
EAI Endorsed Transactions
on e-Learning Research Article

1

A survey on graph neural networks
Jing Wang1*

1School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000,P R China

Abstract
In recent years, we have witnessed the developments that deep learning has brought to machine learning. It has solved many
problems in the areas of computer vision, speech recognition, natural language processing, and various other tasks with state-
of-the-art performance. However, the data in these tasks is typically represented in Euclidean space. As technology develops,
more and more applications are generating data from non-Euclidean domains and representing them as graphs with complex
relationships and interdependencies between objects. This poses a significant challenge to deep learning algorithms. This is
because, due to the uniqueness of graphs, applying deep learning to the ubiquitous graph data is not an easy task. To solve
the problem in non-Euclidean domains, Graph Neural Networks (GNNs) have emerged. A Graph Neural Network (GNN)
is a neural model that captures dependencies between graphs by passing messages between graph nodes. This paper
introduces commonly used graph neural networks, their learning methods, and common datasets for graph neural networks.
It also provides an outlook on the future of Graph Neural Networks.

Keywords: deep learning, graph neural networks, Euclidean domains, non-Euclidean domains, graph data

Received on 18 June 2023, accepted on 25 June 2023, published on 10 July 2023

Copyright © 2023 Wang et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetel.3466

1 Introduction

With the rapid development of neural networks in recent
years, deep learning has become the "jewel" of artificial
intelligence and machine learning[1]. Many machine
learning tasks that once relied on manual methods to
extract feature information (e.g., image recognition,
machine translation) have been replaced by various more
advanced deep learning methods. Of course, the success of
deep learning in areas such as image classification, video
processing, speech recognition, and natural language
understanding is no accident, thanks not only to big data
and high-performance computing power but also to the
effectiveness of deep learning [2] itself in extracting
potential representations from Euclidean data. For graphs
can be regular or irregular. A graph may have both
unordered nodes of different sizes, nodes from the same
graph may have different numbers of neighbours, and each
node in the graph may have different neighbourhoods. This
leads to the fact that some operations of deep learning
algorithms (such as convolution operations) work well in

*Corresponding author. Email: wangjing@home.hpu.edu.cn

the Euclidean domain, but are difficult to apply to the graph
domain.
Graphs are ubiquitous and widely used in the real world,
and they can represent objects and their relationships in
various fields. Examples include large-scale social
networks, transportation networks, chemical molecular
analysis, recommendation systems[3], ecosystems, and so
on. More and more applications rely on representing data
generated in non-Euclidean[4]domains as graphs with
complex relationships and interdependencies between
objects. The complexity of graph structures poses a major
challenge to existing deep-learning algorithms. In recent
years, people have a strong interest in deep learning
methods for extended graph data, and the following graph
neural network (GNN) has emerged, driven by deep
learning algorithms such as convolutional neural network
(CNN) and recurrent neural network (RNN). The
emergence of graph neural networks makes it possible to
apply deep learning algorithms to non-Euclidean domains
to solve graph problems.
Graph Neural Networks (GNN) is a deep learning
algorithm based on graph structure that learns the
representation of nodes and edges in a graph, implementing

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:wangjing@home.hpu.edu.cn

Jing Wang

2

tasks such as classification, clustering, and prediction of
the graph as a whole. Unlike traditional machine learning
algorithms that require the transformation of graphs into
vectors or matrices, GNNs improve the representation of
graph data by performing calculations directly on the
graph, using the relationships between nodes. For example,
in social network analysis, GNNs can help us discover
community structure and predict user interests and
behavior, among other tasks. In chemical molecular
analysis, GNNs can help us with tasks such as classifying,
clustering, and predicting molecules. In recommender
systems, GNNs can use the relationships between users to
improve the effectiveness of recommendations.

2 Background

Early research on graph neural networks (GNNs) belongs
to the category of recurrent neural networks (RecGNNs)
and has a high overhead. Sperduti and Starita [5]
introduced neural networks to direct acyclic graphs and
promoted the research of GNNs. Gori, Monfardini [6] first
introduced the concept of graph neural networks. [7,
8]further elaborate the concept of graph neural networks.
In recent years, with the wide application of non-Euclidean
data, more and more people focus on the study of graph
neural networks. Wu, Pan [9] classifies graph neural
networks into four categories. Zhang, Cui [10] A
comprehensive review of deep learning methods on
different types of graphs. Thomas, Moallemy-Oureh [11]
Classifies graph neural networks according to their
different abilities to process graph types and attributes.
Waikhom and Patgiri [12] The learning mode of graph
neural network is summarized. Zhou, Cui [13] A generic
pipeline design for graph neural network models is
proposed. There are also many research works on graph
neural network learning methods. Cao, Li [14] extracted
feature information in hyperspectral classification to avoid
the problem of over-smoothing of message delivery caused
by [15]. As the research work progressed, contrast-based
learning methods were also successful. Okuda, Satoh [16]
proposed unsupervised graph representation learning to
discover common objects and a set of specific objects in an
image for localisation. The node classification and edge
detection of [17] combines two learning methods, random
walk, and language modelling, and the learned
representations can be used for downstream tasks.

