directions.  

2. Related Works 

The key to accelerating cloud-edge collaborated ICPS is the 
migration of legacy control systems. Currently, industrial 
automation control systems are programmed according to the 
IEC 61131-3 standard [8]. The IEC 61131-3 programmable 
logic controllers (PLCs) are widely used but are limited to the 
scope of a single device without a clear system-level view and 
interoperability between multiple devices. There is no 
existing work on data-driven recovering control logic for IEC 

61499-based control applications. However, some existing 
data mining and model recovery algorithms were used during 
the I/O partitioning process. 

 A framework was proposed for automatic reverse 
engineering binary codes from industrial control systems by 
Keliris et al [9]. A structured methodology was used to extract 
information including header, subroutine, symbol tables, and 
data sections from PLCs. The original program structure was 
recovered by detecting subroutines from binary code. Also, 
the pattern of known function blocks was matched. Keller et. 
al. [10] proposed a pattern-based reverse engineering method 
with abstract UML metamodels and source code. Three 
different methods including template, factory, and bridge 
were compared. Manual efforts were still required for pattern 
recognition. A framework that recovers execution semantics 
from embedded IoT controller software binaries was 
proposed by Sun et. al [11]. Control Flow Graph and 
Symbolic Controller abstraction methods were used to 
recover semantic models from code binaries. The approach 
still required domain-specific knowledge. 

There are lots of existing works on the migration of legacy 
control systems into IEC 61499 system configurations based 
on model-driven engineering (MDE) approaches. The key 
concept of MDE is to employ high-level, domain-specific 
models in the implementation, integration, maintenance, and 
testing during the full life cycle of software systems. The IEC 
61499 standard is a typical MDE practice that uses event-
trigger function blocks as the basic programming 
organization unit. The function block defined in this standard 
is a software entity that encapsulates algorithms with a 
generic interface that consists of event and data variables. 
These FBs are suitable for the system-level design for ICPS 
[12]. Currently, most model-driven design patterns of the IEC 
61499 standard focus on the organization of the function 
blocks at the application level [13][14]. 

Many researchers propose migration and transformation 
rules by encapsulating existing Structured Text (ST) based 
IEC 61131–3 functions in IEC 61499 FBs [15] and 
integrating IEC 61131-3 execution into IEC 61499 FBs [16]. 
These methods mainly focus on module conversion with 
embedded code that the source code of the legacy system 
must be provided.  

Chivilikhin et al. [17] proposed a framework that generates 
state machines that can be incorporated into IEC 61499 FBs 
from collected PLC data when the original program is 
unavailable. This framework takes the trace of raw PLC data 
and produces a set of candidate state machines using Boolean 
satisfiability solvers. It synthesizes a global controller by 
modular decomposition. This method is exemplified in a 
grasping system that contains only Boolean input/output 
variables from a single controller with no hierarchy. 

Ladiges et al. [18] proposed learning behavior models of 
discrete event production systems based on I/O signals. A 
machine state presented by Petri Nets was generated from 
recorded event traces. All I/O signals were expressed in 
Boolean variables and timing information was considered. 
Further, these state machines were automatically organized 
into material flow also presented in Petri Nets [19]. 
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Similar to the previous work, Lesage et al. [20] generated 
interpreted Petri net models of the discrete event 
manufacturing systems from observed input/output (I/O) 
signal vectors. Direct relations between I/O events and the 
internal state evolutions are identified. Besides, an algorithm 
inspired by clustering methods is proposed to partition a 
complex distributed system [21]. This research is highly 
relevant to the restoration of legacy system behavior models, 
although the generated Petri net was not directly executable 
code and I/O data were limited to Boolean variables. 

This paper proposes a methodology suited for legacy 
automation systems with linear process flow with several 
independent workstations. These workstations can be 
operated in a certain order to process a dedicated task within 
a fixed period. During this period, products are transported 
between workstations to complete different processes at each 
workstation. The model analysis of non-Boolean variables 
and the relevance of time-shift sequences are covered. 
Besides, specific data changes are defined as events. 
Compared to existing works, this approach uses IEC 61499 
FB network as the recovered model to ensure all behaviors 
are completely modularized. This encapsulation provides 
better reusability and software components recovered from 
the data can be deployed directly to any device without any 
code modification. 

