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Abstract 

INTRODUCTION: Population-based algorithms are popular stochastic algorithms used for solving optimization problems. 
Grey Wolf Optimizer (GWO) proposed in 2014 is one of the most studied algorithms in the past decade. Population-based 
two-phase trigonometric AB (TP-AB) is a recently proposed algorithm for handling optimization problems. 
OBJECTIVES: The objective of this work is to propose one new hybrid algorithm  combining the strengths of two better 
performing algorithms in two different phases. The performance is analysed using popular benchmarks and the results are 
compared with a few popular algorithms available in the literature. 
METHODS: One new two-phase hybrid algorithm is designed by taking GWO in its first phase and the second phase of the 
TP-AB algorithm in the second phase. In the second phase, the Levy Strategy is introduced which was not in the original 
TP-AB algorithm. 
RESULTS: The performance of the new hybrid GWO:TP-AB algorithm is analysed using 23 classic mathematical functions, 
10 numbers of the CEC2019 dataset and 18 real-world engineering problems In addition, to demonstrate its capability to 
handle higher dimension problems, 13 scalable problems are solved. These include unimodal and multimodal instances with 
dimensions 30, 100, 500 and 1000. 
CONCLUSION: The results demonstrate the better performance of the GWO:TP-AB algorithm when compared to several 
optimization algorithms of recent times. 
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1. Introduction

Industrial revolutions increase the focus on industrial digital 
transformation (IDT) for its industrial value creation potential 
(Abiodun et al., 2023). In today's digital era, understanding 
the critical factors that drive industrial digital transformation 
is essential for any organization to evolve in the technological 
landscape (Tangwaragorn, 2024). Industrial optimization 
aims to balance the resources and their usage to achieve the 
set objectives. 
   Operations Research (OR) finds its place in almost all 
elements of manufacturing, marketing, sales and service 
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activities to improve the profit and reduction in wastages. 
Designing optimal layouts, efficient scheduling and proper 
design of machines and machine elements are a few areas of 
focus in any industry. 
   Metaheuristic algorithms are popular nowadays in solving 
complex optimization problems in varying domains of 
Operations Research due to their versatility and flexibility 
(Tomar et al., 2024). We could find the applications of such 
optimization algorithms in solving constrained, 
unconstrained, single-objective, multi-objective, linear, and 
non-linear problems with continuous and discrete search 
spaces. They are more popular due to their ability to combine 
exploration and exploitation capabilities to reach 
optimal/near-optimal solutions.   
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   Exact methods could be effective for smaller problems 
only. When the problem dimensions increase the computing 
time increases exponentially. As a result, metaheuristics are 
widely used by researchers for larger problem sizes to obtain 
results with acceptable accuracy. The genetic algorithm 
proposed by   Holland (1992) is an evolutionary heuristic 
algorithm which is population-based and stochastic. Since 
then, numerous heuristics have been proposed by researchers 
over the years which could be classified based on: 
Nature inspired Evolutionary Algorithms (Example: Genetic 
Algorithms) 
Collective behaviour of swarms inspired Swarm-Based 
Algorithms (Example: Particle Swarm Optimization of 
Kennedy and Eberhart, 1995) 
Human Behaviour inspired Human-Based Algorithms 
(Example: Teaching-Learning Based Optimization of Rao et 
al., 2011) 
Science-inspired Science-Based Algorithms (Example: 
Harmony Search Algorithm of Kim, 2016). 
Maths inspired Maths-Based Algorithms (Example: 
Trigonometric Sine (AB) and T-Cos algorithms of Baskar; 
2022, 2024) 
   Another way of classifying such algorithms is population-
based or trajectory-based. 
   In population-based algorithms, a set (population) of 
approximate solutions is generated within the bounds and 
these solutions are iteratively moved towards the 
optimal/near-optimal solutions. Evolutionary and swarm-
based algorithms fall under this population-based category. 
On the other hand, trajectory-based algorithms explore the 
search space by following a single solution path (trajectory) 
at a time and iteratively refine the single solution. Simulated 
Annealing (Kirkpatrick, 1983) is a good example of a 
trajectory-based algorithm. 
   Based on the number of objectives that need to be 
optimized, algorithms may also be classified as single-
objective and multi/ many-objective optimization algorithms. 
   Another popular category is hybrid algorithms in which two 
or more strategies are extracted from better-performing 
algorithms available in the literature to improve the 
performance of the new hybrid algorithm. 
   This paper is one such hybrid algorithm that combines the 
Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014) and TP-
AB trigonometric algorithm (Baskar et al., 2024) whose 
performances were demonstrated using a set of well-known 
benchmark problem sets. 
   The rest of this paper is organized as follows: The newly 
proposed hybrid algorithm is detailed in Section 2 and 
Section 3 explains briefly the benchmarks used for analysing 
the performance of the proposed GWO: TP-AB hybrid 
algorithm. A comprehensive analysis is performed and some 
comparisons are performed in Section 4. Finally, in the 
conclusion section 5, we conclude with a summary, of the 
main advantages and future work involving the proposed 
hybrid algorithm. 