This paper provides a comprehensive review of different
models of graph neural networks and how graph neural
networks learn. A more complete overview of graph neural
networks is provided. In summary, the main contributions
of this paper include: (1) a comprehensive and detailed
review of models of graph neural networks; (2) a
discussion of graph-based training approaches; and (3)
challenges for future research on graph neural networks.

The rest of the paper includes: Section 3 introduces the
concept and notation of graphs. Section 4 introduces the
respective learning methods of graph convolutional
networks (GCN), graph attention networks (GAT), and

graph autoencoders (GAE). In addition, the difference
between graph attention networks (GAT) and graph
convolutional networks (GCN) is described. At the same
time, we also make a simple distinction between GAT and
GAN. Section 5 describes the datasets commonly used in
graph neural networks. Section 6 summarises the paper and
discusses the challenges faced by graph neural networks.

3 Graph Neural Network

3.1 Concept and notation representation of
graphs

A graph neural network[18, 19] is a deep neural network
suitable for the analysis of graph structures. The notation
involved in this paper is interpreted as shown in Table 1.
The graph is expressed as G=(V, E). where 𝑣𝑣 =
{𝑣𝑣1, 𝑣𝑣2,𝑣𝑣3 , . . , 𝑣𝑣𝑛𝑛} represents the set of N=|V| nodes. E ⊆ V
× V represents the set of edges between nodes [20]. We use
A ∈ RN×N to represent the adjacency matrix [21]. an
element of the ith row of A can be written as A(i, :) and an
element of the jth column can be written as A(:, j). A(i, j)
represents an element of the ith row and jth column of A.

3.2 Structure of Graph Neural Network

The graph structure is such that each node is defined by its
own features and by the features of the nodes connected to
it. The purpose of GNN[22] is to learn a state embedding
vector s

vh R∈ for each node[23], which contains

information about each node's neighbours. vh represents
the state vector of the node . This vector can be used to
generate output vo .

(i) Assume that f (.) is a function with parameters called
the local transition function, which is shared among
all nodes and updates the node state based on input
from neighbouring nodes.

(ii) Assume that g (.) is the local output function, which is
used to describe how the output is generated.

[] [] [](, , ,)v v co v ne v ne vh f x x h x= (1)

(,)v v vo g h x= (2)

where, vx represent the feature vector of node v, []co vx
represent the feature vector of the edge associated with
node v, []ne vh represent the state vector of the neighbouring

nodes of node v . []ne vx represent the feature vector of the
neighbouring nodes of node v.
If all the state vectors, output vectors, feature vectors and
vectors obtained from node features are superimposed and

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

A survey on graph neural networks

3

represent by H , O , X , NX respectively, then a more
compact representation can be obtained as follows:

Table 1 GNN common notation

Type Explanation

G = (V, E) A graph
N, M The number of nodes

and edges
𝑉𝑉 = {𝑣𝑣1 , … ,𝑣𝑣𝑁𝑁} The set of nodes

FV , FE The attributes/features
of nodes and edges

A The adjacency matrix

(), (,)
j

i i i j=∑D A
The diagonal degree

matrix

L = D − A The Laplacian matrix

Λ T =Q Q L The
eigendecomposition of

L

1P D A−=
The transition matrix

(), ()k i iN N The k-step and 1-step
neighbors of vi

l⋅

H The hidden
representation in the

l th layer

lf The dimensionality of
l⋅

H
ρ(·) Some non-linear

activation function

1 2X X The element-wise
multiplication

Θ Learnable parameters
s The sample size

(,)H F H X= (3)

(,)NO G H X= (4)
Where, F and G are respectively called the global transfer
function and the global output function and are stacked
versions of f and g for all nodes in the graph. According to
Banach's immobility point theorem, GNN uses the
following conventional iterative approach to calculate the
state covariates:

1 (,)t tH F H X+ = (5)

where , tH represent the tensor of the tth iteration cycle
of H. For arbitrary initial values 0H ,Eq. (5) can be
obtained by fast convergence to the final fixed-point
solution of Eq. (3).

4 Graph Neural Network Models

4.1 Graph Convolutional Network (GCN∈

GCN is a convolutional neural network that acts directly on
the graph and makes use of its structural information. The
main idea of GCN[24-26] is that for each node, we consider
all of its neighbors and the characteristic information it
contains. Assuming that we use the average () function, this
is done for each node to obtain an average representation
that can be fed into the neural network. Modern GCNs
mimic CNNs by designing convolution and readout
functions to learn common local and global structural
patterns of graphs. We first discuss the convolution
operation and then move to the readout operation and some
other improvements. Convolutional neural networks[27]
play a central role in building many other complex GNN
models.

Graph Convolution Method
Graph convolutional neural networks include spatially
based graph convolutional neural networks[28-30] and
spectral based graph convolutional neural networks[31-
34].
(1) Spatially based graph convolutional neural networks
The spatial domain-based graph convolutional neural
structure consists of three main types of operators:
neighbour sampling[35], message computation and
message aggregation. The graph convolutional neural
structure based on spatial domain mainly consists of three
types of operators: neighbor sampling, message
computation and information aggregation. In GCN, an
aggregate operation is used to aggregate adjacent nodes
represented by a node to achieve message transmission
between nodes. Figure 1 shows the transfer of node
information based on spatial domain GCN.

