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Abstract 

Aiming at the problems of model security and user data disclosure caused by the deep learning model in the Internet of 

Vehicles scenario, which can be stolen by malicious roadside units or base stations and other attackers through knowledge 

distillation and other techniques, this paper proposes a scheme to strengthen prevent against distillation. The scheme exploits 

the idea of model reinforcement such as model self-learning and attention mechanism to maximize the difference between 

the pre-trained model and the normal model without sacrificing performance. It also combines local differential privacy 

technology to reduce the effectiveness of model inversion attacks. Our experimental results on several datasets show that 

this method is effective for both standard and data-free knowledge distillation, and provides better model protection than 

passive defense. 
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1. Introduction

The Internet of Vehicles (IoV) is a technology that uses 

artificial intelligence and 5G communications to achieve 

intelligent traffic management and vehicle control through 

multidimensional interactions between vehicles and other 

vehicles, vehicles and people, and vehicles and the road 

environment. The goal of IoV is to provide a safe, 

comfortable and efficient driving experience and transport 

services. In the IoV system, vehicles are equipped with 

devices that have data collection, processing and storage 

capabilities. These devices generate a large amount of 

network data, such as vehicle speed, orientation, road 

information and traffic conditions. This data supports the 

development of various technologies and applications, 

including traffic flow prediction, vehicle trajectory 

prediction, pedestrian collision detection, high-precision 

in-vehicle navigation, and in-vehicle entertainment. Deep 

learning provides a new solution for efficiently fusing and 

processing this data and information [1]. 

In the IoV scenario, it takes a lot of effort and resources 

for companies to train advanced deep learning models for 

vehicles. These trained models and proprietary training 

data have high intellectual property rights, making it 

legally and ethically prohibited to share them publicly. 

However, during the process of information exchange 

between vehicles and external nodes, attackers can use 

knowledge distillation [2] techniques to mimic the input 

and output behavior of the black box, and thereby steal 

vehicle deep learning models. In addition, data-free 

knowledge distillation combined with adversarial network 

attack generation, membership inference, model inversion, 

and other reverse engineering methods can enable the 

recovery of private training data from black box models[3-

6], seriously undermining the privacy of IoV users. 

Scholars around the world have conducted a lot of 

research on this topic and achieved a number of results. For 

example, Reference [7] combined federated learning and 

local differential privacy to propose the LDP-FedSGD 

algorithm to coordinate cloud servers and vehicles to 

collaboratively train models, which significantly reduces 

the risk of data leakage while considering practicality. 
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Reference [8] proposed a hybrid blockchain architecture 

consisting of a permissioned blockchain and a local 

directed acyclic graph to reduce the transmission load and 

address the privacy concerns of providers. The reliability 

of the shared data can also be ensured by integrating the 

learned model into the blockchain and performing a two-

step verification. Liu et al. [9] proposed a hybrid proxy 

authentication scheme by introducing the concept of proxy 

vehicles and integrating hybrid authentication based on 

identity and PKI, which ensures the data security of IoV 

users while improving the effectiveness of roadside units 

in terms of authentication messages. The above solutions 

have provided some security protection for different 

application in IoV; however, all of them only consider the 

traditional data leakage problem and ignore the possibility 

of theft of vehicle deep learning models. Recent work relies 

on watermark-based [10] or passport-based [11] 

authentication methods to protect models. However, they 

can only detect model attribution and are ineffective in 

avoiding model cloning. The above defense methods are all 

reactive and have not explored knowledge distillation-

based model attacks in the IoV environment, which is a 

problem worth investigating. 

To address the aforementioned limitations, this paper 

proposes a defense scheme, called Strengthen Prevent 

Distillation (SPD), for the three-layer architecture of the 

cloud-side-end of the IoV [12]. The scheme constructs a 

deep learning model of the vehicle as a specially trained 

network that performs similarly to the corresponding 

normal model, but renders inversion of the model by an 

attacker through methods such as knowledge distillation 

ineffective. Our main contributions are summarized as 

follows: 

• First, we have summarized the defense methods for

model and data theft in the context of the IoV and

analyzed their pros and cons.

• Next, we creatively embedded the ideas of attention

mechanism and local differential privacy into the

method for defending against knowledge distillation

attacks. Simulation experiments have verified the

effectiveness and rationality of the SPD algorithm.

• Finally, we conducted extensive comparative

experiments to verify the superiority of our method

over other traditional methods, demonstrated its

terrific performance in the absence of data distillation,

and identified the effectiveness of our method through

qualitative analysis.

