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Abstract 
In recent years, we have witnessed the developments that deep learning has brought to machine learning. It has solved many 
problems in the areas of computer vision, speech recognition, natural language processing, and various other tasks with state-
of-the-art performance. However, the data in these tasks is typically represented in Euclidean space. As technology develops, 
more and more applications are generating data from non-Euclidean domains and representing them as graphs with complex 
relationships and interdependencies between objects. This poses a significant challenge to deep learning algorithms. This is 
because, due to the uniqueness of graphs, applying deep learning to the ubiquitous graph data is not an easy task. To solve 
the problem in non-Euclidean domains, Graph Neural Networks (GNNs) have emerged. A Graph Neural Network (GNN) 
is a neural model that captures dependencies between graphs by passing messages between graph nodes. This paper 
introduces commonly used graph neural networks, their learning methods, and common datasets for graph neural networks. 
It also provides an outlook on the future of Graph Neural Networks. 
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1 Introduction 

With the rapid development of neural networks in recent 
years, deep learning has become the "jewel" of artificial 
intelligence and machine learning[1]. Many machine 
learning tasks that once relied on manual methods to 
extract feature information (e.g., image recognition, 
machine translation) have been replaced by various more 
advanced deep learning methods. Of course, the success of 
deep learning in areas such as image classification, video 
processing, speech recognition, and natural language 
understanding is no accident, thanks not only to big data 
and high-performance computing power but also to the 
effectiveness of deep learning [2] itself in extracting 
potential representations from Euclidean data. For graphs 
can be regular or irregular. A graph may have both 
unordered nodes of different sizes, nodes from the same 
graph may have different numbers of neighbours, and each 
node in the graph may have different neighbourhoods. This 
leads to the fact that some operations of deep learning 
algorithms (such as convolution operations) work well in 
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the Euclidean domain, but are difficult to apply to the graph 
domain. 
Graphs are ubiquitous and widely used in the real world, 
and they can represent objects and their relationships in 
various fields. Examples include large-scale social 
networks, transportation networks, chemical molecular 
analysis, recommendation systems[3], ecosystems, and so 
on. More and more applications rely on representing data 
generated in non-Euclidean[4]domains as graphs with 
complex relationships and interdependencies between 
objects. The complexity of graph structures poses a major 
challenge to existing deep-learning algorithms. In recent 
years, people have a strong interest in deep learning 
methods for extended graph data, and the following graph 
neural network (GNN) has emerged, driven by deep 
learning algorithms such as convolutional neural network 
(CNN) and recurrent neural network (RNN). The 
emergence of graph neural networks makes it possible to 
apply deep learning algorithms to non-Euclidean domains 
to solve graph problems. 
Graph Neural Networks (GNN) is a deep learning 
algorithm based on graph structure that learns the 
representation of nodes and edges in a graph, implementing 
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tasks such as classification, clustering, and prediction of 
the graph as a whole. Unlike traditional machine learning 
algorithms that require the transformation of graphs into 
vectors or matrices, GNNs improve the representation of 
graph data by performing calculations directly on the 
graph, using the relationships between nodes. For example, 
in social network analysis, GNNs can help us discover 
community structure and predict user interests and 
behavior, among other tasks. In chemical molecular 
analysis, GNNs can help us with tasks such as classifying, 
clustering, and predicting molecules. In recommender 
systems, GNNs can use the relationships between users to 
improve the effectiveness of recommendations. 

2 Background 

Early research on graph neural networks (GNNs) belongs 
to the category of recurrent neural networks (RecGNNs) 
and has a high overhead. Sperduti and Starita [5] 
introduced neural networks to direct acyclic graphs and 
promoted the research of GNNs. Gori, Monfardini [6] first 
introduced the concept of graph neural networks. [7, 
8]further elaborate the concept of graph neural networks.
In recent years, with the wide application of non-Euclidean
data, more and more people focus on the study of graph
neural networks. Wu, Pan [9] classifies graph neural
networks into four categories. Zhang, Cui [10] A
comprehensive review of deep learning methods on
different types of graphs. Thomas, Moallemy-Oureh [11]
Classifies graph neural networks according to their
different abilities to process graph types and attributes.
Waikhom and Patgiri [12] The learning mode of graph
neural network is summarized. Zhou, Cui [13] A generic
pipeline design for graph neural network models is
proposed. There are also many research works on graph
neural network learning methods. Cao, Li [14] extracted
feature information in hyperspectral classification to avoid
the problem of over-smoothing of message delivery caused
by [15]. As the research work progressed, contrast-based
learning methods were also successful. Okuda, Satoh [16]
proposed unsupervised graph representation learning to
discover common objects and a set of specific objects in an
image for localisation. The node classification and edge
detection of [17] combines two learning methods, random
walk, and language modelling, and the learned
representations can be used for downstream tasks.