Figure 1: GCN node information transmission based
on spatial domain

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

Jing Wang

4

The simplest aggregation process is to do a product
operation of the node features of the graph (X) with the
topological structure information of the graph (adjacency
matrix A). The exact process is shown in Figure 2.

× ＝

Figure 2: Information aggregation process for
spatial domain-based GCNs

To solve the problem in Figure 2 of not calculating the
nodes' own features and aggregating them directly by
summation, which can cause the gradients to explode or
disappear, we can add the unit matrix I to the adjacency
matrix A and aggregate the features of the neighbouring
nodes by taking a weighted average.

According to the different methods of convolutional
stacking, space-based GCN can be further divided into two
categories: recurrent-based and composition-based spatial
GCN. recurrent-based approaches use the same graph
convolution layer to update the hidden representation, and
compositional -based approaches use a different graph
convolution layer to update the hidden representation.
Figure 3 illustrates this difference.

GCN1

GCN1

GCN1 GCN1

GCN2 GCNt

...

...

Recurrent-based

composition-based

Figure 3: Comparison of recurrent-based and
composition-based

The spatial approach is to define the convolution
directly in the spatial domain. The problem faced is that,
because each node's neighbours are of different sizes, it is
impossible to define a neighbourhood of the same size, so
achieving parameter sharing faces greater difficulties, but
the idea is still that the convolution is still a weighted
average of a node over its neighbouring nodes, so many
subsequent approaches aim to solve the problem of
parameter sharing.

(2)Spectral-based graph convolutional neural network
Convolution based on spectral methods is a special case

of convolution based on spatial methods. Spectral domain-

based graph convolution via neural networks investigates
the properties of graphs with the help of the eigenvalues
and eigenvectors of the Laplacian matrix of the graph.
Filters are introduced to define convolution from a signal
processing perspective. Firstly, the signal in the spectral
domain is multiplied using the theorem of convolution.
Secondly, the Fourier transform is used to transform the
signal to the original space to achieve convolution. This
approach avoids the difficulty of defining convolution
caused by the fact that the graph data does not satisfy
translation invariance. Because the structure of the graph
does not satisfy translation invariance, it is not possible to
define convolution directly in the spatial domain, so the
signal is transformed into the frequency domain, where the
convolution operation is realised, before being transformed
back into the spatial domain, which is the spectral method.
Graph convolutional neural networks based on spectral
methods assume that the graph is undirected. The
normalised graph Laplacian matrix is a mathematical
representation of an undirected graph, defined as:

1 1
2 2

− −
= −nL I D AD

(6)
where D represents the diagonal matrix of node degrees, A
represents the adjacency matrix of the graph. Using the
symmetric positive semidefinite property of the graph
Laplacian matrix, the normalised Laplacian matrix can be
decomposed as:

L T= UΛU
(7)

Where, ×[, , ,] n n
−= ∈0 1 n 1U u u u R is Feature vector

matrix, Λ is the diagonal matrix of eigenvalues (spectrum),

ii iλ=Λ . The feature vectors of the regularised Laplacian
matrix form a set of orthogonal bases. In graph signal
processing, the signal of a graph Nx R∈  is a feature
vector consisting of the individual nodes of the graph, ix
representing the ith node. The Fourier transform and Fourier
inverse transform of a graph X are defined as:

() TF x U x= (8)

()1 xˆ ˆUF x− =
(9)

Where, x is the result of the Fourier transform. To better
understand the Fourier transform of a graph, we can see
from its definition that it does project the input graph signal
into an orthogonal space whose base is made up of the
eigenvectors of the regularised graph Laplacian. The
elements of the transformed signal are the coordinates of
the graph signal in the new space, so that the original input
signal can be expressed as:

ˆx x ui i
i

=∑ (10)

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

A survey on graph neural networks

5

This is the result of the Fourier inverse transform. Next we
can define the graph convolution operation on the input
signal X.

() ()()1 x g

U(U x U g)
G

T T

x g F −∗ =

=





F F
(11)

Where, Ng R∈ is the filter we define; ∈ Indicates the
Hadamard product. Suppose we define such a filter[36]:

()Tdiagθ =g U g (12)

Thus, the graph convolution operation[37] can be
represented in a simplified way as:

T
Gx gθ θ∗ = Ug U x (13)

Spectral-based graph convolution networks all follow
this pattern, with the key difference between them being
the choice of filter. The following models of spectral-based
graph convolution networks exist: Spectral CNN,
Chebyshev[31] Spectral CNN (ChebNet), Adaptive Graph
Convolution Network (AGCN).

Comparison Between Spectral and Spatial
Models
As the earliest graph convolutional networks, spectral-
based models have achieved impressive results in many
graph-related analysis tasks. These models have some
theoretical basis in graph signal processing. By designing
new graph signal filters, we can theoretically design new
graph convolutional networks. However, spectral-based
models have some insurmountable drawbacks, which we
will address below in terms of efficiency, generality and
flexibility.