The remainder of this paper is organized as follows. In 

section 2, we introduced the basic principles of knowledge 

distillation and the foundations of model reinforcement and 

differential privacy, and reviewed some of the previous 

contributions. In Section 3, we presented the overall 

architecture of the IoV and provided a detailed discussion 

of our proposed method. The simulation results were 

presented in Section 4 to demonstrate the effectiveness of 

our proposed mechanism. Finally, Section 5 summarised 

the work done in this paper and outlined future research 

directions. 

2. Related Work

2.1. Image Classification 

Image classification has extensive applications in various 

fields, such as computer vision, natural language 

processing, intelligent transportation, and medical image 

analysis. By selecting appropriate feature extraction 

methods and classification algorithms, high-precision 

image classification tasks can be achieved. With the rising 

number of vehicles on urban roads, Intelligent 

Transportation Systems (ITS) play a vital role in enhancing 

traffic flow and efficiency while minimizing accidents. The 

vast amount of data generated by various digital devices 

connected to the transportation network facilitates the 

creation of datasets, which can be analyzed using advanced 

deep learning techniques. This approach helps in predicting 

traffic performance, automating traffic signal management, 

detecting lanes, and recognizing objects in close proximity 

to vehicles, thereby improving the safety and efficacy of 

ITS [13]. Wang et al. introduced Particle Swarm 

Optimization to construct a PSO-guided Self-Tuning 

Convolution Neural Network (PSTCNN), enabling the 

model to automatically adjust hyperparameters and 

allowing deep learning models to more quickly and 

accurately diagnose COVID-19, effectively alleviating the 

problem of global healthcare resource scarcity [14]. The 

effectiveness of artificial intelligence technology in 

diagnosing COVID-19 and the superiority of Adaptive 

Jaya algorithm over Jaya algorithm in medical image 

classification tasks were demonstrated in Reference [15]. 

2.2. Knowledge Distillation 

Knowledge distillation is a widely used method for model 

compression and optimisation in deep learning. It is based 

on the concept of a "teacher-student model" for training and 

is highly regarded for its simplicity and effectiveness. 

Knowledge Distillation facilitates the training of student 

models by extracting "knowledge" from one or more pre-

trained teacher models using the soft-label probabilistic 

output of the teacher models. This soft-label output is a 

mapping from input vectors to output vectors that captures 

specific knowledge from instantiated objects, with 

incorrect classification predictions providing insight into 

how the teacher model generalizes. The student model can 

improve its performance by mimicking the probabilistic 

output of the teacher model, and can incorporate the 

knowledge that the teacher model has already acquired. 

The process of knowledge distillation is illustrated in Fig. 

1. 
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Figure 1. Flow chart of knowledge distillation. 
Teacher networks can transfer their model 

capabilities to student networks through knowledge 
distillation. 

As shown in Eq. (1), neural networks typically generate 

class probabilities by using a "softmax" output layer that 

compares the output iz of each class with other logits,

converting the logit zi  calculated for each class into a 

probability iq  in a standardized way. In addition, where T 

represents temperature in knowledge distillation, using a 

larger value than 1 for it produces a softer class probability 

distribution that allows better transfer of knowledge to the 

model to be distilled. 

exp( / )

exp( / )

i

i

jj

z T
q

z T
=


(1) 

Given a pre-trained teacher model ( )
T

f  and a student 

model ( )
S

f , where T  and S denote the model

parameters. Knowledge distillation aims to make the 

output probability of ( )
S

f  as close to ( )
T

f  as possible. 

Let ( , )i ix y denote the training sample in datasets   and 

( )f ip x


 denote the logit response of ix to ( )f . The

student model ( )
S

f  can be learned by means of as in Eq. 

(2): 

( )( ) ( )( )( )
( ) ( )( )( )
( )

2= ,

tu 1 ,

min

S ST S

S

S f i f i

f i i
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  = −

= +
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Where ( , )KL  and ( , )  represent the K-L divergence 

and cross-entropy loss functions, respectively. The 

introduced "softmax temperature" function ( )
S

  

produces a soft probability output when a larger 

temperature S  is selected, decays to a normal softmax 

function ( )  equal to 1, and another hyperparameter   

to balance the cost minimization of knowledge distillation. 

