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Abstract 

As deep learning continues to evolve, more and more applications are generating data from non-Euclidean domains and 
representing them as graphs with complex relationships and interdependencies between objects. This poses a significant 
challenge to deep learning algorithms. Because, due to the uniqueness of graphs, applying deep learning to ubiquitous graph 
data is not an easy task. To solve the problem in non-Euclidean domains, graph Neural Networks (GNNs) have emerged. A 
graph neural network (GNN) is a neural model that captures dependencies between graphs by passing messages between 
graph nodes. With the continuous development of medical image technology, medical image diagnosis plays a crucial role 
in clinical practice. However, in practice, medical images are often affected by noise, artifacts, and other interfering factors, 
which may lead to inaccurate and unstable diagnostic results. Therefore, image-denoising techniques become especially 
critical in medical image processing. Therefore, researchers have proposed innovative methods based on graph neural 
networks for effective noise removal, preserving the key features of the image and improving the quality and usability of 
medical images. This paper reviews the research progress of graph neural networks in the field of medical image denoising. 
It also summarises the problems and challenges of current research and looks at the future direction of medical image-
denoising research. 
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1. Introduction

With the rapid development of neural networks in recent 
years, deep learning has become a "jewel" in the field of 
artificial intelligence and machine learning [1]. Many 
machine learning tasks [2, 3] that used to rely on manual 
methods to extract feature information (e.g., image 
recognition, machine translation) have been replaced by a 
variety of more advanced deep learning methods. Of 
course, the success of deep learning in image classification 
[4], video processing [5], speech recognition [6], natural 
language understanding [7] is no accident. This is due not 
only to big data [8] and high-performance computing 
power [9] but also to the effectiveness of deep learning 
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itself in extracting potential representations from Euclidean 
data [10].  
For graphs can be regular or irregular. A graph may 
simultaneously have unordered nodes of different sizes, 
nodes from the same graph may have different numbers of 
neighbors as well as each node neighborhood in the graph 
may be different. This leads to the fact that some operations 
of deep learning algorithms (e.g., convolution operations 
[11]) can achieve good results in the Euclidean domain, but 
are difficult to apply to the graph domain. 
Graphs are ubiquitous and widely used in the real world to 
represent objects and their relationships in various 
domains. Examples include large-scale social 
networks[12], traffic networks [13], chemical molecule 
analysis[14], recommender systems [15], ecosystems, and 
so on. More and more applications rely on representing 
data generated in non-Euclidean [16] domains as graphs 
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with complex relationships and interdependencies between 
objects. The complexity of graph structures poses 
significant challenges to existing deep-learning algorithms. 
In recent years, there has been a strong interest in deep 
learning methods for extending graph data, and graph 
neural networks (GNNs) [17] have emerged, driven by 
deep learning algorithms such as convolutional neural 
networks (CNNs) [18] and recurrent neural networks 
(RNNs) [19]. The emergence of graph neural networks has 
made it possible to apply deep learning algorithms to solve 
graph problems in non-Euclidean domains. 
Graph Neural Networks (GNN) is a deep learning 
algorithm based on graph structure that learns the 
representation of nodes and edges in a graph and achieves 
tasks such as classification, clustering, and prediction of 
the graph as a whole. Unlike traditional machine learning 
algorithms that need to transform the graph into vectors or 
matrices, graph neural networks improve the representation 
of graph data by performing computations directly on the 
graph, using the relationships between nodes. For example, 
in social network analysis, graph neural networks can help 
us with tasks such as discovering community structure and 
predicting user interests and behaviors. In chemical 
molecule analysis, graph neural networks can help us with 
tasks such as classification, clustering, and prediction of 
molecules. In recommender systems, graph neural 
networks can leverage relationships between users to 
improve recommendations. 
Early research on Graph Neural Networks (GNN) falls 
under the category of Recurrent Neural Networks 
(RecGNN) with high overhead. Ref. [20] introduced neural 
networks to directed acyclic graphs and promoted the study 
of GNNs. Gori, et al. [21] were the first to introduce the 
concept of graph neural networks. [22, 23] further 
elaborated the concept of graph neural networks. 
In the last few years as the use of non-Euclidean data[24] 
has become more widespread, more attention has been 
focused on the study of graph neural networks. Wu, et al. 
[25] classify graph neural networks into four categories. 
Zhang, et al. [26] provide a comprehensive review of deep 
learning methods on different types of graphs. Thomas, et 
al. [17] categorizes graph neural networks based on their 
ability to process graph types and attributes. Waikhom and 
Patgiri [27] outline the learning approaches of graph neural 
networks. Zhou, et al. [28] propose a generic pipeline 
design for graph neural network models. There are also 
many research works on graph neural network learning 
methods. Cao, et al. [29] extract feature information in 
hyperspectral classification to avoid the problem of over-
smoothing of message passing caused by Yang, et al. [30]. 
As the research work progressed, methods based on 
contrast learning were also successful. Okuda, et al. [31] 
proposed unsupervised graph representation learning to 
discover common objects and a set of specific objects in an 
image for localization. The node classification and edge 
detection combine two learning methods, random walk, 
and language modeling, and the learned representation can 
be used for downstream tasks. 

The rest of the paper is as follows: Section 2 introduces the 
basic structure of a graph neural network. Section 3 details 
the graph convolutional neural network, an important part 
of a graph neural network. Section 4 introduces the graph 
attention network. Section 5 focuses on the application of 
graph neural networks in the process of medical image 
denoising. Section 6 introduces the training and learning 
methods of graph neural networks. Section 7 explains the 
importance of denoising medical images. In Section 8, the 
paper is summarized and the applications and prospects of 
graph neural networks in medical image denoising are 
prospected. 