In terms of efficiency, the computational cost of
spectral-based models increases dramatically with the size
of the graph, as they either need to perform feature vector
calculations or process the entire graph at the same time,
making them difficult to apply to large graphs. Space-based
models have the potential to handle large graphs as they
perform convolution directly in the graph domain by
aggregating neighbouring nodes. The computation can be
performed in a batch of nodes rather than in the whole
graph. Sampling techniques can be introduced to improve
efficiency when the number of neighbouring nodes
increases.

In terms of generality, spectral-based models assume a
fixed graph, making it difficult for them to add new nodes
to the graph. On the other hand, space-based models
perform graph convolution locally at each node and can
easily share weights between different locations and
structures.

In terms of flexibility, the spectral-based model is
limited to working on undirected graphs; the Laplace
matrix on directed graphs is not clearly defined, so the only
way to apply the spectral-based model to directed graphs is

to convert the directed graph to an undirected graph. Space-
based models are more flexible in dealing with multiple
source inputs which can be combined into aggregation
functions. As a result, spatial models have received
increasing attention in recent years.

4.2 Graph Attention Network(GAT∈

Graph Attention Network (GAT) [38] consists of a number
of functionally identical blocks (Graph Attention Layer)
[39]. Its properties include high efficiency, low storage
type, inductive learning and full graph access. The graph
attention layer has a feature value of

1 2{ , , , }, F
N ih h h h= ∈h 

   
R for the node at input.

where N represents the number of nodes and F represents
the dimensionality of the node features. After a Graph
Attention Layer, a new feature vector is output, which can
be represented as 1 2{ , , , }, F

N ih h h h ′= …′ ′ ′ ′ ′ ∈h
    

R ,
assuming that the dimension of the node feature of this
feature vector is F ′ . As shown in Figure 4.

aij

Softmaxj

Figure 4: Attention layer in GAT

The purpose of using Self-attention is to improve the
expressiveness of ′h


 . In the Graph Attention Layer, a

weight matrix ×F F′∈W R is first applied to each node
using a weight matrix, and then self-attention is used for
each node to calculate an attention coefficient, the shared
self-attention mechanism used here, denoted a:

(,)ij je a h= iWh W


 (14)

ije represents the importance of node j for node i. In theory
we can calculate the weight of any node in the graph to the
central node. In GAT, to simplify the calculation, the nodes
are restricted to the one-hop neighbours of the central node,
and in addition the nodes take themselves into account as
neighbouring nodes. In the existing studies a there are
many ways to choose. For example, choosing a single-layer
feedforward network with parameter 2Fa ′∈

 R and then
using LeakyReLU to do a non-linearisation gives.

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

Jing Wang

6

LeakerReLU()T
ij i je h =  a W Wh


 (15)

Finally, the neighbouring nodes of the central node are
normalized using softmax:

exp()
softmax ()

exp()
ij

ij ij
ikk i

e
j e

e
α

∈

= =
∑ N

(16)

The output feature ′h


 is obtained by weighting the input
features.

i

i ij j
j

h h′ σ α
∈

 
=   

 
∑

 

N
 (17)

In order to improve the generalisation of the attention
mechanism, GAT chose to use a multi-headed attention
layer, i.e. a single-headed attention[40] layer from a set of
K mutually independent graph attention layers, and then
stitch their results together. At this point, i

′h is:

()()
1 ()K k k

i k j i ij jv v′ σ α== ∑ ∈h W h N (18)

where ‖ represents the splicing operation, ()k
ijα represents

the weight factor calculated from the kth group of attention
mechanisms, and kW is the weight factor of the kth
module. In order to reduce the dimensionality of the feature
vector, we can also use the averaging operation instead of
the splicing operation, as shown in the following equation.

1

1 K
k k

i ij j
k j j

h h
K

′ σ α
= ∈

 
=   

 
∑∑ W

 

N
 (19)

4.3 Graph Autoencoder(GAE)

Starting with the graph-based self-encoder proposed in
Kipf and Welling [41], graph self-encoders have come in
handy in many fields due to their simple encoder-
decoder[42, 43] structure and efficient encode capability.
Figure 5 briefly describes the flow of a graph self-encoder
(GAE).

graph Reconstructed
graph

Figure 5: GAE workflow

Encoder
GAE[44, 45] uses the GCN as an encoder[46] to obtain
latent representations (or embedding) of the nodes, a

process that can be expressed in a short line of equation
[47]:

(,)=Z GCN X A (20)

Using the GCN as a function, X and A are input to the GCN
as a function and the output ×N f∈Z R , Z represents the
latent representations (embedding) of all nodes. The GCN
is defined as follows:

0 1GCN(,) ReLU()=X A A AXW W  (21)

where
1 1
2 2

− −
=A D AD , 0W and 1W represent the

parameters to be learned. Here the GCN is equivalent to a
function with the node features [48, 49] and adjacency
matrix as input and the node embedding[50] as output, with
the aim of obtaining the embedding only.