This paper provides a comprehensive review of different 
models of graph neural networks and how graph neural 
networks learn. A more complete overview of graph neural 
networks is provided. In summary, the main contributions 
of this paper include: (1) a comprehensive and detailed 
review of models of graph neural networks; (2) a 
discussion of graph-based training approaches; and (3) 
challenges for future research on graph neural networks. 

The rest of the paper includes: Section 3 introduces the 
concept and notation of graphs. Section 4 introduces the 
respective learning methods of graph convolutional 
networks (GCN), graph attention networks (GAT), and 

graph autoencoders (GAE). In addition, the difference 
between graph attention networks (GAT) and graph 
convolutional networks (GCN) is described. At the same 
time, we also make a simple distinction between GAT and 
GAN. Section 5 describes the datasets commonly used in 
graph neural networks. Section 6 summarises the paper and 
discusses the challenges faced by graph neural networks. 

3 Graph Neural Network 

3.1 Concept and notation representation of 
graphs 

A graph neural network[18, 19] is a deep neural network 
suitable for the analysis of graph structures. The notation 
involved in this paper is interpreted as shown in Table 1. 
The graph is expressed as G=(V, E). where 𝑣𝑣 =
{𝑣𝑣1, 𝑣𝑣2,𝑣𝑣3 , . . , 𝑣𝑣𝑛𝑛} represents the set of N=|V| nodes. E ⊆ V 
× V represents the set of edges between nodes [20]. We use 
A ∈ RN×N to represent the adjacency matrix [21]. an 
element of the ith row of A can be written as A(i, :) and an 
element of the jth column can be written as A(:, j). A(i, j) 
represents an element of the ith row and jth column of A. 

3.2 Structure of Graph Neural Network 

The graph structure is such that each node is defined by its 
own features and by the features of the nodes connected to 
it. The purpose of GNN[22] is to learn a state embedding 
vector s

vh R∈  for each node[23], which contains

information about each node's neighbours. vh represents
the state vector of the node . This vector can be used to 
generate output vo .

(i) Assume that f (.) is a function with parameters called
the local transition function, which is shared among
all nodes and updates the node state based on input
from neighbouring nodes.

(ii) Assume that g (.) is the local output function, which is 
used to describe how the output is generated.

[ ] [ ] [ ]( , , , )v v co v ne v ne vh f x x h x=  (1) 

( , )v v vo g h x=  (2) 

where,  vx  represent the feature vector of node v,  [ ]co vx
represent the feature vector of the edge associated with 
node v, [ ]ne vh represent the state vector of the neighbouring 

nodes of node v .  [ ]ne vx  represent the feature vector of the 
neighbouring nodes of node v. 
If all the state vectors, output vectors, feature vectors and 
vectors obtained from node features are superimposed and 
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represent by H , O , X ,  NX  respectively, then a more 
compact representation can be obtained as follows: 

Table 1 GNN common notation 

Type Explanation 

G = (V, E) A graph 
N, M The number of nodes 

and edges  
𝑉𝑉 = {𝑣𝑣1 , … ,𝑣𝑣𝑁𝑁} The set of nodes  

FV , FE The attributes/features 
of nodes and edges  

A The adjacency matrix  

( ), ( , )
j

i i i j=∑D A
The diagonal degree 

matrix 

L = D − A The Laplacian matrix  

Λ T =Q Q L The 
eigendecomposition of 

L 

1P D A−=
The transition matrix 

( ), ( )k i iN N  The k-step and 1-step 
neighbors of vi

l⋅

H The hidden 
representation in the 

l th  layer 

lf The dimensionality of 
l⋅

H
ρ(·)  Some non-linear 

activation function  

1 2X X The element-wise 
multiplication 

Θ Learnable parameters 
s The sample size 

( , )H F H X=  (3) 