2.3. Prevent Knowledge Distillation 

Combining knowledge distillation with methods such as 

generative adversarial networks can lead to the theft of 

deep learning models and user privacy. Ma et al. [16] 

proposed a special deep learning model with slightly worse 

performance compared to its normal counterpart, both with 

the ability of classification and regression in deep learning, 

from which no malicious third-party network can extract 

useful parameters using knowledge distillation. The 

algorithm is implemented by maintaining its correct 

category assignment and disrupting its incorrect category 

assignment as much as possible to prevent attackers from 

stealing model information and raw data through 

distillation. The process of constructing the prevent 

distillation model is shown in Eq. (3): 

( )

2

( (( ( )), )

( ( ( )), ( ( )))

min

T

A AT A

f i i

A f i f i

nor p x y

dis KL p x p x

L nor dis



  

 

  

=

=

= −

(3) 

The first part of Eq. (3) aims to maintain the accuracy of 

the model by minimizing the cross-entropy loss, while the 

second part maximizes the K-L divergence between the 

pre-trained model and a regular network to hide the "useful 

knowledge" and achieve "prevent-distillation". In this 

equation, A  represents the temperature of self-sabotage, 

and   balances the weight of the loss function accounted 

for by both normal training and adversarial learning. 

2.4. Model Enhancement 

Zhang et al. [17] proposed the concept of self-distillation 

by closing the gap between the deep and shallow modules 

of the model without the help of an external model, which 

improves the overall accuracy of the model. Chen et al. [18] 

proposed a knowledge review approach to improving the 

performance of the student model by packaging the 

knowledge of the shallow modules of the teacher model 

and imparting it to the student model. Hou et al. [19] 

proposed a self-distillation-based lane line detection 

algorithm that utilizes the concept of an intermediate layer 

attention map, where each layer receives attention-guided 

training from the last layer to improve the performance of 

the lane line detection model by passing features from the 

deeper layers of the model to the shallower layers in 

advance for learning. Vaswani et al. [20] creatively 

proposed a simple network architecture based on an 

attention mechanism that reduces the training time while 

optimizing the model. Hu et al. [21] automatically obtain 

the importance of each channel by explicitly modelling the 

interdependencies between the feature channels, then boost 

the useful features and suppress the features that are less 

useful for the current task according to their importance, 
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and finally, improve the overall performance of the 

network. These methods are validated on public datasets 

and provide good ideas for the self-optimization of the 

model. 

2.5. Differential Privacy 

Differential privacy is a cryptographic technique that aims 

to maximize the accuracy of data queries and reduce the 

chance of identifying records from statistical database 

queries and is widely used in deep learning models to 

protect data privacy [22]. Local differential privacy (LDP) 

is one of these models, which does not have any trusted 

third party and needs to add perturbations to its data before 

sharing it with other data parties. Arachchige et al. [23] 

proposed the LATENT algorithm, which redesigned the 

training process and added a randomization layer at this 

stage before the data leaves the device and reaches the 

server, significantly improving the utility of differential 

privacy in the deep learning process. Using the concept of 

LDP, Wei et al. [24] proposed a user-level differential 

privacy algorithm that adds artificial noise to the shared 

model before uploading it to the server and derived a 

theoretical convergence upper bound for the framework. 
The mechanism of differential privacy with parameters 

( , )   provides a strong criterion for privacy preservation 

in distributed data processing systems. For example, v  and 

'v  are real data sets for two users, given a perturbation 

algorithm S with output 'y . S satisfies localized 

differential privacy if the probability of obtaining any 'y  

on both v  and 'v  under the action of S satisfies the 

inequality shown in Eq. (4). 

 

 Pr[ ( ) '] Pr[ ( ') ']S v y e S v y     +  (4) 

 
Where   is the privacy budget, which indicates the 

distinguishable boundary between two adjacent datasets, it 

takes a value greater than 0, and a smaller value indicates a 

higher level of data protection. ( (0,1])    is the privacy 

leakage probability. 

Knowledge distillation-based attack and defense in the 

IoV environment covers many aspects. This section 

reviews the ways of knowledge distillation, the basic 

practices of prevent distillation, and briefly introduces the 

classical practices of model reinforcement and how to add 

local differential privacy noise to deep learning models. 

These contents laid the foundation for the subsequent 

methods proposed. 