Decoder
GAE uses the inner-product as decoder to reconstruct the
original graph:

T()ˆ σ=A ZZ (22)

Â represents the reconstructed adjacency matrix. A good
Z should make the reconstructed adjacency matrix[51] as
similar as possible to the original adjacency matrix,
because the adjacency matrix determines the structure of
the graph. Therefore, GAE uses cross-entropy as the loss
function[52] in the training process.

1 log (1) log(1)ˆ ˆy y y y
N

= − ∑ + − −L (23)

where y represents the value of an element in the adjacency
matrix A (0 or 1) and ŷ represents the value of the
corresponding element in the reconstructed adjacency
matrix Â (between 0 and 1). It can be seen from the loss
function that the closer and more similar the reconstructed
adjacency matrix (or reconstructed graph) is to the original
adjacency matrix (or original graph), the better.

4.4 Differences and connections between
GCN and GAT

The core difference between GAT and GCN is how to
collect and accumulate feature representations of
neighbouring nodes at a distance of 1. GAT replaces the
fixed normalization operations in GCN with an attention
mechanism. Essentially, GAT simply replaces the standard
function of GCN with a feature aggregation function of
neighbouring nodes using attention weights.GAT was
created to address the shortcomings of GCN.
Disadvantages of GCN include:

i.The weights assigned to different neighbours on the same
order neighbourhood are identical, and it is not possible to
assign different weights to different nodes in the

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

A survey on graph neural networks

7

neighbourhood. This limits the model's ability to capture
the relevance of spatial information and is the reason why
it is inferior to GAT for many tasks.

ii.The way in which the GCN combines features of adjacent
nodes is dependent on the structure of the graph, which
makes the trained model relatively poor at generalising to
graphs of other structures.
Benefits of the GAT include:

i.Different weights can be assigned to different nodes in the
neighbourhood.

ii.After the attention mechanism is introduced, it is only
relevant to neighboring nodes (nodes with shared edges),
and there is no need to get information about the whole
graph:(1) The graph need not be undirected (if the edge
does not exist, we can simply omit the calculation;(2) It
makes our technique directly applicable to Inductive
Learning - including the task of evaluating models
graphically that are completely invisible during training.
The classification process of GAT is very similar to that of
GCN in that it uses a softmax function + cross-entropy loss
function + gradient descent to complete the process. In
essence: GCN and GAT both aggregate the features of
neighbouring vertices to the central vertex (an aggregate
operation) and use the local stationary on the graph to learn
the new vertex feature representation. The difference is that
GCN uses the Laplacian matrix and GAT uses the attention
coefficients. To a certain extent, GAT is stronger because
the correlation between vertex features is better integrated
into the model.
In contrast to GCN, GAT is suitable for inductive tasks,
where the important learning parameters are W and a(.),
which only relate to vertex features and have nothing to do
with the structure of the graph. Therefore, changing the
structure of the graph in a test task has little effect on GAT,
and only requires changing Ni and recalculating it. In
contrast, GCN is a graph-wide calculation, where the node
features of the whole graph are updated in a single
calculation. The parameters learned are largely related to
the graph structure, which puts GCN in a difficult position
for the inductive task.
In addition it is important to note that although the GAT
and GAN[53-56] appears to be only one letter difference,
but the actual meaning to indeed. GAT is a kind of graph
neural network, but GAN is not. The following is a brief
introduction to GAN to give us a clearer idea of the
difference between GAT and GAN.
GAN [53-56]is composed of two neural networks. The first
one is called the Discriminator, D(Y). It takes input Y(such
as a graph) and outputs a value that indicates whether Y
looks "real." D(Y) can be thought of as some kind of energy
function that is close to 0 when Y is a real sample, and
positive when Y is noisy or strange [57-59]. The other
network is called the Generator (G (Z)). Here Z is usually
a vector randomly sampled from a simple distribution (e.g.,
Gaussian distribution[60]), and the generator G(Z) is used
to generate pictures, which are then used to train the
discriminator D(Y)(to give lower values to real pictures
and higher values to other pictures). In the process of
training D, give it a real picture, make it adjust the

parameter output lower value; Give it a picture of G and
ask it to adjust the parameters to output a larger value
D(G(Z)). On the other hand, as G is trained, it adjusts its
internal parameters to make the images it produces more
and more realistic. That is, it has been optimizing the
images it produces to fool D into thinking that the images
it produces are real.

This means that for these generated images, G wants to
minimise the output of D, while D wants to maximise the
output of D. The two networks have opposite aims and are
in an adversarial posture. This is called adversarial training,
or GAN.
In the following we will explain the training process of G
AN in relation to the formula. First, a generator neural net
work is built, with all parameters represented by θ. The pu
rpose is to generate images x, and these samples x all obey
 a distribution (;)GP x θ . Then, n images are drawn from
 an existing database of images, corresponding to n points
in a high-dimensional space 1 2{ , , , }nx x x… . The action
of "drawing" is equivalent to sampling in distribution

()dataP x , and the probability of being able to draw

1 2{ , , , }nx x x… , i.e. 1 2(), (), , ()data data data nP x P x P x…
, is large. The goal of the generator training is to get

()GP x and ()dataP x as close as possible. We therefore

want 1 2(;), (;), , (;)G G G nP x P x P xθ θ θ… each of these
 probabilities to be large, in other words, we want

1

(;)
n

G k
k

P x θ
=
∏ to be as large as possible. Finally, we train

 the network on the parameters found.