( , )NO G H X=  (4) 
Where, F and G are respectively called the global transfer 
function and the global output function and are stacked 
versions of f and g for all nodes in the graph. According to 
Banach's immobility point theorem, GNN uses the 
following conventional iterative approach to calculate the 
state covariates: 

1 ( , )t tH F H X+ = (5) 

where ,  tH  represent the tensor of the tth iteration cycle 
of H. For arbitrary initial values 0H  ,Eq. (5) can be
obtained by fast convergence to the final fixed-point 
solution of Eq. (3). 

4 Graph Neural Network Models 

4.1 Graph Convolutional Network (GCN∈

GCN is a convolutional neural network that acts directly on 
the graph and makes use of its structural information. The 
main idea of GCN[24-26] is that for each node, we consider 
all of its neighbors and the characteristic information it 
contains. Assuming that we use the average () function, this 
is done for each node to obtain an average representation 
that can be fed into the neural network. Modern GCNs 
mimic CNNs by designing convolution and readout 
functions to learn common local and global structural 
patterns of graphs. We first discuss the convolution 
operation and then move to the readout operation and some 
other improvements. Convolutional neural networks[27] 
play a central role in building many other complex GNN 
models. 

Graph Convolution Method 
Graph convolutional neural networks include spatially 
based graph convolutional neural networks[28-30] and 
spectral based graph convolutional neural networks[31-
34]. 
(1) Spatially based graph convolutional neural networks
The spatial domain-based graph convolutional neural
structure consists of three main types of operators:
neighbour sampling[35], message computation and
message aggregation. The graph convolutional neural
structure based on spatial domain mainly consists of three
types of operators: neighbor sampling, message
computation and information aggregation. In GCN, an
aggregate operation is used to aggregate adjacent nodes
represented by a node to achieve message transmission
between nodes. Figure 1 shows the transfer of node
information based on spatial domain GCN.

Figure 1: GCN node information transmission based 
on spatial domain 
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The simplest aggregation process is to do a product 
operation of the node features of the graph (X) with the 
topological structure information of the graph (adjacency 
matrix A). The exact process is shown in Figure 2. 

× ＝

Figure 2: Information aggregation process for 
spatial domain-based GCNs 

To solve the problem in Figure 2 of not calculating the 
nodes' own features and aggregating them directly by 
summation, which can cause the gradients to explode or 
disappear, we can add the unit matrix I to the adjacency 
matrix A and aggregate the features of the neighbouring 
nodes by taking a weighted average. 

According to the different methods of convolutional 
stacking, space-based GCN can be further divided into two 
categories: recurrent-based and composition-based spatial 
GCN. recurrent-based approaches use the same graph 
convolution layer to update the hidden representation, and 
compositional -based approaches use a different graph 
convolution layer to update the hidden representation. 
Figure 3 illustrates this difference. 

GCN1

GCN1

GCN1 GCN1

GCN2 GCNt

...

...

Recurrent-based

composition-based

Figure 3: Comparison of recurrent-based and 
composition-based 

The spatial approach is to define the convolution 
directly in the spatial domain. The problem faced is that, 
because each node's neighbours are of different sizes, it is 
impossible to define a neighbourhood of the same size, so 
achieving parameter sharing faces greater difficulties, but 
the idea is still that the convolution is still a weighted 
average of a node over its neighbouring nodes, so many 
subsequent approaches aim to solve the problem of 
parameter sharing. 