3. Methodology 

3.1. System Architecture of IoV 

The IoV system architecture is shown in Fig. 2 and consists 

of 3 parts: vehicle, roadside unit(RSU), and base 

station(BS). It is assumed that a single base station can 

cover all the areas shown in Fig. 2 and provide remote 

communication services to initialize the whole IoV 

application system and generate system-related 

parameters. Three roadside units are deployed near each 

road section, connecting upwards to the base station and 

downward to the vehicles on the road via wired or wireless 

channel communication links to provide authentication and 

real-time data services to the vehicles. In terms of 

computing and communication capabilities, the base 

station is more powerful and the roadside unit is weaker 

[25]. The vehicle is equipped with an intelligent vehicle 

system that communicates with roadside units and base 

stations in real-time and can select the appropriate roadside 

unit for authentication and information interaction 

according to its area and handle complex and changing 

road information, to ensure that the vehicle can be safely 

exercised on the road. If a vehicle is not within the coverage 

area of any roadside unit, it interacts directly with the base 

station for information. 

BS

RSU

RSU

RSU

Wireless connection

Wired connection

 

Figure 2. The IoV system architecture. The vehicles 
on the road communicate information with base 

stations or roadside unit nodes through wired and 
wireless connections. 

Table 1. The IoV system parameters 

Parameter  Meaning 

i

jv  The i-th vehicle within the j-th roadside unit 

j

nr  
The j-th roadside unit within the range of the n-th 

base station 

i

jd  
Number of samples contained in the orresponding  

vehicle data set 

nb  The n-th base station 

( )i

jw t  
Model parameters of vehicle i

jv  in the t-th 

iteration 

( )i

jL w  Loss function during vehicle training 

( ( ))L w t  Global aggregation loss function 
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JR  
Number of roadside units in the area to which the 

base station belongs 

I

JV  
Number of vehicles in the area to which the base  

station belongs 

The system model proposed in this paper consists of a 

master chain computation process consisting of the base 

station and the roadside units within its coverage area, a 

slave chain computation process consisting of the roadside 

units and the vehicles within its coverage area, and a local 

computation process of the vehicle deep learning model. In 

this paper, we assume that some of the nodes can be 

exploited by attackers to eavesdrop on the output 

information of the vehicle's deep learning model, and that 

there is no slack state in the nodes themselves and no 

possibility of malicious uploading of incorrect parameters. 

The relevant parameters are listed in Table 1. 

The vehicle performs a deep learning-based model 

training process locally and, after a while, sends the 

training results up to the adjacent roadside units. In the 

local training phase, each vehicle is trained with a deep 

learning model based on the local dataset, and the loss 

function of vehicle 
i

jv  on the training dataset 
i

jd  is shown 

in Eq. (5). 

 
1

( ) ( , , )
i
j

i

j u u ui
u dj

L w l w x y
d 

=   (5) 

 

Where 
( , , )u u ul w x y

 is the value of the loss function on 

the data samples
( , )u ux y

, and w  is the parameter of the 

trained model. In different algorithms, the loss function is 

calculated in different ways. In this paper, the most 

common gradient descent method is used to construct the 

loss function and thus update the values of the weight 

parameters, as shown in Eq. (6). 

 

 ( ) ( 1) ( ( 1))i i i i

j j j jw t w t L w t= − −  −  (6) 

 

Where 
( )i

jw t
 is the model weight parameter for the t-th 

iteration, 


 is the learning rate, and 
( ( 1))i i

j jL w t −
 is the 

gradient of the loss function for parameter 
( 1)i

jw t −
. After 

each round of training, these updated weight parameters are 

uploaded to nearby roadside units via a wireless network. 
During the iterative process from the slave chain, the 

roadside unit receives the model prediction results from all 

the vehicles involved in the training. It can aggregate these 

data to minimize the loss function and improve the 

accuracy of the vehicle deep learning model. The weighted 

aggregation approach used in this paper is as shown in Eq. 

(7). 

 
1

1

1
( ) ( )

I
i i

j j jI
i i

j

i

w t d w t

d =

=

= 


 (7) 

 

In the iterative process of the master chain, similar to the 

learning process of the roadside unit, the base station stores 

the predictions of the roadside unit locally and 

simultaneously aggregates all the received parameters 

globally, where the loss function is defined as Eq. (8). 

 

 
( , , )1 1

( ( ))
i
j

i i u u

j j i i

I i
j J i IJ u dJ j

l w x y
L w t

R V d  

=   (8) 

 

Where JR
 and 

I

JV
 represent the number of roadside 

units and the number of vehicles in the area to which the 

base station belongs. The training process minimizes the 

overall loss function along the opposite direction of the 

gradient 
( )L w

. 