2. Hybrid GWO: TP-AB Algorithm

The objective function of any optimization is usually 
represented in terms of a mathematical equation which is 
evaluated for the set of variables that result in minimization 
or maximization of the objective function. This process of 
optimization in practical cases is subjected to constraints that 
are equality or inequality or mixed in nature. The single-
objective minimization function could be defined as 
presented in equation (1) and two types of constraints in 
equations (2) and (3). 
Minimize f(xi), xi ϵ Xi (i = 1 to I, Xi = bounds in ‘I’ 
dimensions)          (1) 
gj(xi) ≤ 0 (inequality constraints, j = 1 to J)            (2)       
hk(xi) = 0 (equality constraints, k = 1 to K).          (3)          
   The objective function is negated for a maximization 
problem. 
   This mathematical expression is evaluated for different 
input variables (randomly generated initially within the 
bounds) and the best ones are retained and used for generating 
the next set of approximate solutions during the next iteration. 
Different updating expressions are used for generating the 
new approximate solutions by different algorithms. The 
quality of newly generated approximate solutions is a 
function of these updating expressions. 
   Grey Wolf Optimizer (GWO) is a nature-inspired 
metaheuristic algorithm proposed by Mirjalili et al. in 2014. 
It is one of the most studied algorithms in the last decade, and 
several improvements including hybrid variants have been 
proposed. Şenel et al. (2019) proposed a hybrid algorithm 
fusing the exploration ability of the grey wolf optimizer 
(GWO) with the exploitation ability of the particle swarm 
optimization (PSO). Vo et al. (2024) combined GWO and 
Cuckoo Search Algorithm (CS) to solve one multi-objective 
spatial truss design problem. 
   TP-AB is a two-phase population-based trigonometric 
algorithm recently proposed by Baskar et al. (2024). This 
work proposes one two-phase hybrid version by combining 
GWO (with a linear reduction from 2 to 0) in its first phase 
and the ‘second phase of TP-AB’ (without tuning) in the 
second phase. The Levy Flight Strategy (LFT) is used in the 
second phase for more randomization.  
   LFT refers to a random walk in which the step sizes are 
drawn from a Lévy distribution. Compared to normal 
distribution, Levy distribution has a higher probability of 
generating larger steps. The mixture of larger and shorter 
steps permits to explore the search space and avoids local 
optima. Sharp peaks and asymmetry are important features of 
LFT’s probability density distribution (PDF).  
   The shape parameter ‘β’ is taken between 0 and 2. In this 
work, the simulations are carried out by taking 1.5 as the 
shape parameter. 
   The Levy distribution could be approximated as given in 
equation (4). 

L(s)~s(-1-β) (Chawla and Duhan, 2018) where 's’ is 
the step size.                                                                        (4) 
The updating expression in the second phase of the TP-AB 
algorithm without tuning is given in equation (5). 
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X = X + Sine(2*pi*rand)*Step                            (5)  
Where "Step” is the difference between two adjacent 
approximate solutions. 
In the proposed hybrid algorithm, the Levy function “RL” 
replaces the “rand" function keeping other things the same. 
That is, the updating expression used here is as given in 
equation (6). 
 X = X + Sine(2*pi*RL)*Step.                              (6) 
Figure 1 shows the flowchart of the proposed hybrid 
algorithm. 
 

 
Figure 1. Flowchart of GWO:TP-AB Algorithm 

 
   “RL” in the flowchart refers to the Levy Function with a 
beta value of 1.5. Studies have shown that a beta value of 1.5 
can provide a good balance between exploration and 
exploitation in various contexts (Cui et al., 2022). It allows 
for the generation of both small and large steps in the search 
space, increasing the chances of finding good solutions. 
   The choice of β = 1.5 in Lévy flight is a compromise 
between exploring a wide search space and exploiting 
promising regions, making it a popular and effective choice 
for various optimization problems.  

   The new algorithm is coded in MATLAB (online version) 
and run on a desktop i5 PC with 8 GB RAM. 

3. Benchmarks Used   

For assessing the performance of optimization algorithms, 
several benchmark datasets are available in the literature with 
their optimal values, number of variables, constraints and 
bounds. The first dataset of 23 classic functions (Mirjalili and 
Lewis, 2016) has three different sub-sets; the first seven 
problems are unimodal (F1-F7), the next six problems (F8-
F13) are multimodal and the remaining problems (F14-F23) 
are fixed dimensional multimodal instances that have 
dissimilar search spaces. The second sub-set (F8-F13) has 
multiple local optima which increase exponentially with 
increasing dimensions.  
   The second dataset considered is 10 composite functions of 
CEC2019 (Table 1), popularly identified as the “100-digit 
challenge”. Complete details could be seen in the technical 
report published by Price et al. (2018). The salient feature of 
this dataset is that the optimal value is “1” for all ten 
problems. 
 

Table 1. CEC2019, 100 Digit Challenge Test Functions 
[Price et al., 2018] 

 
S.
No. Function Dime

nsion 
Search 
Span 

Opti
mal 

1 
Storn's Chebyshev 
Polynomial Fitting 
Problem 

9 [−8192, 
8192] 1 

2 Inverse Hilbert Matrix 
Problem 16 [−16384

, 16384] 1 

3 
Lennard-Jones 
Minimum Energy 
Cluster Problem 

18 [−4, 4] 1 

4 
Rastrigin’s Shifted 
and Rotated 
Function 

10 [−100, 
100] 1 

5 
Griewangk’s Shifted 
and Rotated 
Function 

10 [−100, 
100] 1 

6 
Weierstrass Shifted 
and Rotated 
Function 

10 [−100, 
100] 1 

7 
Schwefel’s Shifted 
and Rotated 
Function 

10 [−100, 
100] 1 

8 
Schaffer’s Shifted 
and Rotated F6 
Function 

10 [−100, 
100] 1 

9 
Happy Cat Shifted 
and Rotated 
Function 

10 [−100, 
100] 1 

10 Ackley Shifted and 
Rotated Function 10 [−100, 

100] 1 
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The third set of problems is 18 numbers of real-world 
constrained engineering problems. Finally, 13 scalable 
problems (Mirjalili and Lewis, 2016) with dimensions 30, 
100, 500, 1000 and Cobb-Douglas Production Function are 
analysed. The number of variables, constraints and optimal 
costs are presented in the results and discussions section. 