3. Behavior Model Recovery 

As shown in Fig. 1, the behavior model recovery process 
contains three modules: data mining, logic restoration, and 
application reconstruction. Raw data are collected by directly 
reading values from legacy Programmable Logic Controllers 
(PLC) for every I/O scan cycle. These data cached on edge 
gateways are transferred back to the cloud and clustered as 

independent variable sets. Then these variable sets are 
reconstructed as finite-state machines (Execution Control 
Charts in IEC 61499) encapsulated by function blocks. 
Challenges include data redundancy, state-space explosion, 
and uncertain system structure. 

 
 

Figure 1 The Cloud-based behavior model recovery 
framework for distributed control system 

According to ANSI/ISA S88 standard, a procedure system 
is a typical procedural and divisible system that directs 
separate equipment-oriented actions to take place in an 

Figure 2 Process & Instrument Diagram of the TLT model 
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ordered sequence [22]. To balance multi-usability and 
domain-specification, this section applies a Tank-Link-Tank 
(TLT) model shown in Fig. 2 as an illustrative example. The 
TLT model is a design paradigm commonly used in the 
pipeline process which is suitable for most process control 
systems, especially for the Food and Beverage (F&B) 
industry.  

  
This system is controlled by Schneider Electric Modicon 

M251 PLCs with a program the cycle time is set to 100ms. 
No data packets got lost during the transmission and only 
changes in the I/O sequences are recorded. Table I lists all 
collected data to the cloud of three equipment modules and 
functional system inputs.  

TABLE I 
 COLLECTED DATA OF THE TLT SYSTEM 

 

 

3.1 I/O Data Partitioning 

The IEC 61131-3 defines elementary data types such as 
BOOL, INT, REAL, etc [8]. Non-boolean variables are 
classified and decomposed into Boolean signals representing 
device or process states.  

For the TLT model, control signals of valves and motors 
are defined as on-off BOOL variables. Sensing variables are 
observed REAL type state signals, and system inputs are 
periodic constants except for the internal clock Timer. Non-
boolean state variables (e.g., sensing variables, feedback 
variables) are abstracted as Boolean signals representing 
states. For example, liquid level sensing variables of Tank 
T01 are decomposed as T01_level_up and T01_level_down, 
which indicate the rising and falling state of the liquid level. 
Non-boolean condition variables (e.g., control variables, 
timing variables) are decomposed into multiple event 
sequences. For example, the Timer in the TLT model is 
decomposed into three event sequences (Timer_20s, 
Timer_15s, and Timer_12s) since three timing cycles are built 

into the system clock. The simplified I/O sequences are stated 
as (1) and (2) without state variables. 

 

 
A distributed control system usually contains a large 

number of interconnected and data-sharing devices. 
Redundant sequences may occur due to synchronous or 
asynchronous equivalent changes with a small timeshift. 
Therefore, dynamic time warping (DTW) is utilized to 
measure the similarity of collected data [23]. This method 
calculates an optimal match between two sequences where 
the mapping of the indices must be monotonically increasing 
within a time window. Given two time series 𝑋𝑋 =
(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑁𝑁) and 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2 ,⋯ ,𝑦𝑦𝑀𝑀) of length 𝑁𝑁 and 𝑀𝑀 , 
define the local cost matrix for their alignment as: 

 
The symbol 𝑑𝑑𝑖𝑖,𝑗𝑗 denotes the entry in the i th row and j th 

column of the matrix D. Once the local cost matrix 𝐷𝐷 is built, 
the DTW algorithm finds the warping path which defines the 
correspondence of an element 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋  to 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌  as (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗) . 
𝑊𝑊  is the set of warping paths that satisfy the boundary, 
monotonicity, and continuity conditions defined in [24]. Then, 
the similarity between time series 𝑋𝑋 and 𝑌𝑌 is defined with the 
shortest warping path 𝑤𝑤∗:  

The DTW(X,Y) is negatively correlated with the similarity 
between time series X and Y. To further identify time-shifted 
sequences, the other attribute Collinearity is defined by 
referring to the least squares method [25]: 
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After the similarity match, all collected data are divided 

into an independent set and a residual set by the decision tree 
model as shown in Fig. 3. The independent variable set 
contains no matched sequences. Each variable in the residual 
set can find its matched sequence in the independent variable 
set. 