3.2. Strengthen Prevent Distillation Process 

The vehicle deep learning model is denoted by S, and the 

information collected by the vehicle is denoted by X, 

= ( )SY S X  indicates the output of the model logit. Model S 

can be divided into different parts ( )1 2, , , ,n cS S S S , where 

cS  is the classifier. The execution process of the model is 

shown in Eq. (9), where " " indicates the nesting of 

functions: 

 c 2 1( )S nY S S S S X=  (9) 

 

The intermediate layer features of the deep learning 

model are ( )1 2, , , n

S S SF F F , then the i-th feature is 

calculated as shown in Eq. (10). 

 

 2 1( )i

S iF S S S X=  (10) 

 

During the process of training a distillation prevention 

model using the method described in Eq. (3) on local 

vehicles in IoV, although the above algorithm can have a 

protective effect on the model, it inevitably results in a 

weakening of the model's performance. To remedy these 

shortcomings, this paper proposes a Strengthen prevent 

distillation model algorithm that uses the deep part of the 

model to guide the shallow part based on the algorithm 

shown in Eq. (3), and its own iteration requires relearning 

the output of each layer of the model as a way to improve 

the effectiveness of the model itself and further enhance the 

degree of self-destructive distillation. Its loss function is 

calculated as shown in Eq. (11) and Eq. (12). 

 

 ( ) ( )( )
1 1

= ,
n n i

i i j

R s s

i j

L D M F M F
−

+

= =

 
 
 

   (11) 

 = CE RL L L+  (12) 

 

Where M denotes the transformation of the attention and 

feature maps and D denotes the distance function of the two 
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parts of the model. In this paper, we use the Attention-

based Fusion (ABF) mechanism to adjust the deep high-

dimensional features and the shallow low-dimensional 

features to the same size, and connect the features of 

different dimensions to generate an attention graph. This 

attention map is multiplied with the two previous feature 

maps and finally stitched into the final output. The ABF 

architecture is shown in Fig. 3. 

 

1×1 
Conv

×

×

+

 

Figure 3. ABF Architecture. The features of different 
levels in each module are aggregated together 

through attention maps. 

In order to reduce the complexity of model training, the 

final architecture is progressively improved in this paper. 

Taking the classic residual network as an example, the 

specific implementation is that the output of each layer 

needs to be combined with the output of the later layers to 

produce a cross-entropy loss function that uses 

backpropagation to strengthen the model accuracy of the 

previous layer by layer and to expand the error distribution 

of the incorrect class until the final output can achieve a 

prediction accuracy comparable to or better than the initial 

model. The specific approach is shown in Fig. 4. 

 

ABF ABF ABF

Input

Output

 ResBlock1 ResBlock2 ResBlock3 ResBlock4

 

Figure 4. Progressive model architecture. We 
progressively train the shallow layers of the model to 
learn from its deep layers, with repeated learning as 

the final architecture. 

3.3. Adding Adaptive Differential Privacy 
Process 

In this paper, a Vehicle Adaptive Differential Privacy 

(VADP) algorithm is proposed to further prevent malicious 

attribute inference during the information interaction 

between the master and slave chains of the connected 

vehicle system architecture. The algorithm is incorporated 

into the previous model to further enhance its effectiveness 

in protecting private data and preventing information 

leakage during the upload process. This is done by 

adaptively cropping the gradient according to the change in 

learning rate during the vehicle's deep learning training 

process, and by adding a small amount of Gaussian noise 

to the model's parameters. When all vehicle deep learning 

models have completed local training, the parameters with 

noise are uploaded to roadside units or base stations for 

aggregation. Due to local perturbations, it is difficult for an 

attacker to infer the private characteristics of a given 

vehicle and then reconstruct the user's private data by 

reverse engineering. The algorithm consists of the 

following components. 

step1: Input vehicle initialization model 0w , clipping 

threshold C and LDP parameters ( , )i i  ; 

step2: Update the local gradient during training,

, ( , ) ( , )t i t i t

i m j i jg d m w F d w= ; 

step3: Cropping gradient,

, 2
, ,

( , )
( , ) ( , ) / max(1, )

t i

i m jt i t i

i m j i m j

g d m
g d m g d m

C
= ; 

step4: Local parameter update,

1

,1

1
( , )

i
jdt t t i

i i i m jmi

j

w w g d m
d

+

=
= −  ; 

step5: Calculating i  from LDP parameter ( , )i i   and 

adding Gaussian noise to the model, 2(0, )
t t
i i iw w N I= + ; 

step6: Output the noise-added model and interact the 

information with the roadside unit. 

The process ,

t

i mg  denotes the gradient of the t-th training 

of the i-th vehicle on the m-th mean dataset, 
t

iw  denotes the 

model parameters after noise addition. 