4. Results and Discussion  

The performance is analysed using the above-described 23 
classic benchmark functions, the tough CEC2019 test suite 
and, 18 constrained real-world engineering problems.  
   Arora et. al. (2019) proposed one hybrid algorithm by 
combining Grey Wolf Optimization and the Crow Search 

Algorithm (GWOCSA) and compared the performance with 
10 other algorithms; Bat Algorithm (BA), Biogeography-
based optimization (BBO), Crow Search Algorithm (CSA), 
Dragonfly Algorithm (DA), Genetic Algorithm (GA), Grey 
Wolf Optimizer (GWO), Particle Swarm Optimization 
(PSO), School Based Optimization (SBO), Enhanced Grey 
Wolf Optimizer (EGWO) and Accelerated Grey Wolf 
Optimization (AGWO). The authors used a population size 
(PS) of 30 for all benchmarks. The GWO:TP-AB is run for 
the same number of function evaluations (NFE) and the 
“mean” results are compared (Table 2 to Table 4). The PS is 
taken as 5 and 30 in separate simulations and the number of 
iterations varies to keep the NFE the same 

 
Table 2. Classical 23 Functions: F1-F7 Results (NFE: 9000; Trials: 30) 

 

F.No. PS 
GWO:TP-AB Arora et. al. 
Minimum Mean Maximum STD Best Mean Algorithm 

F1 5 2.6983e-47 4.3867e-43 1.1016e-41 2.0028e-42   
 30 2.9548e-24 1.7420e-22 2.2166e-21 4.2034e-22 1.01e-28 GWOCSA 
F2 5 5.1319e-31 6.5977e-29 4.3354e-28 1.0716e-28   
 30 1.0425e-14 1.1618e-13 3.7946e-13 8.9822e-14 1.50e-17 GWOCSA 
F3 5 4.2321e-03 1.8745 18.949 3.9349   
 30 0.1206 7.2749 52.776 11.122 5.18e-04 GWOCSA 
F4 5 1.7251e-05 1.4758e-03 0.010886 2.5913e-03   
 30 1.0515e-03 0.022094 0.1184 0.025889 2.07e-07 GWOCSA 
F5 5 25.133 25.714 28.717 0.7431   
 30 25.590 26.147 28.727 0.5528 27.0 GWOCSA 
F6 5 8.1793e-05 0.048195 0.4988 0.1163 1.23 GWOCSA 
 30 2.3421e-04 0.2890 0.9180 0.2286 1.20e-03 PSO 
F7 5 1.4706e-03 6.3952e-03 0.014130 2.7275e-03   
 30 3.9778e-03 9.8687e-03 0.019780 4.0070e-03 1.92e-03 GWOCSA 

 
Table 3. Classical 23 Functions: F8-F13 Results (NFE: 9000; Trials: 30) 

 

F.No. PS 
GWO:TP-AB Arora et. al. 

Minimum Mean Maximum Standard 
Deviation Best Mean Algorithm 

F8 5 -9994.5 -8014.7 -5294.5 1214.8 -3.57e03 GWOCSA 
 30 -8793.4 -6268.3 -5126.6 824.08 -2.84e+71 BA 
F9 5 12.183 49.651 135.86 29.854   
 30 17.083 48.145 131.62 26.222 1.19 GWOCSA 
F10 5 7.5495e-15 1.4181e-14 2.1760e-14 3.1959e-15   
 30 4.4453e-13 3.0334e-12 1.3938e-11 2.7647e-12 1.37e-14 GWOCSA 
F11 5 0.0 0.012906 0.049090 0.013932   

 30 0.0 4.3439e-03 0.018402 6.0436e-03 0.0 GWOCSA 
AGWO 

F12 5 4.1374e-06 7.2490e-03 0.2075 0.037868   
 30 2.4607e-05 0.026940 0.2142 0.045540 4.92e-02 GWOCSA 
F13 5 1.4298e-04 0.1679 0.6053 0.1508 0.939 GWOCSA 
 30 6.6747e-04 0.2722 0.5350 0.1383 5.68e-02 SBO 
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Table 4. Classical 23 Functions: F14-F23 Results (NFE: 9000; Trials: 30) 

F.No. PS 
GWO:TP-AB Arora et. al. 

Minimum Mean Maximum Standard 
Deviation Best Mean Algorithm 

F14 5 0.9980 3.6044 18.304 4.2355   
 30 0.9980 0.9980 0.9980 1.8281e-13 9.98e-01 GWOCSA 
F15 5 3.0753e-04 5.1487e-03 0.020363 8.5396e-03   
 30 3.7232e-04 1.9196e-03 0.020363 5.0142e-03 3.38e-04 GWOCSA 
F16 5 -1.0316 -1.0316 -1.0316 6.3477e-16   
 30 -1.0316 -1.0316 -1.0316 1.2596e-13 -1.03 All 
F17 5 0.3979 0.3979 0.3979 4.5608e-14   