1

arg max (;)
n

G k
k

P x
θ

θ θ∗

=

= ∏ (24)

where
1

(;)
n

G k
k

P x θ
=
∏ is the Likelihood of the sample. due

to

1

arg max (;) arg min[()]
n

G k data G
k

P x KL P P
θθ

θ
=

=∏ ∣∣

(25)
where KL refers to KL Divergence, which can indicate the
closeness of two distributions. The equation above says
that maximising Likelihood and minimising KL
Divergence mean the same thing. So this step becomes:
train the network to find the parameters.

arg min[()]data GKL P P
θ

θ ∗ = ∣∣ (26)

5 Datasets

In recent years, commonly used datasets for graph neural
networks include Cora, Citeseer, PubMed. Table 2
provides a comparison of these three datasets

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

Jing Wang

8

Table 2 Comparison of datasets

Category Cora Citeseer PubMed

Nodes 2708 3327 19717

Edges 5429 4732 44338

Features 1433 3703 500

Classes 7 6 3

Cora dataset
The Cora [61]dataset consists of machine learning papers,
It divides the thesis into seven categories: Case Based,
Genetic Algorithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule Learning and
Theory. Papers are selected in such a way that each paper
is cited or cited by at least one other paper in the final
corpus. There are 2708 papers in the corpus. After stem
extraction and removal of stop words, we are left with only
1433 words of unique size. Delete all words with document
frequency less than 10.

The dataset contains two files, cora.conten and cora.cite.
The content of cora.conten is described in the following
format: <paper_id> <word_attributes>+ <class_label>.
The first entry in each line (paper_id) is a unique numbered
ID for each paper, the subsequent (word_attributes)
contains 1433 binary codes indicating whether each word
in the vocabulary is present (represented by a 1) or absent
(represented by a 0) in the paper, and the last entry
(class_label) indicates the class label of the paper. And
cora.cite contains the citation relations of the papers in the
corpus in the format <ID of cited paper> <ID of citing
paper>. Each row of data contains the coded IDs of two
papers, the first entry (ID of cited paper) indicates the
number of the cited paper and the second entry (ID of citing
paper) indicates the number of the citing paper.
(2)Citeseer dataset
The Citeseer dataset is a selection of papers from the
CiteSeer library of digital papers, classified into six
categories: Agents, AI, DB, IR, ML, HCI. Papers were
selected in such a way that each paper in the final corpus
cited or was cited by at least one other paper. There are
3327 papers in the entire corpus. After stem extraction and
removal of stop words, only 3703 words remained. All
words with a document frequency of less than 10 were
removed.

The dataset contains two files, citeseer.conten and
citeseer.cites. The contents of citeseer.conten are in the
format <paper_id> <word_attributes> + <class_label>.
The first entry in each line (paper_id) is a unique numbered
ID for each paper, the subsequent (word_attributes)
contains 3703 binary codes indicating whether each word

in the vocabulary is present (represented by a 1) or absent
(represented by a 0) in the paper, and the last entry
(class_label) indicates the class label of the paper. And
citeseer.cites contains the citation relationships of the
papers in the corpus in the format <ID of cited paper> <ID
of citing paper>. Each row of data contains the coded IDs
of two papers, with the first entry (ID of cited paper)
indicating the number of the cited paper and the second
entry (ID of citing paper) indicating the number of the
citing paper.
(3)PubMed dataset
The PubMed dataset consists of 19717 scientific
publications on diabetes from the Pubmed database,
divided into three categories: Diabetes Mellitus,
Experimental, Diabetes Mellitus Type 1, and Diabetes
Mellitus Type 2. The citation network consists of 44,338
links. Each publication in the dataset is described by a
TF/IDF weighted word vector in a dictionary of 500 unique
words.TF-IDF (term frequency-inverse document
frequency) is a common weighting technique used in
information retrieval and data mining.TF is the word
frequency (TF-IDF is a statistical method for assessing the
importance of a word to a collection of documents or to one
of the documents in a corpus. The importance of a word
increases proportionally with the number of times it
appears in a document, but decreases inversely with the
frequency with which it appears in the corpus.

The dataset consists of three files: ∈ Pubmed-
Diabetes.NODE.paper.tab. Its content format is described
as <paper_id> +<label=****> +< TF-IDF>. The first entry
of each line of data (paper_id) is the unique numbering ID
of each paper, the second entry is "label=***","***"
indicates the category of the paper, followed by 500
floating point TF_IDF values, in the form of "word=***","
word" indicates the term, "***" indicates the TF_IDF value
of the term. (2) t Pubmed-Diabetes.GRAPH.pubmed.tab.
This file is useless and you do not need to pay attention to
it. (3) Pubmed-Diabetes.DIRECTED.cites.tab.