4. Experiment 

4.1. Experimental Setup 

The proposed SPD scheme in this paper first performs self-

destructive training according to Eq. (2) to create a 

distillation-proof model in IoV and performs an strengthen 

prevent distillation process, and adds adaptive Gaussian 

noise to optimize itself. To evaluate the effectiveness of the 

proposed model, we use Eq. (1) to conduct knowledge 

distillation on a given malicious third-party model and 
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evaluate the performance of the model. We draw 

corresponding conclusions from the comparison. 

In order to verify the effectiveness of the proposed 

mechanism in this paper, We used the CIFAR-10, CIFAR-

100, SVHN, and Tiny-imagenet datasets. The CIFAR and 

Tiny-imagenet dataset is used to validate the general 

applicability of the SPD approach, while the SVHN dataset 

is used to evaluate the effectiveness of the SPD approach 

specifically in IoV. CIFAR-10 and CIFAR-100 are often 

used as classical datasets to test the effectiveness of image 

classification models, and they both consist of 60,000 32×

32 colour images, of which 50,000 are used as training sets 

and 10,000 are used as test sets; the difference between 

them is that CIFAR-10 is used for 10 classification 

problems, while CIFAR-100 is used for 100 classification 

problems, and CIFAR-100 is much more difficult to train 

than the former. The SVHN dataset is extracted from 

Google Street View images of door numbers and is suitable 

for in-vehicle sensors reading image data around vehicles 

in IoV. SVHN contains over 600,000 digital images, 

including 73,257 images in the training set and 26,032 

images in the test set; an additional 531,131 images are also 

available for training if the model requires a larger amount 

of data. Tiny-imagenet is derived from the classic dataset 

ImageNet. It consists of 200 classes, with each class having 

500 training images, 50 validation images, and 50 test 

images, all of which are 32×32 color images. ResNet-18 

and ResNet-50 are used as vehicle deep learning models, 

and ResNet-18, ShufflenetV2, MobilenetV2 and 5-layer 

normal CNN are used as attacker models as a way to fully 

evaluate the scheme. 

All experiments were conducted on GPU devices under 

the pytorch 1.11.0 environment. Each network was trained 

for 100 epochs on two different datasets using the SGD 

optimizer to optimize the neural network. The initial 

learning rate was set to 0.1, and it decreased by a factor of 

1/10 at 30, 60, and 90 epochs. Other training 

hyperparameters include weight_decay=5e-4 ，

momentum=0.9, and a batch size of 128. 

In this section, the following comparison scheme is 

designed for simulation and verification of the algorithm 

proposed in this paper. 

• The prediction accuracies of the vehicle deep learning 

and attacker models are obtained experimentally and 

used as a baseline. Comparing the SPD model 

constructed by the method proposed in this paper with 

the common vehicle model, it can be seen that the 

present method hardly affects the prediction accuracy 

of the model. 

• By comparing the distillation of the model constructed 

by the method proposed in this paper with the 

distillation of a standard vehicle model, it can be seen 

that the present method significantly reduces the 

utility of knowledge distillation, making it 

meaningless to obtain a vehicle model by means of 

knowledge distillation. 

• By comparing the accuracy in a data distillation-free 

environment, it is concluded that the SPD scheme can 

protect the data privacy of users. 

• The superiority of the proposed algorithm in this paper 

is derived by comparing it with the standard resistance 

distillation algorithm [16] and the adaptive false alarm 

algorithm [26]. 

4.2. Experimental Results 

The experimental results on CIFAR-10, CIFAR-100, 

SVHN and Tiny-imagenet are shown in Table 2, Table 3, 

Table 4 and Table 5 respectively, where the normal model 

is denoted by NM (Normal) and the enhanced resistance to 

distillation model is denoted by SPD (Strengthen Prevent 

Distillation). For ease of presentation, we define the 

vehicle deep learning model as the teacher network and the 

attacker model as the student network. To further eliminate 

chance, 10 simulation experiments are run for each of the 

above algorithms and the results of each iteration are 

averaged as the final result. 

First, we observed that all SPD models performed 

similarly to the corresponding normal models. Second, the 

attacker model steals the normal vehicle model through 

knowledge distillation, which can improve the accuracy by 

up to 9.53%. However, distillation of the model proposed 

in this paper reduces the accuracy by 1.92% to 66.44%, 

indicating that distillation-prevent vehicle deep learning 

models can successfully provide a false sense of 

generalization for malicious roadside units or base station 

models. In addition, comparing the data in the table shows 

that weaker attacker networks (e.g. MobilenetV2) may be 

more vulnerable to errors than stronger networks (e.g. 