 30 0.3979 0.3979 0.3979 9.3996e-15 3.98e-01 All except 
GA 

F18 5 3.0000 8.4000 84.000 20.550   

 30 3.0000 3.0000 3.0000 1.0615e-14 3.0000 

CSA, DA, 
GWO, PSO, 
EGWO, 
AGWO, 
GWOCSA 

F19 5 -3.8628 -3.8628 -3.8628 2.2809e-15   

 30 -3.8628 -3.8628 -3.8628 5.0154e-12 -3.86 All except 
GA 

F20 5 -3.3220 -3.2719 -3.1376 0.062771   
 30 -3.3220 -3.2824 -3.2031 0.057005 -3.31 GWOCSA 
F21 5 -10.153 -7.9446 -2.6305 3.2742 -6.80 GWOCSA 
 30 -10.153 -9.2054 -2.6305 2.1916 -9.14 GWO 
F22 5 -10.403 -9.2624 -1.8376 2.6578 -8.76 GWOCSA 
 30 -10.403 -10.403 -10.403 3.3586e-05 -10.4 GWO 
F23 5 -10.536 -9.0955 -2.4217 2.9890 -8.82 GWOCSA 
 30 -10.536 -10.536 -10.536 3.9977e-05 -9.72 GWO 

 

   When all 23 functions are considered, GWOCSA 
accounts for 13/23 best "mean" results, GWO:TP-AB is 
closely behind at 12/23 for best results, and GWO reports 
the best results in 7/23 cases.  
   That is, GWO:TP-AB performs reasonably well among 
the considered 12 algorithms especially better than the 
original GWO and at par with the hybrid GWOCSA for this 
dataset. 
   Figure 2 shows the convergent curve for the 
unconstrained “sphere” function for 20 trials (dimension: 
30) with a broader search range of [-100, 100].  
   The convergence is steep during earlier iterations and 
remains almost flat after 40 iterations. The curve shows the 
consistency of convergence also for this function. 
Lei et. al. (2023) proposed one Enhancing Grey Wolf 
Optimizer with Levy Flight (LFGWO) and analysed the 
performance with eight other algorithms; AHA, AO, DA, 
DMOA, GBO, HGS, HHO, and MVO. It was concluded 
that LFGWO reported the best "mean" results in 9 of the 10 
problems of the CEC2019 dataset. However, LFGWO  

 
Figure 2. Convergent Curve for the Un-constrained 

Sphere Function 
 
reported values below “1” in 7 of the 10 cases whereas; the 
optimal values are “1” in all cases. Hence, the results of 
LFGWO are discarded and the second-best "mean" results 
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are considered. GWO:TP-AB is run again for the same 
NFE and results are compared (Table 5). 
   For the tough CEC2019 dataset, GWO:TP-AB reports 
better “mean” values in 5/10 cases and HGS (Hunger 
Games Search) in 4/10 cases. 
   One hybrid algorithm of Grey Wolf Optimizer and Harris 
Hawks Optimization (HGWO) was proposed by Tu et. al. 
(2023) and the performance was analysed in a few datasets 
including four real-world engineering problems.  
   The results obtained after 15000 NFE were compared 
with seven popular optimization algorithms; GWO, WOA, 
GJO, MVO, SSA, SOA, and AOA and three hybrid 
algorithms; AGWO_CS, PSOGWO and AGWO. 
GWO:TP-AB is simulated for the same NFE (Table 6, 
Table 7) and results are compared. The results show that in 
all four cases, GWO:TP-AB is ahead of all other algorithms 
when the population size is 5 and better in 2 of the 4 cases 

if the population size is increased to 30 keeping NPE 
constant. The penalty approach is applied with a penalty 
parameter of 109. 
   Finally, the GWO:TP-AB algorithm is tested against a 
few more constrained real-world engineering other than 
those listed in Table 6. The results are presented in Table 
8, the summary of which in Table 9. In this simulation also, 
NFE is taken as the same 15000 and the best costs reported 
in 20 trials are taken. The first 11 problems are taken from 
the paper of Bayzidi et. al., 2021, Himmelblau’s Function 
(Himmelblau, 1972), discrete spring (Deb and Goyal, 
1997) and, continuous stepped cantilever beam 
(MathWorks Help Center) are the other three problems 
analysed. The penalty approach is applied with a penalty 
parameter of 109 here also. 
 

 
Table 5. CEC2019: Results (NFE: 10000; Trials: 30) 

F.No. PS 
GWO:TP-AB Lei et. al. 

Minimum Mean Maximum Standard 
Deviation 

2nd Best 
Mean Algorithm 

F1 5 8.0475e+06 1.0401e+09 5.9214e+09 1.3994e+09   
 100 4.6057e+07 1.2903e+09 3.2562e+09 9.0679e+08 9.95e+09 HHO 
F2 5 18.3429 18.3429 18.3429 1.0565e-13   
 100 18.3434 18.3445 18.3459 6.6920e-04 64.4 AHA 
F3 5 13.7024 13.7024 13.7024 4.2034e-07   
 100 13.7024 13.7024 13.7024 1.1931e-07 12.7 AHA 
F4 5 17.9143 50.8669 107.9310 25.0574   
 100 22.2618 49.1965 65.6646 11.0490 646 HGS 
F5 5 2.0129 2.2382 2.6805 0.1690   

 100 2.0754 2.5548 2.7451 0.1531 1.43(I) 
1.63 (II) 

GBO 
HGS 

F6 5 10.1574 12.0530 13.2727 0.8014   
 100 9.7858 12.0989 13.2506 0.8323 7.41 HGS 
F7 5 70.8095 475.9432 1.1057e+03 282.8184   
 100 206.2003 638.0031 996.8844 196.0447 608 HGS 
F8 5 2.1125 5.3242 6.8696 1.0878   
 100 2.3297 4.7987 6.5713 1.0689 4.59 HGS 
F9 5 3.3918 3.6207 4.0527 0.1822   
 100 3.4218 3.7690 4.0961 0.1744 64.2 GBO 
F10 5 1.0000 20.7783 21.6454 3.7372   
 100 3.7712 20.9394 21.7370 3.2436 20.2 HGS 
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Table 6. Constrained Engineering Problems [Tu et. al., 2023] 