6 Conclusion

Firstly, this paper introduces four commonly used graph
neural networks and their respective learning methods.
Secondly, this paper also introduces the datasets that have
been commonly used for graph neural networks in recent
years.

Graph neural networks are very promising and have a
wide range of applications in areas such as social network
analysis, recommender systems, biomedicine and
visualisation. At present, as research continues to progress,
graph neural network technology is also evolving and new
models and algorithms are emerging. Therefore, we can
foresee that graph neural networks will be more widely and
deeply used in future research and applications. However,
current graph neural networks are currently facing many
challenges. For example, (1) the challenge of processing
scaled graph data. As the scale of graph data continues to
increase, how to efficiently process graph data storage,

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

A survey on graph neural networks

9

sampling, acquisition and transmission has become an
important challenge for graph neural networks. (2) The
challenge of model interpretability. As with other deep
learning models, the black-box nature of graph neural
networks makes model interpretability an issue that cannot
be ignored. How to better explain the decision process and
results of the model to help users better understand the
model and thus better use it is an important challenge for
graph neural networks. (3) The challenge of data sparsity.
Unlike other deep learning models, the data that graph
neural networks need to handle is usually sparse, which
poses a great challenge to the training and inference of the
models. How to better handle sparse data and improve the
performance and efficiency of the model is another
important challenge facing graph neural networks. In the
future, research on graph neural networks will have to be
considered in conjunction with these issues.

References
1. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning.

Nature, 2015. 521(7553): p. 436-44.
2. Zhang, Y.-D., Z. Dong, and C. Cattani, Deep learning

for computer-aided medical diagnosis. Multimedia
Tools and Applications, 2020. 79(21): p. 15073-15073.

3. Wu, S., et al., Session-Based Recommendation with
Graph Neural Networks. 2019.

4. Michael, et al., Geometric Deep Learning: Going
beyond Euclidean data. IEEE Signal Processing
Magazine, 2017. 34(4): p. 18-42.

5. Sperduti, A. and A. Starita, Supervised neural networks
for the classification of structures. IEEE Transactions
on Neural Networks, 1997. 8(3): p. 714.

6. Gori, M., G. Monfardini, and F. Scarselli. A new model
for learning in graph domains. in IEEE International
Joint Conference on Neural Networks. 2005.

7. Scarselli, F., et al., The Graph Neural Network Model.
IEEE Transactions on Neural Networks, 2009. 20(1): p.
61.

8. Gallicchio, C. and A. Micheli. Graph Echo State
Networks. in International Joint Conference on Neural
Networks. 2010.

9. Wu, Z., et al., A Comprehensive Survey on Graph
Neural Networks. IEEE transactions on neural
networks and learning systems, 2021(1): p. 32.

10. Zhang, Z., P. Cui, and W. Zhu, Deep Learning on
Graphs: A Survey. 2018.

11. Thomas, J.M., et al., Graph Neural Networks Designed
for Different Graph Types: A Survey. 2022.

12. Waikhom, L. and R. Patgiri, Graph Neural Networks:
Methods, Applications, and Opportunities. 2021.

13. Zhou, J., et al., Graph neural networks: A review of
methods and applications. AI Open, 2020. 1: p. 57-81.

14. Cao, Z., X. Li, and L. Zhao, Unsupervised Feature
Learning by Autoencoder and Prototypical Contrastive
Learning for Hyperspectral Classification. 2020.

15. Yang, L., et al. Toward Unsupervised Graph Neural
Network: Interactive Clustering and Embedding via
Optimal Transport. in 2020 IEEE International
Conference on Data Mining (ICDM). 2020.

16. Okuda, M., et al. Unsupervised Common Particular
Object Discovery and Localization by Analyzing a

Match Graph. in IEEE International Conference on
Acoustics, Speech and Signal Processing. 2021.

17. Du, L., et al. Dynamic Network Embedding : An
Extended Approach for Skip-gram based Network
Embedding. in Twenty-Seventh International Joint
Conference on Artificial Intelligence {IJCAI-18}. 2018.

18. Liu, R., et al., Federated Graph Neural Networks:
Overview, Techniques and Challenges. 2022.

19. Zheng, X., et al., Graph Neural Networks for Graphs
with Heterophily: A Survey. 2022.

20. Wang, S.-H., Covid-19 classification by FGCNet with
deep feature fusion from graph convolutional network
and convolutional neural network. Information Fusion,
2021. 67: p. 208-229.

21. Zhou, L., et al. A Weighted GCN with Logical
Adjacency Matrix for Relation Extraction. in ECAI
2020 - 24th European Conference on Artificial
Intelligence. 2020.

22. You, J., et al., Identity-aware Graph Neural Networks.
2021.

23. Guttery, D.S., Improved Breast Cancer Classification
Through Combining Graph Convolutional Network
and Convolutional Neural Network. Information
Processing and Management, 2021. 58.