(2)Spectral-based graph convolutional neural network
Convolution based on spectral methods is a special case

of convolution based on spatial methods. Spectral domain-

based graph convolution via neural networks investigates 
the properties of graphs with the help of the eigenvalues 
and eigenvectors of the Laplacian matrix of the graph. 
Filters are introduced to define convolution from a signal 
processing perspective. Firstly, the signal in the spectral 
domain is multiplied using the theorem of convolution. 
Secondly, the Fourier transform is used to transform the 
signal to the original space to achieve convolution. This 
approach avoids the difficulty of defining convolution 
caused by the fact that the graph data does not satisfy 
translation invariance. Because the structure of the graph 
does not satisfy translation invariance, it is not possible to 
define convolution directly in the spatial domain, so the 
signal is transformed into the frequency domain, where the 
convolution operation is realised, before being transformed 
back into the spatial domain, which is the spectral method. 
Graph convolutional neural networks based on spectral 
methods assume that the graph is undirected. The 
normalised graph Laplacian matrix is a mathematical 
representation of an undirected graph, defined as: 

1 1
2 2

− −
= −nL I D AD

(6) 
where D represents the diagonal matrix of node degrees, A 
represents the adjacency matrix of the graph. Using the 
symmetric positive semidefinite property of the graph 
Laplacian matrix, the normalised Laplacian matrix can be 
decomposed as: 

L T= UΛU
(7) 

Where, ×[ , , , ] n n
−= ∈0 1 n 1U u u u R  is Feature vector 

matrix, Λ is the diagonal matrix of eigenvalues (spectrum), 

ii iλ=Λ  . The feature vectors of the regularised Laplacian 
matrix form a set of orthogonal bases. In graph signal 
processing, the signal of a graph Nx R∈   is a feature 
vector consisting of the individual nodes of the graph, ix
representing the ith node. The Fourier transform and Fourier 
inverse transform of a graph X are defined as: 

( ) TF x U x= (8) 

( )1 xˆ ˆUF x− =
(9) 

Where, x   is the result of the Fourier transform. To better 
understand the Fourier transform of a graph, we can see 
from its definition that it does project the input graph signal 
into an orthogonal space whose base is made up of the 
eigenvectors of the regularised graph Laplacian. The 
elements of the transformed signal are the coordinates of 
the graph signal in the new space, so that the original input 
signal can be expressed as: 

ˆx x ui i
i

=∑ (10) 
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This is the result of the Fourier inverse transform. Next we 
can define the graph convolution operation on the input 
signal X. 

( ) ( )( )1 x g

U(U x U g)
G

T T

x g F −∗ =

=





F F
(11) 

Where, Ng R∈   is the filter we define; ∈  Indicates the 
Hadamard product. Suppose we define such a filter[36]: 

( )Tdiagθ =g U g (12) 

Thus, the graph convolution operation[37] can be 
represented in a simplified way as: 

T
Gx gθ θ∗ = Ug U x  (13) 

Spectral-based graph convolution networks all follow 
this pattern, with the key difference between them being 
the choice of filter. The following models of spectral-based 
graph convolution networks exist: Spectral CNN, 
Chebyshev[31] Spectral CNN (ChebNet), Adaptive Graph 
Convolution Network (AGCN). 

Comparison Between Spectral and Spatial 
Models 
As the earliest graph convolutional networks, spectral-
based models have achieved impressive results in many 
graph-related analysis tasks. These models have some 
theoretical basis in graph signal processing. By designing 
new graph signal filters, we can theoretically design new 
graph convolutional networks. However, spectral-based 
models have some insurmountable drawbacks, which we 
will address below in terms of efficiency, generality and 
flexibility. 

In terms of efficiency, the computational cost of 
spectral-based models increases dramatically with the size 
of the graph, as they either need to perform feature vector 
calculations or process the entire graph at the same time, 
making them difficult to apply to large graphs. Space-based 
models have the potential to handle large graphs as they 
perform convolution directly in the graph domain by 
aggregating neighbouring nodes. The computation can be 
performed in a batch of nodes rather than in the whole 
graph. Sampling techniques can be introduced to improve 
efficiency when the number of neighbouring nodes 
increases. 

In terms of generality, spectral-based models assume a 
fixed graph, making it difficult for them to add new nodes 
to the graph. On the other hand, space-based models 
perform graph convolution locally at each node and can 
easily share weights between different locations and 
structures. 

In terms of flexibility, the spectral-based model is 
limited to working on undirected graphs; the Laplace 
matrix on directed graphs is not clearly defined, so the only 
way to apply the spectral-based model to directed graphs is 

to convert the directed graph to an undirected graph. Space-
based models are more flexible in dealing with multiple 
source inputs which can be combined into aggregation 
functions. As a result, spatial models have received 
increasing attention in recent years. 