Problem No. of 
Variables 

No. of 
Constraints Optimal Value GWO:TP-AB APD HGWO (Tu 

et. al.) 
Pressure 
Vessel 4 4 5885.332773 5885.3327736 1.01948E-

08 5885.334276 

Speed 
Reducer 7 11 2994.424466 2994.4244658 0 2994.613691 

Three-
Bar 
Truss 

2 3 263.8958434 263.89584338 0 263.8958539 

Welded 
Beam 4 7 1.724852308597 1.724852317362 5.08159E-

07 1.725201706 

 

Table 7. Four Real-World Engineering Problems: Results (NFE: 15000; Trials: 20) 

  GWO:TP-AB 
Problem PS Minimum Mean Maximum Standard Deviation 
Pressure 
Vessel 5 5885.332773616459

2351997271180153 
6330.373584443833
3515427075326443 

7319.000702050244
3992882035672665 

566.8030181064092
4031758913770318 

 30 5885.808221375861
6489940322935581 

6063.741826910575
5825876258313656 

6901.176660791176
8005578778684139 

298.2040189605771
1610410478897393 

Speed 
Reducer 5 2994.424465756736

4811256993561983 
2994.424523466068
4218397364020348 

2994.425611988040
6004085671156645 

0.000256215478349
9746607718094981
7205 

 30 2994.442854964683
6472675204277039 

2994.521409040356
9571208208799362 

2994.612996779795
5941932741552591 

0.054145148091894
3919840025102985
24 

Three Bar 
Truss 5 263.8958433765234

3037916580215096 
263.8969798296510
0209185038693249 

263.9078447126003
0841222032904625 

0.002627642957340
2187295227960817
101 

 30 263.8958511865188
2567064603790641 

263.8969699162076
9495057174935937 

263.9068374935147
8581957053393126 

0.002450429052419
8489055474059483
686 

Welded 
Beam 5 1.724852317362365

9943132224725559 
1.725995751134212
9965470348906820 

1.739945487567939
4305620917293709 

0.003356452198412
4533540705392908
876 

 30 1.725274403004670
9422521189480904 

1.729033081226155
1773900691841845 

1.735730645879692
8350096777649014 

0.002786684135570
4730261166890414
870 
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Table 8. GWO:TP-AB; Real-World Engineering Problems: Results (PS: 5; NFE: 15000; Trials: 20) 

Problem Minimum Mean Maximum Standard Deviation 

Gear 
Train 

2.700857148886513
3510618295276270
e-12 

3.885600265842422
7023371842362580
e-10 

0.000000001361649
1390639914138666
632958431 

4.933931658925533
4254863205465302
e-10 

X = [49.477940326733609310849715257064, 19.176286014264217527625078218989, 
16.478744814526081086114572826773, 43.347494958533580700077436631545] 

Himmelb
lau 

-
30665.53867174592
9605094715952873 

-
30665.09025723783
9978188276290894 

-
30662.86979485190
3861854225397110 

0.830034906393407
7120663346249784
8 

X = [78.0, 33.000000000131585409235412953421, 29.995256025882124362169633968733, 
44.999999999989768184605054557323, 36.775812905371800809462001780048] 

Spring 
(Cont.) 

0.012665288863087
1211100847872899
07 

0.012893069386288
7909423298182787
22 

0.013698309070519
8630454564323599
7 

0.000285573533930
0641273396763608
6163 

X = [0.05174025029804885794648683372543, 0.35795038007560764370396100275684, 
11.217070935744811066570036928169] 

Spring 
(Disc.) 

2.658559165969599
2916567774955183 

2.682082452191697
7190016950771678 

2.800157076098202
413305671143462 

0.034328213635197
3354848610142653
34 

X = [0.25859072291166024237796250417887, 0.85302727237647013591725908554508, 
1.2230410099638071574901232452248] 
Corrugat
ed Bulk 
Head 

6.842958010080837
8162469125527423 

6.843552251950866
2497855766559951 

6.850007816968991
7473306195461191 

0.001663136831300
5936380305493926
812 

X = [57.692307692307692307692307692308, 34.147620348674351475892763119191, 
57.692307692307692307692307692308, 1.05] 
I-Beam 
Deflectio
n 

0.013074118905223
3346828968407749
02 

0.013074119012222
5844211234502267
87 

0.013074119853702
5430509439516413
29 

0.000000000254385
8803023858375654
7308798888 

X = [80.0, 50.0, 0.9, 2.3217922606924643584521384928717] 
Piston 
Lever 

8.412698323106445
3860881258151494 

79.98971371372570
6156765227206051 

167.4727522629003
1469034147448838 

81.18707042392038
8861915853340179 

X = [0.050000000000003909372825461332468, 2.0415135899181180434425186831504, 
4.0830271798362192114950630639214, 120.0] 

Car Side 
Impact 

22.84296946106668
3578565061907284 

22.94304873921230
1256884529720992 

23.83879355386385
8676322706742212 

0.231674390762749
0661749192213392
2 

X = [0.50000000007658884637606888645678, 1.1163457460717085556467509377399, 0.5, 
1.3022301986541147122977690742118, 0.50000000000016187051699034782359, 1.5, 
0.50000008710249288501614728374989, 0.64531670307963129307182725824532, 
0.76652592030216937235564955699374, -19.565078840901410472952193231322, -
0.00077133108118118047600436648636446] 

Cantilev
er Beam 

1.339958586868323
6977716433102614 

1.340084493560021
7944227097177645 

1.340496753767818
9604122280798038 

0.000135852180184
2391379510494031
6349 

X = [6.0184156597786753195578057784587, 5.3081637374453833899679011665285, 
4.488175504239539037598660797812, 3.5034094977655114711012629413744, 
2.1555309031478775416701409994857] 

Tubular 
Column 

26.48636147244781
4691122403019108 

26.48636149114111
7596725962357596 

26.48636184594287
3571857489878312 

0.000000083511676
2320275793193060
38498072 
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X = [5.4521807362239060879005592141766, 0.29162642929940890690332366830262] 
Stepped 
Cantilev
er 
(Cont.) 