 

 Figure 3 Decision tree model of the similar sequences 
matching 

 

 Figure 4 DTW results of matched sequences (Left), 
time-shifted sequences (Middle), and independent 

sequences (Right). 

Fig. 4 shows three matching results. Here, Manhattan 
distance [26] is used as the local cost measure. The smaller 
the distance of the indice pair is, the darker its color is in the 
distance matrix. White areas are indice pairs outside the time 
window. The red line in the middle is the warping path. In the 
TLT model, T01_V01 is correlated with T01_L01_V01 and 
synchronized with L01_V02. These three matched variables 
are merged and kept as T01_V in the independent set. Besides, 
T02_V01 is correlated with T02_L01_V01 which are merged 
as T02_V. Therefore, the total data volume has been reduced 
by 37.5% and the final independent set is as follows: 

 
The next step is the Hierarchical clustering. The 

independent set may need to be decomposed into several 
subsets representing multiple subsystems due to the system 
complexity. Similar to the I/O partitioning approach in [20], 
the changing pattern of variables is analyzed before the 
hierarchical clustering. This step adapts their strategies and 
includes domain-specific knowledge such as physical and 
process models to divide subsets. A Boolean sequence named 
Change Sequence is introduced to analyze the changing laws 
of variables in the independent set. In a distributed system, 
each variable has its own changing law during different 
process operations or actions.  The Change Sequence marks 
the start time of each stage as 1, and others as 0. The Change 
Sequence of the variable v is calculated as: 

 
The Change Sequence describes the changing law of each 

independent variable. Then, the K-means time shift clustering 
[27] is utilized to identify their correlation. The cluster 
number k is equal to the number of generated FBs. It can be 
manually defined or automatically generated by minimizing 
the average within-cluster deviation. The clustered subsets of 
independent variables need to meet the following rules: 

Rule 1: For any variable 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗  (𝑖𝑖 ≠ 𝑗𝑗) in the same 
subset, there is 𝐷𝐷𝐷𝐷𝑊𝑊(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) ≥ 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖ℎ𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑. 

Rule 2: For any subset 𝑟𝑟𝑖𝑖𝑖𝑖1 and 𝑟𝑟𝑖𝑖𝑖𝑖2, there is 𝑟𝑟𝑖𝑖𝑖𝑖1 ∩
𝑟𝑟𝑖𝑖𝑖𝑖2 = ∅. 

Rule 3: For all subsets 𝑟𝑟𝑖𝑖𝑖𝑖1 , 𝑟𝑟𝑖𝑖𝑖𝑖2 , ⋯, 𝑟𝑟𝑖𝑖𝑖𝑖𝑘𝑘 , there is 𝑟𝑟𝑖𝑖𝑖𝑖1 ∪
𝑟𝑟𝑖𝑖𝑖𝑖2 ∪ ⋯∪ 𝑟𝑟𝑖𝑖𝑖𝑖𝑘𝑘 = 𝐼𝐼 ∪ 𝑂𝑂 .In addition to data correlation 
analysis, some prior knowledge of the system is also taken 
into account. In this case, both physical and process models 
of such a process control system are defined in the ISA-88 
standard to identify equipment groupings and describe 
hierarchical elements of the procedure. Fig. 5 shows the 
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mapping relationship of these models in the TLT-based 
system and subsystems are the source tank, pipeline, and 
target tank as the data associations defined in Table I. 

 

 Figure 5 The mapping relationship between the 
physical model (physical system) and the process 
model (IEC 61499 framework) in the TLT-based 

system 

After data mining, collected I/O sequences are classified, 
simplified, and finally encapsulated into several subsets. 
Non-Boolean sequences are disassembled into multiple 
Boolean subsequences, and matched sequences are merged 
and distributed into different subsets. These steps are all to 
reduce the potential state space. 