4.2 Graph Attention Network(GAT∈

Graph Attention Network (GAT) [38] consists of a number 
of functionally identical blocks (Graph Attention Layer) 
[39]. Its properties include high efficiency, low storage 
type, inductive learning and full graph access. The graph 
attention layer has a feature value of  

1 2{ , , , }, F
N ih h h h= ∈h 

   
R  for the node at input. 

where N represents the number of nodes and F represents 
the dimensionality of the node features. After a Graph 
Attention Layer, a new feature vector is output, which can 
be represented as 1 2{ , , , }, F

N ih h h h ′= …′ ′ ′ ′ ′ ∈h
    

R  , 
assuming that the dimension of the node feature of this 
feature vector is F ′  . As shown in Figure 4. 

aij

Softmaxj

Figure 4: Attention layer in GAT 

The purpose of using Self-attention is to improve the
expressiveness of ′h


 . In the Graph Attention Layer, a 

weight matrix  ×F F′∈W R  is first applied to each node 
using a weight matrix, and then self-attention is used for 
each node to calculate an attention coefficient, the shared 
self-attention mechanism used here, denoted a: 

( , )ij je a h= iWh W


 (14)

ije represents the importance of node j for node i. In theory 
we can calculate the weight of any node in the graph to the 
central node. In GAT, to simplify the calculation, the nodes 
are restricted to the one-hop neighbours of the central node, 
and in addition the nodes take themselves into account as 
neighbouring nodes. In the existing studies a there are 
many ways to choose. For example, choosing a single-layer 
feedforward network with parameter 2Fa ′∈

 R   and then 
using LeakyReLU to do a non-linearisation gives. 
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LeakerReLU( )T
ij i je h =  a W Wh


 (15) 

Finally, the neighbouring nodes of the central node are 
normalized using softmax: 

exp( )
softmax ( )

exp( )
ij

ij ij
ikk i

e
j e

e
α

∈

= =
∑ N

(16) 

The output feature ′h


 is obtained by weighting the input 
features. 

i

i ij j
j

h h′ σ α
∈

 
=   

 
∑

 

N
 (17) 

In order to improve the generalisation of the attention 
mechanism, GAT chose to use a multi-headed attention 
layer, i.e. a single-headed attention[40] layer from a set of 
K mutually independent graph attention layers, and then 
stitch their results together. At this point, i

′h is: 

( )( )
1 ( )K k k

i k j i ij jv v′ σ α== ∑ ∈h W h N  (18) 

where ‖  represents the splicing operation, ( )k
ijα represents 

the weight factor calculated from the kth group of attention 
mechanisms, and  kW  is the weight factor of the kth 
module. In order to reduce the dimensionality of the feature 
vector, we can also use the averaging operation instead of 
the splicing operation, as shown in the following equation. 

1

1 K
k k

i ij j
k j j

h h
K

′ σ α
= ∈

 
=   

 
∑∑ W

 

N
 (19) 

4.3 Graph Autoencoder(GAE) 

Starting with the graph-based self-encoder proposed in 
Kipf and Welling [41], graph self-encoders have come in 
handy in many fields due to their simple encoder-
decoder[42, 43] structure and efficient encode capability. 
Figure 5 briefly describes the flow of a graph self-encoder 
(GAE). 

graph Reconstructed 
graph

Figure 5: GAE workflow 

Encoder 
GAE[44, 45] uses the GCN as an encoder[46] to obtain 
latent representations (or embedding) of the nodes, a 

process that can be expressed in a short line of equation 
[47]: 

( , )=Z GCN X A (20) 

Using the GCN as a function, X and A are input to the GCN 
as a function and the output ×N f∈Z R , Z represents the
latent representations (embedding) of all nodes. The GCN 
is defined as follows: 

0 1GCN( , ) ReLU( )=X A A AXW W   (21)

where 
1 1
2 2

− −
=A D AD , 0W and 1W represent the 

parameters to be learned. Here the GCN is equivalent to a 
function with the node features [48, 49] and adjacency 
matrix as input and the node embedding[50] as output, with 
the aim of obtaining the embedding only. 