63182.59189017744
2110143601894379 

64635.92670512168
1152377277612686 

67554.01241114015
2835287153720856 

1148.502154952016
3262059213593602 

X = [3.0207850831358924459379977633944, 60.379446489702502276486484333873, 
2.8362681880493596509040798991919, 56.715153988680000907152134459466, 
2.5404275476987918658267062710365, 50.805714405453464621587045257911, 
2.2156790986227705708699886599788, 44.293090732297372369430377148092, 
1.7565262685745965942629709388711, 34.935821838849271614435565425083] 
Stepped 
Cantilev
er (Disc.) 
P=10^3 

63940.58604217450
1926638185977936 

64567.88959520826
028892770409584 

66332.01489590133
1328786909580231 

717.9882011163940
6604808755218983 

X = [0.51644851041369410626913349915412, 1.0, 0.99964915861882264191962121913093, 
0.67043182206102891473875615702127, 0.36468171849495778502614484750666, 
0.5682596817710487968611232645344, 2.2045556994630848279825841018464, 
44.091113756159664660572161665186, 1.7497572849831612984417006373405, 
34.995137571156725186938274418935] 

P=10^9 64334.68813721633
3416290581226349 

65285.22925308065
8963881433010101 

68830.70504375842
5745181739330292 

1285.026504302996
0452258819714189 

X = [0.41141878796092445913501478571561, 0.94554554531470202949350323251565, 1.0, 
0.51079837050743448489953379976214, 0.39966761790870086734628330304986, 
0.59517948631771078193963830926805, 2.2250047407244641917145600018557, 
44.500089954629025612575787818059, 1.7497724998207522251192358453409, 
34.995389553054110365337692201138] 
Pressure 
Vessel 

6059.714340026797
7995099499821663 

6601.494375016084
6320795826613903 

7544.492517925084
9396339617669582 

506.4246785388986
6091776639223099 

X = [12.968038549028149120090347423684,  6.6985812743516381928543523827102,  
42.098445554985254091207025339827,  176.63659634892306371511949691921] 
RCC 
Beam 

359.2079999999999
6998667484149337 

360.1398000049356
3693453324958682 

362.6340000000000
1455191522836685 

1.462536937870176
9118578113193507 

X = [0.26595640638212081352520499422099, 0.48467334436690662213820246506657, 8.5] 
 

   The convergent curve for the constrained “car side 
impact” problem is presented in Figure 3 for 20 trials. The 
lower bound is [0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0, 
0, -30, -30] and the upper bound is [1.50, 1.50, 1.50, 1.50, 
1.50, 1.50, 1.50, 1, 1, +30, +30]. 
   It is one of the toughest problems with 11 variables and 
10 constraints. Unlike the sphere function, the variations in 
cost are slightly higher during earlier stages of iteration. 
However, the curves remain flat after 60 iterations. Another 
observation is that the curves are not steep but moderately 
curved while converging. 
   18 problems considered (Table 7 and Table 9) have a 
mixture of continuous or discrete or both discrete and 
continuous variables. APD in Table 9 refers to Average Per 
cent Deviation from the optimal value. Most of the 
variables are continuous and, the following benchmarks 
have discrete or discrete and continuous variables: 

 
Figure 3. Convergent Curve for the Constrained Car Side 

Impact Function 
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Table 9, Constrained Engineering Problems (PS: 5; NFE: 15000; Trials: 20) 

S.N
o. Problem Dimen

sions 
Constr
aints Optimal Value GWO:TP-AB APD 

1. Cantilever Beam 5 1 1.3399576 1.339958586868 7.36492E-05 
2. I-shaped Beam 4 2 0.0130741 0.013074118905 0 
3. Tubular Column 2 6 26.486361473 26.486361472448 -2.08409E-09 
4. Piston Lever 4 4 8.41269832311 8.412698323106 0 

5. Corrugated 
Bulkhead 4 6 6.8429580100808 6.842958010081 0 

6. 
Pressure Vessel 
(different 
version) 

4 4 6059.7143350484
36 

6059.7143400267
98 

8.2155E-08 

7. 
Tension/Compre
ssion Spring 
(Continuous) 

3 4 0.01266051 0.012665288863 0.037746212 

8. Gear Train 4 0 2.70085714e-12 2.70085714e-12 0 

9. Reinforced 
Concrete Beam 3 2 359.2080 359.2080 0 

10. Car Side Impact 11 10 22.84296954 22.842969461067 -3.45546E-07 

11. 
Cantilever 
Stepped Beam 
(Discrete) 

10 11 
63893.43079587 
(violating the sixth 
constraint) 

63893.43130309 
(violating the sixth 
constraint) 

7.93853E-07 

    --- 
64334.68813722 
(satisfying all 
constraints) 

 

12. Himmelblau’s 
Function  5 6 −30665.5398 

-
30665.538671745
930 

-3.67922E-06 

13. 
Tension/Compre
ssion Spring 
(Discrete) 

3 8 2.65855916 2.658559165970 2.24558E-07 

14. 
Cantilever 
Stepped Beam 
(Continuous) 

10 11 63408.9 63182.591890177
442 -0.356902753 

 
 