3.2 Logic Restoration 

In the previous step, collected data are classified into 
multiple subsets. Each subset can be corresponding to one 
IEC 61499 FB with an ECC inside. The ECC is a 
deterministic finite-state machine defined in the IEC 61499.  
Its mathematical expression is defined as 𝐸𝐸𝐸𝐸𝐸𝐸 =< 𝑆𝑆,  𝑟𝑟0, 𝜆𝜆,
𝐷𝐷 > [28]. The 𝑆𝑆 is a set of observed EC states and  𝑟𝑟0 is the 
initial state.  𝜆𝜆: 𝑆𝑆 →  ( 𝐴𝐴𝐿𝐿 ∪ 𝐸𝐸𝑂𝑂) is an action function that 
represents mapping relationships between states and actions. 
𝐷𝐷:  𝑆𝑆 → 2(𝐸𝐸𝐼𝐼∪{1})×𝐶𝐶(𝑉𝑉)×𝑆𝑆  is a transition function where 𝐸𝐸𝐼𝐼  is 
the set of input events and 𝐸𝐸(𝑉𝑉)  refers to a Boolean 
expression over I/O data and internal variables. The 
regeneration of the control logic consists of three steps: state 
abstraction, condition analysis, and transition mapping.  

1)  State abstraction: The EC state is an abstract description 
of the process operation in an equipment module or a unit. 
OS(t) is an ordered state sequence that describes system 
behaviors during a production cycle. Different systems vary 
in state descriptions, and one system may have various sets of 
state descriptions. An ideal state set S obey the completeness 
and uniqueness rules: 

Rule 1:∀𝑖𝑖 ∈ [0,𝐷𝐷], ∃𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆 that system state 𝑂𝑂𝑆𝑆(𝑖𝑖) 
could be represented by 𝑟𝑟𝑖𝑖, which is defined as 
𝑂𝑂𝑆𝑆(𝑖𝑖) → 𝑟𝑟𝑖𝑖 . 

Rule 2: If 𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆 and 𝑂𝑂𝑆𝑆(𝑖𝑖) → 𝑟𝑟𝑖𝑖, then there is no 𝑟𝑟𝑗𝑗 ∈
 𝑆𝑆 that 𝑂𝑂𝑆𝑆(𝑖𝑖) → 𝑟𝑟𝑗𝑗 . 

 
According to ANSI/ISA S88 standard and engineer 

experience, a complete state set of the TLT system is 𝑆𝑆 =
{𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖00, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖10, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖30, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖40, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖60, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖255}  as 
listed in Table II. Some steps are redundant for specific 
control modules. The system-level observed state sequence 
is as follows: 

 
 

TABLE II 
DEFINED STATES AND CORRESPONDING PROCESS OPERATIONS OF THE 

TLT SYSTEM 
 

 
 
2) Condition analysis: The condition of the EC transition 

consists of a trigger event with/without a guard condition.  

𝑖𝑖𝑖𝑖𝑗𝑗: 𝑟𝑟𝑖𝑖  
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)∙( 𝑐𝑐𝑖𝑖𝑖𝑖)
�⎯⎯⎯⎯⎯⎯� 𝑟𝑟𝑗𝑗  is a transition template in which the object 

leaves the current state s_i and enters the next state s_j when 
the input event ie_ij reaches and the guard condition c_ij is 
satisfied. The trigger event ie is either a particular input event 
or 1 (any event). The guard condition c is a Boolean 
expression that applies logical operators to logical or 
arithmetic expressions over I/O and internal variables.  
If each transition has its input signal (condition satisfied or 
event triggered), the observed system is considered as 
controllable. If each transition has its output signal (output 
variable changed or output event triggered), the observed 
system is considered as measurable. I/O mismatches may 
occur due to sampling truncation, invalid input, internal 
behavior, etc., and can be circumvented by repeated sampling. 
This paper focuses on the ideal sampling of controllable 
objective systems. The mapping relationships between the 
observed state sequence OS(t) and input/output event 
sequence IE(t)/ OE(t) are given as: 
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The TLT model has an input event set 𝐸𝐸𝐼𝐼 =

{𝐼𝐼𝑁𝑁𝐼𝐼𝐷𝐷,𝑅𝑅𝐸𝐸𝑅𝑅, 𝑆𝑆𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷,𝐹𝐹𝐼𝐼𝑁𝑁𝐼𝐼𝑆𝑆𝐹𝐹, 𝑆𝑆𝐷𝐷𝑂𝑂𝑆𝑆}  which contains 
collected I/O data {𝑆𝑆𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷,𝐹𝐹𝐼𝐼𝑁𝑁𝐼𝐼𝑆𝑆𝐹𝐹}, function block basic 
event {𝐼𝐼𝑁𝑁𝐼𝐼𝐷𝐷,𝑅𝑅𝐸𝐸𝑅𝑅} , and a hidden event STOP. The guard 
condition set 𝐸𝐸(𝑉𝑉)  contains only one expression 
(𝐷𝐷02. 𝐿𝐿𝑖𝑖𝑣𝑣𝑖𝑖𝑜𝑜. 𝑎𝑎𝑑𝑑𝑑𝑑 == 𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖𝑖𝑖) . Therefore, an ECC 
template of the general pipeline transportation process is 
generated based on domain-specific knowledge. This 
template listed all process operations from 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖00  to 
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖250 as EC states. Each state has one undefined normal 
execution action and one Error action designed to throw a 
fault. No I/O variables but some abstract conditional directed 
arrows are involved to indicate the execution order. 