Decoder 
GAE uses the inner-product as decoder to reconstruct the 
original graph: 

T( )ˆ σ=A ZZ (22) 

Â  represents the reconstructed adjacency matrix. A good 
Z should make the reconstructed adjacency matrix[51] as 
similar as possible to the original adjacency matrix, 
because the adjacency matrix determines the structure of 
the graph. Therefore, GAE uses cross-entropy as the loss 
function[52] in the training process. 

1 log (1 ) log(1 )ˆ ˆy y y y
N

= − ∑ + − −L (23) 

where y represents the value of an element in the adjacency 
matrix A (0 or 1) and ŷ  represents the value of the 
corresponding element in the reconstructed adjacency 
matrix  Â  (between 0 and 1). It can be seen from the loss 
function that the closer and more similar the reconstructed 
adjacency matrix (or reconstructed graph) is to the original 
adjacency matrix (or original graph), the better. 

4.4 Differences and connections between 
GCN and GAT 

The core difference between GAT and GCN is how to 
collect and accumulate feature representations of 
neighbouring nodes at a distance of 1. GAT replaces the 
fixed normalization operations in GCN with an attention 
mechanism. Essentially, GAT simply replaces the standard 
function of GCN with a feature aggregation function of 
neighbouring nodes using attention weights.GAT was 
created to address the shortcomings of GCN. 
Disadvantages of GCN include: 

i.The weights assigned to different neighbours on the same
order neighbourhood are identical, and it is not possible to
assign different weights to different nodes in the
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neighbourhood. This limits the model's ability to capture 
the relevance of spatial information and is the reason why 
it is inferior to GAT for many tasks. 

ii.The way in which the GCN combines features of adjacent 
nodes is dependent on the structure of the graph, which 
makes the trained model relatively poor at generalising to 
graphs of other structures. 
Benefits of the GAT include: 

i.Different weights can be assigned to different nodes in the
neighbourhood.

ii.After the attention mechanism is introduced, it is only 
relevant to neighboring nodes (nodes with shared edges), 
and there is no need to get information about the whole 
graph:(1) The graph need not be undirected (if the edge 
does not exist, we can simply omit the calculation;(2) It 
makes our technique directly applicable to Inductive 
Learning - including the task of evaluating models 
graphically that are completely invisible during training. 
The classification process of GAT is very similar to that of 
GCN in that it uses a softmax function + cross-entropy loss 
function + gradient descent to complete the process. In 
essence: GCN and GAT both aggregate the features of 
neighbouring vertices to the central vertex (an aggregate 
operation) and use the local stationary on the graph to learn 
the new vertex feature representation. The difference is that 
GCN uses the Laplacian matrix and GAT uses the attention 
coefficients. To a certain extent, GAT is stronger because 
the correlation between vertex features is better integrated 
into the model. 
In contrast to GCN, GAT is suitable for inductive tasks, 
where the important learning parameters are W and a(.), 
which only relate to vertex features and have nothing to do 
with the structure of the graph. Therefore, changing the 
structure of the graph in a test task has little effect on GAT, 
and only requires changing Ni and recalculating it. In 
contrast, GCN is a graph-wide calculation, where the node 
features of the whole graph are updated in a single 
calculation. The parameters learned are largely related to 
the graph structure, which puts GCN in a difficult position 
for the inductive task. 
In addition it is important to note that although the GAT 
and GAN[53-56] appears to be only one letter difference, 
but the actual meaning to indeed. GAT is a kind of graph 
neural network, but GAN is not. The following is a brief 
introduction to GAN to give us a clearer idea of the 
difference between GAT and GAN. 
GAN [53-56]is composed of two neural networks. The first 
one is called the Discriminator, D(Y). It takes input Y(such 
as a graph) and outputs a value that indicates whether Y 
looks "real." D(Y) can be thought of as some kind of energy 
function that is close to 0 when Y is a real sample, and 
positive when Y is noisy or strange [57-59]. The other 
network is called the Generator (G (Z)). Here Z is usually 
a vector randomly sampled from a simple distribution (e.g., 
Gaussian distribution[60]), and the generator G(Z) is used 
to generate pictures, which are then used to train the 
discriminator D(Y)(to give lower values to real pictures 
and higher values to other pictures). In the process of 
training D, give it a real picture, make it adjust the 

parameter output lower value; Give it a picture of G and 
ask it to adjust the parameters to output a larger value 
D(G(Z)). On the other hand, as G is trained, it adjusts its 
internal parameters to make the images it produces more 
and more realistic. That is, it has been optimizing the 
images it produces to fool D into thinking that the images 
it produces are real. 