Pressure Vessel: The first two are discrete variables 
Gear Train: All four are discrete variables 
Reinforced Cement Concrete Beam: The first two are 
discrete variables  
Tension/ Compression Spring (Discrete): The first two are 
discrete variables 
Cantilever Stepped Beam (Discrete): The first six are 
discrete variables. 
   In 11 out of 18 instances, GWO:TP-AB reports the 
optimal values (marked in bold) whereas in the remaining 
7 cases the results are very close to the optimal values. 
   In the case of the stepped cantilever beam (discrete) 
problem, we get a higher cost of 64334.68813722. The 
variables’ set is,  
X =  [3.0, 60.0, 3.1000000000000000888178419700125, 
55.0, 2.6000000000000000888178419700125, 51.0, 
2.2250047407244641917145600018557, 
44.500089954629025612575787818059, 
1.7497724998207522251192358453409, 
34.995389553054110365337692201138] and the 
constraints’ set is,  

G = [-3.2339e-01, -3.8246e+02, -6.9151e+02, -
1.2034e+03, -1.1111e+02, -2.3665e-07, -3.4544e-05, -
2.1842e-06, -3.8462e-01, -2.2581e+00, 0]. 
   Here, though the reported cost is high, all constraints are 
satisfied. 
   However, when the penalty parameter is reduced to 103 
from 109, the new cost obtained is 63893.43130309. 
Corresponding variables and constraint sets are: 
X = [3.0, 60.0, 3.1000000000000000888178419700125, 
55.0, 2.6000000000000000888178419700125, 50.0, 
2.2045556994630848279825841018464, 
44.091113756159664660572161665186, 
1.7497572849831612984417006373405, 
34.995137571156725186938274418935]; 
G = [-5.0285e-05, -2.8800e-06, -1.5385e+02, -
1.2034e+03, -1.1111e+02, 4.7155e-02, -4.6455e-06, -
1.0574e-07, -7.6923e-01, -2.2581e+00, 0]. 
   Here though the cost is less, the sixth constraint is 
violated. 
   SNS algorithm (Bayzidi et. al., 2021) reports a cost of   
63893.4307958715 (NFE: 20000) which is close to the 
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value obtained above for 15000 NFE.   However, when the 
results given in the SNS paper are analysed, the obtained 
constraints set is, G = [-1.4881e-06,  -2.3780e-06,  -
1.5385e+02,  -1.2034e+03,  -1.1111e+02,   4.7155e-02,  0,  
-4.5361e-09,  -7.6923e-01,  -2.2581e+00,  0]. That is, the 
sixth constraint is violated here also. 
   Above discussed analyses demonstrate the effectiveness 
of the newly proposed hybrid algorithm in solving real-
world engineering problems.  

4.1. Performance on a few High 
Dimensional Benchmarks   

Abualigah et al. (2021) proposed one Arithmetic 
Optimization Algorithm (AOA) and its performance were 
compared with several benchmarks. The benchmarks 
include scalable sets of unimodal and multimodal test 
functions (F1–F13) with four dimension spaces (30, 100, 
500, and 1000). The results were compared with 11 other 
popular algorithms which include GWO, GA, PSO and 
Differential Evolution (DE). GWO was ranked second 
behind AOA among 12 algorithms 
   For the same NFE, the proposed algorithm is run and 
results are presented in Table 10. 
   .   
 

 
Table 10. Results of Functions: F1 to F13 [Abualigah et al., 2021] 

Function Dimensions Min Mean STD 
F1 30 1.8001e-165 7.0612e-156 3.8134e-155 
 100 1.5797e-89 7.5366e-85 1.7290e-84 
 500 4.5379e-48 2.4857e-45 6.3428e-45 
 1000 1.1060e-38 1.3048e-36 1.8493e-36 
F2 30 8.5273e-107 2.9422e-100 7.9454e-100 
 100 4.9259e-62 1.9907e-59 2.9870e-59 
 500 2.6689e-37 1.8016e-36 1.9349e-36 
 1000 36.9111 1.7440e+305 Inf 
F3 30 2.9824e-17 1.6685e-07 9.1082e-07 
 100 187.7449 2.1837e+03 1.9332e+03 
 500 5.2263e+05 6.4115e+05 7.8782e+04 
 1000 2.1779e+06 2.9122e+06 4.7946e+05 
F4 30 3.9841e-18 7.7940e-14 2.6726e-13 
 100 0.2699 3.8297 3.5131 
 500 60.1462 66.8094 3.7809 
 1000 72.3021 76.3728 2.8889 
F5 30 23.9472 24.2096 0.1600 
 100 93.7587 95.9218 1.9525 
 500 497.0563 497.8931 0.1848 
 1000 996.9183 997.6922 0.1875 
F6 30 2.5473e-14 1.0584e-10 2.2125e-10 
 100 4.9810 6.6586 0.8581 
 500 92.2365 95.1988 1.6096 
 1000 211.8232 215.4090 1.8141 
F7 30 8.4695e-04 0.0019 8.6477e-04 
 100 0.0026 0.0074 0.0023 
 500 0.0131 0.0280 0.0090 
 1000 0.0240 0.0449 0.0114 
F8 30 -1.0122e+04 -8.2140e+03 1.2301e+03 
 100 -2.9545e+04 -1.8776e+04 5.3723e+03 
 500 -8.5594e+04 -5.1633e+04 1.9095e+04 
 1000 -1.3466e+05 -7.6548e+04 3.2235e+04 
F9 30 10.9446 46.6085 26.8965 
 100 21.3406 186.8156 124.6664 
 500 3.4043 116.9499 156.7475 
 1000 11.0667 63.9113 43.7354 
F10 30 3.9968e-15 7.1942e-15 1.0840e-15 
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 100 7.5495e-15 1.4300e-14 2.8529e-15 
 500 2.8866e-14 3.6445e-14 4.2483e-15 
 1000 3.9524e-14 5.4564e-14 6.9621e-15 
F11 30 0 0.0076 0.0092 
 100 0 0.0065 0.0138 
 500 1.1102e-16 6.4139e-04 0.0035 
 1000 2.2204e-16 0.0048 0.0143 
F12 30 7.9174e-16 0.0138 0.0358 
 100 0.0440 0.0901 0.0403 
 500 0.6355 0.7016 0.0326 
 1000 0.7715 0.8252 0.0243 
F13 30 3.5036e-13 0.0433 0.0701 
 100 1.5172 3.3119 0.7783 
 500 43.1530 44.4169 0.6382 
 1000 93.4243 95.5878 1.0833 