 

 Figure 6 ECC template of general pipeline 
transportation process 

As shown in Fig. 6, Step00 will jump to Step10 when the 
input event START is triggered after initialization is 
completed. Secondly, Step10 will jump to Step30 after a set 
time delay. When the raw material reaches the set value, 
Step30 will jump to the stop state Step255, waiting for the 
next instruction. If the input signal is START, repeat Step30; 
if the input signal is FINISH, go to Step40. Step40 transitions 
to Step60 and then Step 255 all after a set time delay.  Error 
responses are not covered in this state machine. Here, the 
generated ECC only gives feedback based on the status of 
each step. The current state will return to the initial state and 
throw an output event ERROR when a fault occurs. 
 
3) Transition mapping: The generated ECC template needs to 
be parameterized and mapped before deployment. Here, 
global and internal variables in the original PLC code are 
replaced with a pair of input/output variables. Algorithm 1 
restores the missing parameters in the template and optimizes 
the final ECC by analyzing I/O and state sequences. 𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑗𝑗 
are pre-defined EC states in the set 𝑆𝑆. The action function 𝜆𝜆 
is generated by mapping the destination state with 
synchronized outputs. The state transition 𝑖𝑖𝑖𝑖𝑗𝑗 is generated by 

applying the operator AND to synchronously triggered input 
events and guard conditions. Transition conditions of the 
recurring state transition are connected by the operator OR. 
Then, an ECC is generated by merging all state transitions 
and action execution.  
 

 
 
It should be noted that a valid ECC has only one active 

state at the same time. Therefore, concurrent transitions need 
to be prevented. With the priority of EC transitions introduced 
in the IEC 61499 second edition, each EC transition will be 
assigned with a different priority. If more than one EC 
transition condition is met, the EC transition with the highest 
priority will be activated. If no priority options are provided 
in the IEC 61499 platform, manual modification of transition 
conditions is required. The final ECC satisfies the observed 
state sequence and outputs the same results under the same 
input as the original system.  

The introduction of domain-specific templates makes the 
identification problem nondeterministic polynomial. Fig. 7 
and Fig. 8 show the generated ECC of the source and 
destination tank FB. The ECCs of the two FBs are very 
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similar except the STEP20 in the source tank FB is replaced 
with the STEP30 in the destination FB. In general, 7 transition 
parameters (mostly the time durations) in the original 
template are restored and 4 instance states are removed. 

 

 

 Figure 7 Generated ECC of the source tank in the 
TLT system 

 

 Figure 8 Generated ECC of the destination tank in the 
TLT system 

3.3 System Model Recovery 

The final step is to recover the entire system model which 
can be divided into three steps: interface recovery, 
instantiating, and connection establishment.  

 

 

 Figure 9 Designed interface of the TANKCTRL 
function block (left) and the LINECTRL function block 

(right) 

1) Interface recovery: A function block interface 𝐼𝐼 =<
𝐸𝐸𝐼𝐼 ,𝑉𝑉𝐼𝐼,𝛼𝛼𝐼𝐼 ,𝐸𝐸𝑂𝑂 ,𝑉𝑉𝑂𝑂 ,𝛼𝛼𝑂𝑂 > is defined as a tuple where 𝐸𝐸𝐼𝐼 , 𝑉𝑉𝐼𝐼 , 
𝐸𝐸𝑂𝑂 and 𝑉𝑉𝑂𝑂 are finite sets of I/O events and data, while 𝛼𝛼𝐼𝐼 ⊆
𝐸𝐸𝐼𝐼 × 𝑉𝑉𝐼𝐼 and 𝛼𝛼𝑂𝑂 ⊆ 𝐸𝐸𝑂𝑂 × 𝑉𝑉𝑂𝑂  are the sets of input and output 
associations [27]. The reconstruction of the external FB 
interface mainly depends on the variables required by 
internal functions in each mapped device. For the TLT-based 
pattern, equipment modules are mapped into two function 
block types: TANKCTRL and LINECTRL. Fig.9 shows the 
designed interface of these two FBs. 