This means that for these generated images, G wants to 
minimise the output of D, while D wants to maximise the 
output of D. The two networks have opposite aims and are 
in an adversarial posture. This is called adversarial training, 
or GAN. 
In the following we will explain the training process of G
AN in relation to the formula. First, a generator neural net
work is built, with all parameters represented by θ. The pu
rpose is to generate images x, and these samples x all obey
 a distribution ( ; )GP x θ  . Then, n images are drawn from
 an existing database of images, corresponding to n points 
in a high-dimensional space 1 2{ , , , }nx x x…  . The action
of "drawing" is equivalent to sampling in distribution 

( )dataP x  , and the probability of being able to draw 

1 2{ , , , }nx x x… , i.e. 1 2( ), ( ), , ( )data data data nP x P x P x…  
, is large. The goal of the generator training is to get 

( )GP x  and  ( )dataP x  as close as possible. We therefore 

want  1 2( ; ), ( ; ), , ( ; )G G G nP x P x P xθ θ θ…  each of these
 probabilities to be large, in other words, we want

1

( ; )
n

G k
k

P x θ
=
∏   to be as large as possible. Finally, we train

 the network on the parameters found. 

1

arg max ( ; )
n

G k
k

P x
θ

θ θ∗

=

= ∏  (24) 

where 
1

( ; )
n

G k
k

P x θ
=
∏  is the Likelihood of the sample. due 

to 

1

arg max ( ; ) arg min[ ( )]
n

G k data G
k

P x KL P P
θθ

θ
=

=∏ ∣∣

(25) 
where KL refers to KL Divergence, which can indicate the 
closeness of two distributions. The equation above says 
that maximising Likelihood and minimising KL 
Divergence mean the same thing. So this step becomes: 
train the network to find the parameters. 

arg min[ ( )]data GKL P P
θ

θ ∗ = ∣∣  (26) 

5 Datasets 

In recent years, commonly used datasets for graph neural 
networks include Cora, Citeseer, PubMed. Table 2 
provides a comparison of these three datasets 
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Table 2 Comparison of datasets 

Category Cora Citeseer PubMed 

Nodes 2708 3327 19717 

Edges 5429 4732 44338 

Features 1433 3703 500 

Classes 7 6 3 

Cora dataset 
The Cora [61]dataset consists of machine learning papers, 
It divides the thesis into seven categories: Case Based, 
Genetic Algorithms, Neural Networks, Probabilistic 
Methods, Reinforcement Learning, Rule Learning and 
Theory. Papers are selected in such a way that each paper 
is cited or cited by at least one other paper in the final 
corpus. There are 2708 papers in the corpus. After stem 
extraction and removal of stop words, we are left with only 
1433 words of unique size. Delete all words with document 
frequency less than 10. 

The dataset contains two files, cora.conten and cora.cite. 
The content of cora.conten is described in the following 
format: <paper_id> <word_attributes>+ <class_label>. 
The first entry in each line (paper_id) is a unique numbered 
ID for each paper, the subsequent (word_attributes) 
contains 1433 binary codes indicating whether each word 
in the vocabulary is present (represented by a 1) or absent 
(represented by a 0) in the paper, and the last entry 
(class_label) indicates the class label of the paper. And 
cora.cite contains the citation relations of the papers in the 
corpus in the format <ID of cited paper> <ID of citing 
paper>. Each row of data contains the coded IDs of two 
papers, the first entry (ID of cited paper) indicates the 
number of the cited paper and the second entry (ID of citing 
paper) indicates the number of the citing paper. 
(2)Citeseer dataset
The Citeseer dataset is a selection of papers from the
CiteSeer library of digital papers, classified into six
categories: Agents, AI, DB, IR, ML, HCI. Papers were
selected in such a way that each paper in the final corpus
cited or was cited by at least one other paper. There are
3327 papers in the entire corpus. After stem extraction and
removal of stop words, only 3703 words remained. All
words with a document frequency of less than 10 were
removed.