24. Atwood, J. and D. Towsley, Diffusion-Convolutional
Neural Networks. Computer Science, 2015.

25. Niepert, M., M. Ahmed, and K. Kutzkov, Learning
Convolutional Neural Networks for Graphs. JMLR.org,
2016.

26. Gilmer, J., et al., Neural Message Passing for Quantum
Chemistry. 2017.

27. Kipf, T.N. and M. Welling, Semi-Supervised
Classification with Graph Convolutional Networks.
2016.

28. Monti, F., et al. Geometric Deep Learning on Graphs
and Manifolds Using Mixture Model CNNs. in 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017.

29. Liu, Z., et al., GeniePath: Graph Neural Networks with
Adaptive Receptive Paths. Proceedings of the AAAI
Conference on Artificial Intelligence, 2018. 33.

30. Gao, H., Z. Wang, and S. Ji, Large-Scale Learnable
Graph Convolutional Networks. 2018, ACM.

31. Defferrard, M., X. Bresson, and P. Vandergheynst,
Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. 2016.

32. Henaff, M., J. Bruna, and Y. Lecun, Deep
Convolutional Networks on Graph-Structured Data.
Computer Science, 2015.

33. Li, R., et al., Adaptive Graph Convolutional Neural
Networks. 2018.

34. Bianchi, F.M., et al., Graph Neural Networks with
Convolutional ARMA Filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.
PP(99): p. 1-1.

35. Dong, J., et al., Global Neighbor Sampling for Mixed
CPU-GPU Training on Giant Graphs. 2021.

36. Wang, X., et al., Neural Graph Collaborative Filtering.
ACM, 2019.

37. Krizhevsky, A., I. Sutskever, and G. Hinton, ImageNet
Classification with Deep Convolutional Neural
Networks. Advances in neural information processing
systems, 2012. 25(2).

38. Velikovi, P., et al., Graph Attention Networks. 2017.
39. Vaswani, A., et al., Attention Is All You Need. arXiv,

2017.

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

Jing Wang

10

40. Merity, S., Single Headed Attention RNN: Stop
Thinking With Your Head. 2019.

41. Kipf, T.N. and M. Welling, Variational Graph Auto-
Encoders. 2016.

42. Badrinarayanan, V., A. Kendall, and R. Cipolla,
SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation. IEEE
Transactions on Pattern Analysis & Machine
Intelligence, 2017: p. 1-1.

43. Cho, K., et al., Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine
Translation. Computer Science, 2014.

44. Liu, Z., D. Zhou, and J. He. Towards Explainable
Representation of Time-Evolving Graphs via Spatial-
Temporal Graph Attention Networks. in Conference on
Information and Knowledge Management. 2019.

45. Schulman, J., et al., High-Dimensional Continuous
Control Using Generalized Advantage Estimation.
Computer ence, 2015.

46. Ng, I., et al., A Graph Autoencoder Approach to Causal
Structure Learning. 2019.

47. Satapathy, S.C., Secondary pulmonary tuberculosis
identification via pseudo-Zernike moment and deep
stacked sparse autoencoder. Journal of Grid
Computing, 2022. 20: p. 1.

48. Zhang, Y.-D., Pseudo Zernike Moment and Deep
Stacked Sparse Autoencoder for COVID-19 Diagnosis.
CMC-Computers, Materials & Continua, 2021. 69(3):
p. 3145–3162.

49. Wang, S.-H., DSSAE: Deep Stacked Sparse
Autoencoder Analytical Model for COVID-19
Diagnosis by Fractional Fourier Entropy. ACM
Transactions on Management Information Systems,
2021. 13(1).

50. Peng, C., et al., A Survey on Network Embedding. IEEE
Transactions on Knowledge and Data Engineering,
2017. PP(99): p. 1-1.

51. B, J.X.A., et al., Attention adjacency matrix based
graph convolutional networks for skeleton-based
action recognition - ScienceDirect. Neurocomputing,
2021. 440: p. 230-239.

52. Dickson, M.C., A.S. Bosman, and K.M. Malan,
Hybridised Loss Functions for Improved Neural
Network Generalisation. 2022.

53. Mirza, M. and S. Osindero, Conditional Generative
Adversarial Nets. Computer Science, 2014: p. 2672-
2680.

54. Radford, A., L. Metz, and S. Chintala, Unsupervised
Representation Learning with Deep Convolutional
Generative Adversarial Networks. Computer ence,
2015.

55. Salimans, T., et al., Improved Techniques for Training
GANs. 2016.

56. Karras, T., S. Laine, and T. Aila. A Style-Based
Generator Architecture for Generative Adversarial
Networks. in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2019.

57. Zhang, Y., Deep learning in food category recognition.
Information Fusion, 2023. 98: p. 101859.

58. Wang, S., Advances in data preprocessing for
biomedical data fusion: an overview of the methods,
challenges, and prospects. Information Fusion, 2021.
76: p. 376-421.

59. Zhang, Y.-D. and Z.-C. Dong, Advances in multimodal
data fusion in neuroimaging: Overview, challenges,

and novel orientation. Information Fusion, 2020. 64: p.
149-187.

60. Mackay, D.J.C., The Humble Gaussian Distribution.
2006.

61. Mohan, R., Collective Classification in Network Data.

EAI Endorsed Transactions on
e-Learning

Volume 8 | Issue 3 | 2022