ResNet-18). The published vehicle deep learning models 

are experimentally "distillation-prevent", so knowledge 

distillation-based model steganography is no longer be 

applicable. 

Table 2. Experimental results on CIFAR-10 

 
 
 
 
 
 
 

Vehicle models 
Model  

Accuracy 

Accuracy of student models after distillation 

CNN MobilenetV2 ShufflenetV2 

Baseline - 89.41 81.71 88.32 

ResNet18(NM) 94.78 90.98(+1.57) 91.07(+9.36) 92.37(+4.05) 

ResNet18(SPD) 94.29(-0.49) 87.19(-2.22) 65.84(-15.87) 82.94(-5.38) 

Resnet50(NM) 94.03 90.66(+1.25) 91.24(+9.53) 92.30(+3.98) 

Resnet50(SPD) 93.81(-0.22) 87.49(-1.92) 66.05(-15.66) 83.02(-5.30) 
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Table 3. Experimental results on CIFAR-100 

Vehicle models 
Model 

Accuracy 

Accuracy of student models after distillation 

MobilenetV2 ShufflenetV2 Resnet18 

Baseline - 68.46 70.71 77.45 

ResNet18(NM) 77.45 73.84(+5.38) 74.30(+3.59) 77.90(+0.45) 

ResNet18(SPD) 77.38(-0.07) 2.02(-66.44) 63.69(-7.02) 73.03(-4.42) 

Resnet50(NM) 78.01 73.32(+4.86) 74.05(+3.34) 77.95(+0.50) 

Resnet50(SPD) 77.97(-0.04) 2.97(-65.49) 62.28(-8.43) 72.67(-4.78) 

Table 4. Experimental results on SVHN 

Vehicle models 
Model  

Accuracy 

Accuracy of student models after distillation 

MobilenetV2 ShufflenetV2 Resnet18 

Baseline - 89.25 89.69 96.44 

ResNet18(NM) 96.44 90.06(+0.81) 92.90(+3.21) 96.89(+0.45) 

ResNet18(SPD) 95.98(-0.46) 26.43(-62.82) 85.75(-3.94) 95.32(-1.12) 

Resnet50(NM) 95.28 91.12(+1.87) 93.26(+3.57) 96.67(+0.23) 

Resnet50(SPD) 94.85(-0.43) 28.31(-60.94) 84.89(-4.80) 95.11(-1.33) 

Table 5. Experimental results on Tiny-imagenet 

Vehicle models 
Model  

Accuracy 

Accuracy of student models after distillation 

MobilenetV2 ShufflenetV2 Resnet18 

Baseline - 56.17 57.26 63.24 

ResNet18(NM) 63.24 59.48(+3.31) 60.31(+3.05) 63.83(+0.59) 

ResNet18(SPD) 63.13(-0.11) 49.32(-6.85) 53.42(-3.83) 60.51(-2.73) 

Resnet50(NM) 63.98 61.58(+5.41) 61.41(+4.15) 64.27(+1.03) 

Resnet50(SPD) 63.86(-0.12) 48.87(-7.30) 50.75(-6.51) 59.98(-3.26) 

 

In order to more clearly see the effectiveness of the 

algorithm proposed in this paper in preventing knowledge 

distillation, Fig. 5 visualizes the iterative accuracy of the 

ordinary model, this paper's model, the attacker's model, 

the distillation ordinary model, and the distillation this 

paper's model (assuming the dataset is CIFAR-100, 

ResNet18 is the vehicle model, and MobilenetV2 is the 

attacker model). The experimental results show that the 

model proposed in this paper can reach convergence faster 

under the condition that the accuracy is not inferior to that 

of the normal model, and the model accuracy of the 

attacker will be severely reduced in the face of distillation. 

 

Figure 5. Several iterations of the model. As 
distillation attacks continue, the performance of the 
model against a normal model attacker will improve, 
but its performance will severely degrade against an 

SPD model. 
 

Table 6. data-free knowledge distillation results 

Dataset CIFAR-10 CIFAR-100 

Vehicle models Accuracy 
DAFL 

Accuracy 
Accuracy 

DAFL 

Accuracy 

ResNet18(NM) 94.78 91.56 77.45 71.04 

ResNet18(SPD) 94.29(-0.49) 85.58(-5.98) 77.38(-0.07) 65.28(-5.76) 

 

To verify that the model proposed in this paper is still 

valid in a data distillation-free (DAFL) environment, we 

used the classical ResNet18 as the underlying network and 

conducted experiments using the method proposed by 

Chen et al. [3], and obtained the results shown in Table 6. 