 𝐷𝐷𝐴𝐴𝑁𝑁𝑇𝑇𝐸𝐸𝐷𝐷𝑅𝑅𝐿𝐿.𝐷𝐷𝐼𝐼𝐷𝐷  and 𝐿𝐿𝐼𝐼𝑁𝑁𝐸𝐸𝐸𝐸𝐷𝐷𝑅𝑅𝐿𝐿. 𝐿𝐿𝐼𝐼𝐷𝐷  identify the 
equipment modules after instantiating. RSP is a combined 
input signal structure, including all user inputs on the HMI. 
Other variables are less relevant to the production process but 
highly related to system monitoring and safety. 
2) Instantiating: The purpose of instantiation is to instantiate 
and reconstruct (if necessary) the generated function block 
types as FB instances. The key to instantiation is matching 
the existing function block types to specific system behaviors 
and then allocating them to specified devices. 
 

 

 Figure 10 The FB sub-network of the source tank in 
the TLT model 

Fig. 10 shows the sub-network of the source tank and 
downstream devices in the TLT model. The valve control 
module ValveCtl and the motor control module Motor1S1D 
are applied here to handle I/O modules. 
3) Connection establishment: A FB network consists of 
several FB instances interconnected by event and data [6]. 
The data connections aim to exchange information, while the 
event connections aim to propagate control signals. Events 
are connected according to the system structure and execution 
logic, while data are connected according to the paired 
sequences in the previous similarity match. 

The IEC 61499 standard provides a flexible deployment 
plan in that FBs are mapped to various resources at the 
runtime stage.  These resources could be controllers on site, 
edge gateways, or even cloud servers. With flexible 
deployment ability provided, a cloud-edge collaborated 
hierarchical application architecture is proposed. 

As illustrated in Fig.11, the reconstructed FB application 
network contains three hierarchical layers: central control, 
equipment modules, and control modules. The central 
control monitors system states and handles errors. Equipment 
modules get the upstream outputs and send control signals to 
control modules mapped to downstream devices like valves 
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and motors. Two reusable FB types (TANKCTRL and 
LINECTRL) are generated with built-in ECC templates 
suitable for most pipeline transportation scenarios. Users 
only need to modify state outputs and device mapping for 

instantiation. 
 

 

 Figure 11 The reconstructed FB network of the TLT-
based system 

Overall, a deployable FB network is reconstructed semi-
automatically. Raw operation data are processed and 
clustered automatically. ECCs of these independent sets are 
reconstructed via model-driven transformation and data-
driven parameter recovery. The third module designs the 
external interface and instantiates FB types manually. Finally, 
FB instances are interconnected to a complete network 
following the semantics of the system behavior. 

4. Case Study and Implementation 

A case study of the milk canning system is used to prove the 
proposed method as shown in Fig.12. The milk canning 

system is a typical process control system, which contains all 
essential components, including valves, tanks, and pumps, 
that exists for all types of process control systems. This 
system contains eight equipment modules (two source tanks 
R1BA and R1BB, two pipelines A1L01 and A1L02, four 
target tanks TA11-14) and 22 control modules (twelve one-
way valves, eight two-way valves, two motors). Raw 
materials can be transported from any milk cart (R1BA or 
R1BB) to any milk tank (TA11-14) via any combination of 
pipeline (TA11-14_V01 to TA11-14_V02). For example, the 
original milk can be filled from the R1BA via the pipeline 
A1L01_V01 and add cold water by A1L01_V02 and then 
flow into the milk tank TA11 via the value 
TA11_A1L01_V01 and TA11_V01. The chocolate powder 
can be added and mixed with the original milk, and finally 
sent to the filling lines via the pipeline A1L01. 

Fig.13 shows the entire cloud-edge collaborated 
architecture. More than 10,000 pieces of production data and 
HMI signals from 8 production processes are collected from 
Schneider Electric Modicon M580 PLCs to the cloud 
platform. The production data contain sensor signals and 
control signals of all devices listed in Fig.12. The HMI signals 
are the same as the TLT system. 