 

   The results show that the proposed hybrid GWO:TP-AB 
algorithm performs better than GWO in 35 out of 52 cases 
when the “mean” values are considered. It outperforms 
GWO in 34 cases if “standard deviation” is the metric. 
   It performs well in 10 problems of dimension 30, 9 each 
of dimensions 100 and 1000 and, 7 problems of dimension 
500 for the “mean” results. 
   The SD is better in 11 cases of dimension 500, 9 of 
dimension 1000, 8 of dimension 30 and 6 problems of 
dimension 100. 

4.2. Cobb-Douglas Production Function  

The Cobb-Douglas production model (Felipe and Adams, 
2005) is a maximization problem. It has two input 
variables; units of capital (K) and, the units of labor (L) 
invested in the economy.  “A” refers to the total factor of 
productivity, 
   The general model can be expressed as presented in 
equation (7). 
 Y(K,L) = A*Lα*K(1-α)                                         (7)                                        
   If a manufacturing activity is more labor-intensive, "α" 
takes a higher value. In most of the cases, it takes a value 
of 0.6. This is one of the widely studied forms of a 
production problem which includes economics of 
production also. 
   To demonstrate the ability of the proposed algorithm, the 
following objective function (equation 8) is solved. 
Maximize Production, Y = 300*L0.6*K0.4.                       (8)                                                           
   In this case, the capital cost “K” is assumed as 130 units 
and the labor cost “L” as 85 units. If the maximum cost is 
fixed as 100000 then, the inequality constraint can be 
expressed as in equation (9).  
Total Cost = 130*K + 85*L ≤ 100000.                           (9)                                                                     
   The search range is taken as [0, 500] for both ‘K’ and ‘L’. 
 
 
 

Table 11. Cobb-Douglas Problem: Results for Different 
Population Sizes and Iterations 

 
Population Size: 5 
IT 100 IT 200 IT 500 IT 750 IT 1000 
-
139541.
1059 

-
139541
.1181 

-
139541
.1734 

-
139541
.1837 

-
139541
.1866 

Number of Function Evaluations: 10000 
PS: 5 PS: 10 PS: 20  PS: 25 PS: 50 
-
139541.
1884 

-
139541
.1876 

-
139541
.1679 

-
139541
.1700 

-
139541
.1435 

Standard Deviation 
7.1064 3.1096

3 
1.8551 2.2806 1.6191 

 
   Table 11 shows the results for this problem when 
different population sizes (5, 10, 20, 25 and 50) and number 
of iterations (100, 200, 500, 750 and 1000). For 1000 
iterations (NFE = 10000), the obtained cost is 139541.1866 
which is very close to the known value of 139541.6776. 
   As the number of iterations increases, the results 
improve. When the population size is 5, the result is better 
when compared to the population size of 50. However, the 
standard deviation (SD) is high when the population size is 
5. 
   Figure 4 shows the convergence curve for 100 iterations 
and 20 trials. The steep curves below 10 iterations show the 
improvements are high during initial stages and remain 
almost flat after 40 iterations. 
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Figure 4, Convergent Curves for the Cobb-Douglas 
Problem 

5. Conclusion, Limitations and Future 
Work 

This paper combines the capabilities of one of the most 
popular optimization algorithms in the literature, GWO and 
another recent population-based TP-AB algorithm. It is a 
two-phase hybrid algorithm in which GWO improves the 
population in phase I and, the second phase of the TP-AB 
algorithm in phase II. In the second phase, the Levy 
strategy is applied to randomize the created solutions. 
   The new hybrid algorithm GWO:TP-AB is tested against 
23 classic test functions, a tough CEC2019 dataset and 18 
real-world engineering problems. Real-world engineering 
problems include continuous, discrete, discrete and 
continuous variables. In all cases, the performance is better 
than many other popular algorithms of recent times. To 
demonstrate the ability of the algorithm to handle larger 
dimension problems, 13 unimodal and multimodal 
problems are tested for 30, 100, 500 and 1000 dimensions. 
The “mean” and “standard deviation” results indicate its 
better performance over several algorithms including 
GWO.   
   The preliminary analyses show that the proposed hybrid 
GWO:TP-AB algorithm is a fair competitor for similar 
algorithms available in the literature. The main limitation 
of this algorithm is that the problems and constraints should 
be represented as mathematical expressions accurately. 
Future work includes the feasibility of solving multi-
objective and other industrial optimization problems in the 
digital domain using the proposed hybrid algorithm. 
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