Comparing the data in the table, it can be seen that the 

attacker's gain will be greatly reduced compared to 

distillation ordinary model by DAFL's method to steal the 

user privacy of distillation resistant vehicle deep learning 

model. 

To verify the superiority of the method proposed in this 

paper, the accuracy of the models constructed by the 

strengthen prevent distillation (SPD) scheme, the ordinary 

prevent distillation (PD) scheme, the adaptive false alarm 

(AFA) scheme and the normal model (NM) are compared, 

and the changes in model accuracy caused by the 

distillation of the models constructed by the above 

algorithms are compared (still assuming that the dataset is 

CIFAR-100, ResNet18 is the vehicle model , MobilenetV2 

is the attacker model), it can be seen that the SPD scheme 

has the least impact on the accuracy of the model itself and 

produces the best model protection in the face of 

knowledge distillation. The experimental results are shown 

in Fig. 6. 
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Figure 6. Performance and prevent to distillation 
effects of several models 

4.3. Qualitative Analysis 

The scheme is effective in the IoV environment because it 

maximizes and reinforces the output of the correct 

categories and confounds the ranking of the incorrect 

categories. A visualization of the output probability of the 

ResNet-18 model on the CIFAR-10 dataset is shown on 

Fig. 7 to qualitatively analyze the reasons why the scheme 

is effective. 

 

  

  

Figure 7. Visualization of softmax output (The car is 
on the top and the truck is on the bottom) 

As shown in Fig. 7, it visualizes the logit response of the 

normal ResNet-18 and its counterpart after processing with 

the strengthen prevent distillation function, using the 

output of a truck and a car as examples. It can be seen that 

the normal model always outputs one peak, but the output 

response of the strengthen prevent distillation vehicle deep 

learning model consists of multiple peaks. Multi-peak logic 

misleads the learning process of knowledge distillation and 

degrades the performance of the attacker model, giving the 

attacker model a false sense of generalization, then the 

malicious roadside unit or base station also learns the 

wrong knowledge from the vehicle model, leading to a 

decrease in its own accuracy, which in turn protects the 

security of the vehicle model as well as the privacy of the 

user. 

 

 

 

4.4. Ablation Experiment 

As shown in Fig. 8, the proposed method is capable of 

reducing model performance for malicious attackers, 

irrespective of the selected value of parameter  , which 

varies from 0 to 0.01 on CIFAR-100 dataset (assuming that 

the dataset is CIFAR-100, ResNet18 is the vehicle model , 

ShufflenetV2 is the attacker model). Additionally, by 

adjusting the value of w, it is possible to achieve a balance 

between performance loss and resistance to distillation 

attacks. Specifically, a higher value of w can result in a 

more resilient model against distillation attacks, but at the 

expense of greater accuracy loss. 

 

 

Figure 8. Several iterations of the model. As the 
balance parameter   increases, the performance of 

the attacker model will severely degrade, but at the 
cost of the defender model's performance being 

negatively impacted as well. 

5. Conclusion 

In practice, the owner of the vehicle deep learning model 

can achieve the effect that the model cannot be stolen by 

resisting distillation training, self-enhancement training, 

and adding local differential privacy noise without 

sacrificing its own performance. The related performance 

improvements are due to the fact that resistance to 

distillation training has reconstructed the internal structure 

of the model, self-enhancement training has expanded the 

degree of reconstruction, and adding differential privacy 

noise has further improved the privacy protection 

efficiency of the scheme. Even if attackers have the same 

training data, they do not have the ability to use knowledge 

distillation to clone published models, as their model 

performance would be severely degraded instead of being 

boosted as usual where performance degradation is 

unacceptable in some security-critical environments, such 

as autonomous driving, so that cloned models or illegal 

data theft through knowledge distillation can be avoided. 
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5.1. Study Limitations 

Extensive experiments conducted on multiple datasets 

quantitatively show that the vehicle deep learning model 

with strengthened prevent distillation is effective in either 

the standard knowledge distillation or data-free knowledge 

distillation settings. This scheme is more complex and 

takes longer in the training process, but it is acceptable in 

the model training phase, and the size of the model itself is 

not affected.  

5.2. Future Scope of Research 

In the future, other methods will be explored to improve 

the current resistance to distillation and to speed up the 

training time of the model so that the proposed concept can 

be generally applied in practice. At the same time, we will 

also consider adding a model watermark to protect the 

ownership of the vehicle model. 
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