 
Figure 12 Process & Instrument Diagram of the milk canning system 
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 Figure 13 Cloud-based architecture for application 
and validation 
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The method proposed in Section III is implemented. Two 

 
Figure 14(a) The FB Network of the milk cart control 

 

Figure 14(b) Part of the FB sub-network of the pipeline control 
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pairs of correlated sequences are identified. The control 
signal R1B_A1L01_V01 of the valve at the junction of the 
milk cart and the pipeline A1L01 is matched with 
A1L01_V01 which controls the ice water inlet valve. 
Similarly, R1B_A1L02_V01 is matched with A1L02_V01 in 
the pipeline A1L02. Therefore, independent variables are 
finally clustered into eight equipment modules.  

This system acts as a combination of multiple freely 
matched TLT systems. Two milk cart modules and four milk 
tank modules are instantiated as TANKCTRL instances. Two 
pipelines are instantiated as LINECTRL instances in which 
valve control outputs are combined into a defined structure 
VALVES and decoded by a basic FB VALVES_DECODE. 
Fig.14a and Fig.14b show the network of the milk cart control 
and the pipeline control. 

The hierarchical structure of this system is similar to the 
TLT system. The only difference is that the equipment 
modules are divided into three sub-networks: milkCart, 
pipeline, and milkTank to facilitate management. These sub-
networks are cascaded, while their internal function blocks 
are controlled in a distributed manner. The control flow 
diagram (a simplified version of the FB network) of the entire 
system is given in Fig. 15. The logic inside FBs are 
implemented using the IEC 61131-3 ST language.  

Qualitative and quantitative analyses of the generated 
results are presented in Fig. 16 and Table III. Indicators of 
Timeliness and Accuracy are applied to validate that 
requirements are satisfied on time and correctly. Timeliness 
calculates the sum of the time difference when the milk tank 
reaches the required liquid level (marked as red rectangles in 

TABLE III 

GENERATION RESULTS AND OUTPUT VALIDATION 

 

 
Figure 15 Control Flow Diagram of the raw milk canning system 
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Fig.17), while Accuracy compares the output similarity of 
each process operation. Repeated simulation results show that 
the generated FB network completed the transmission tasks 
100% as the original system within the required time. The 
restoration rate of input conditions other than the collected 
data drops to 95% due to failure to detect wrong input. 

 

 

Figure 16 Comparison between the outputs of the 
generated FB networks and the original control code 

for a certain period of time 
 

The accuracy results proved that the proposed framework 
can be applied to any process control automation system with 
only Boolean inputs and outputs. Although the accuracy 
cannot achieve 100%, with IEC 61499 FBs, the missing part 
can be manually adjusted. 

5. Conclusions and Future Work 

Migration from legacy automation systems is quite 
challenging due to hidden complexities in internal structures. 
This paper proposed a data-driven recovery method that is 
suited for refactoring the control logic of distributed legacy 
systems with linear process flow with independent 
workstations. The goal of restoration is to generate a function 
block network that executes the same actions and outputs the 
same results under the same inputs. A generic TLT pattern is 
proposed to model process control systems. This approach 
not only recovers state machine-based reusable software 
components for process control industries but also generates 
a complete system application based on the IEC 61499 which 
can be directly deployed. The proposed approach provides a 
generic approach to migrate legacy automation systems 
without source code available to avoid re-implementing the 
entire logic again. Also, with the IEC 61499 FB models, the 
recovered model can be distributed across multiple devices 
without modifying any logic that is a hassle in multiple PLC 
programming. 

To achieve fully automatic migration from legacy control 
systems, several improvements could be investigated. Firstly, 
the proposed logic restoration method still highly relies on 
domain-specific knowledge. Unseen input data need to be 
inferred based on empirical requirements. Common methods 
for discrete manufacturing and process automation will be 

investigated to reduce the dependency on domain models. 
This approach needs to be extended to achieve a fully 
automatic process for migrating both process control and 
discrete manufacturing systems. Secondly, automatic 
systematic validation and formal verification algorithms must 
be introduced to ensure system safety. Finally, the recovery 
process can be linked with the automatic code generation 
process to achieve a closed-loop framework that can 
automatically optimize behavior from operation data. 
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