The dataset contains two files, citeseer.conten and 
citeseer.cites. The contents of citeseer.conten are in the 
format <paper_id> <word_attributes> + <class_label>. 
The first entry in each line (paper_id) is a unique numbered 
ID for each paper, the subsequent (word_attributes) 
contains 3703 binary codes indicating whether each word 

in the vocabulary is present (represented by a 1) or absent 
(represented by a 0) in the paper, and the last entry 
(class_label) indicates the class label of the paper. And 
citeseer.cites contains the citation relationships of the 
papers in the corpus in the format <ID of cited paper> <ID 
of citing paper>. Each row of data contains the coded IDs 
of two papers, with the first entry (ID of cited paper) 
indicating the number of the cited paper and the second 
entry (ID of citing paper) indicating the number of the 
citing paper. 
(3)PubMed dataset
The PubMed dataset consists of 19717 scientific 
publications on diabetes from the Pubmed database, 
divided into three categories: Diabetes Mellitus, 
Experimental, Diabetes Mellitus Type 1, and Diabetes 
Mellitus Type 2. The citation network consists of 44,338 
links. Each publication in the dataset is described by a 
TF/IDF weighted word vector in a dictionary of 500 unique 
words.TF-IDF (term frequency-inverse document 
frequency) is a common weighting technique used in 
information retrieval and data mining.TF is the word 
frequency (TF-IDF is a statistical method for assessing the 
importance of a word to a collection of documents or to one 
of the documents in a corpus. The importance of a word 
increases proportionally with the number of times it 
appears in a document, but decreases inversely with the 
frequency with which it appears in the corpus. 

The dataset consists of three files: ∈ Pubmed-
Diabetes.NODE.paper.tab. Its content format is described 
as <paper_id> +<label=****> +< TF-IDF>. The first entry 
of each line of data (paper_id) is the unique numbering ID 
of each paper, the second entry is "label=***","***" 
indicates the category of the paper, followed by 500 
floating point TF_IDF values, in the form of "word=***"," 
word" indicates the term, "***" indicates the TF_IDF value 
of the term. (2) t Pubmed-Diabetes.GRAPH.pubmed.tab. 
This file is useless and you do not need to pay attention to 
it. (3) Pubmed-Diabetes.DIRECTED.cites.tab. 

6 Conclusion 

Firstly, this paper introduces four commonly used graph 
neural networks and their respective learning methods. 
Secondly, this paper also introduces the datasets that have 
been commonly used for graph neural networks in recent 
years. 

Graph neural networks are very promising and have a 
wide range of applications in areas such as social network 
analysis, recommender systems, biomedicine and 
visualisation. At present, as research continues to progress, 
graph neural network technology is also evolving and new 
models and algorithms are emerging. Therefore, we can 
foresee that graph neural networks will be more widely and 
deeply used in future research and applications. However, 
current graph neural networks are currently facing many 
challenges. For example, (1) the challenge of processing 
scaled graph data. As the scale of graph data continues to 
increase, how to efficiently process graph data storage, 

EAI Endorsed Transactions on 
e-Learning 

Volume 8 | Issue 3 | 2022



A survey on graph neural networks 

9 

sampling, acquisition and transmission has become an 
important challenge for graph neural networks. (2) The 
challenge of model interpretability. As with other deep 
learning models, the black-box nature of graph neural 
networks makes model interpretability an issue that cannot 
be ignored. How to better explain the decision process and 
results of the model to help users better understand the 
model and thus better use it is an important challenge for 
graph neural networks. (3) The challenge of data sparsity. 
Unlike other deep learning models, the data that graph 
neural networks need to handle is usually sparse, which 
poses a great challenge to the training and inference of the 
models. How to better handle sparse data and improve the 
performance and efficiency of the model is another 
important challenge facing graph neural networks. In the 
future, research on graph neural networks will have to be 
considered in conjunction with these issues. 
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