2. Basic Structure of GNNs 

Graph Neural Network (GNN) is a deep learning model 
specially designed for processing graph data. Different 
from traditional neural networks, GNN [32] can capture 
complex relationships in graph data and thus has a wide 
range of applications in the fields of social network 
analysis, recommender systems, bioinformatics, etc. The 
basic structure of GNN includes components such as graph 
representation, graph convolutional layer, aggregation 
function, activation function, graph pooling layer, and 
graph attention mechanism [33]. Among them, the graph 
convolution layer is the core component, which learns the 
representation of a node through feature propagation from 
neighboring nodes. The aggregation function determines 
how nodes interact with their neighbors and the activation 
function[34] introduces nonlinearity. The graph pooling 
layer is used to reduce the size of the graph, while the graph 
attention mechanism gives different weights to different 
neighbor nodes to improve the network representation. 
Multiple graph convolutional layers [35] can be cascaded 
and stacked to form deep networks that are trained by 
backpropagation algorithms. GNNs can efficiently learn 
and express complex relationships in a variety of graph-
structured data through the combination of these structures 
and components. Figure 1 shows the process of updating 
the information of the central node by aggregating the 
information of the neighboring nodes based on the 
message-passing paradigm. 
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Figure 1: Node information update 

The core of a graph neural network is node embedding. 
Each node in the graph is associated with a feature vector 
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that encodes information about that node. These feature 
vectors are the initial representations of the nodes in the 
graph. Node embeddings capture attributes of nodes, such 
as text, images, or numeric data, which form the starting 
point for computation in a graph neural network. In each 
layer of a graph neural network, a node collects information 
about neighboring nodes by aggregating the embeddings of 
neighboring nodes [36]. In different graph neural network 
architectures, the aggregation may be done in different 
ways, such as weighted summation, graph convolution, or 
attention mechanisms. The aggregated information will be 
used to update the embedding of the nodes. Aggregation 
functions define how to merge information from 
neighboring nodes. Common aggregation functions 
include mean aggregation (averaging), sum aggregation 
(summing), and more complex operations such as 
attention-based aggregation, where nodes weigh the 
importance of neighboring information based on a learned 
attention score. The choice of aggregation function can 
greatly affect the performance and expressiveness of the 
GNN. 
Common graph neural network models include Graph 
Convolutional Neural Network (GCN) [37, 38], Graph 
Attention Network (GAT) [39, 40], GraphSAGE, Graph 
Isomorphism Network (GIN), etc. This paper focuses on 
GCN and GAT. 

3. Graph Convolutional Neural Networks 

GCN is a type of convolutional neural network that acts 
directly on the graph and uses its structural information. 
The main idea of GCN is that, for each node, we take into 
account all its neighbors as well as the feature information 
it contains. Assuming that we use the average() function, 
then performing the above operations on each node gives 
us a representation of the average value that can be fed into 
the neural network. Modern GCNs mimic CNNs by 
designing convolution and readout functions to learn 
common local and global structural patterns of graphs. 
We begin with a discussion of the convolution operation 
and then move to the readout operation and some other 
improvements. Convolutional neural networks play a 
central role in building many other complex GNN models. 
Graph convolutional neural networks include spatial-based 
graph convolutional neural networks and spectral-based 
graph convolutional neural networks. Table 1 explains 
some of the notations covered in section 3.1. 

3.1. Space-based graph convolutional 
neural network 

The spatial domain-based graph convolutional neural 
structure mainly consists of three types of operators: 
neighbor sampling, message computation, and message 
aggregation. The neighboring nodes represented by a 
particular node are aggregated using the aggregate 
operation in GCN as a way to achieve message passing 

between nodes. Figure 2 represents the passing of node 
messages in spatial domain-based GCN. 

Table 1: Notations Definition 

Notation Name Notation Expression 
Graph G 
Node features x 
The adjacency matrix of 
the graph 

E 

Unit matrix I 
Normalised graph Laplace 
matrix 

𝑳𝑳 

Diagonal matrix of node 
degrees 

𝑫𝑫 

Eigenvector matrix 𝑼𝑼 
Diagonal eigenmatrix 𝜦𝜦 
Graph signals X(feature vectors 

consisting of individual 
nodes in the graph) 

Filters 𝑔𝑔 

 

Figure 2: Spatial domain-based GCN node 
messaging  

The simplest aggregation process is to do the product 
operation between the node characteristics(x) of the graph 
and the topological structure information of the graph 
(adjacency matrix E). The specific process is shown in 
Figure 3. 

× ＝
 

Figure 3: Information aggregation process of GCN 
based on spatial domains 

To solve the problem that Figure 3 does not calculate the 
node's features and aggregation by summation directly will 
lead to gradient explosion or disappearance, we can add the 
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unit matrix I to the adjacency matrix E and aggregate the 
features of the neighboring nodes by taking a weighted 
average. 

Depending on the different methods of convolutional 
layer stacking, spatial-based GCNs can be further 
classified into two categories: recurrent-based and 
composition-based spatial GCNs. recurrent-based methods 
use the same graph convolutional layers to update the 
hidden representations, and composition-based methods 
use different graph convolutional layers to update the 
hidden representation. Figure 4 illustrates this difference. 

(a)Recurrent-based

GCN1 GCN1 GCN1
...

 

GCN1 GCN2 GCNt...

(b)Composition-based
 

Figure 4: Comparison of Recurrent-based and 
Composition-based method in spatial-based GCNs 

The spatial approach is to define the convolution 
directly in the spatial domain, the problem faced is that, 
because each node's neighbors are not the same size, it is 
not possible to define a neighborhood of the same size, so 
the implementation of parameter-sharing faces greater 
difficulties, but the idea is still, convolution is still a node 
in the neighboring nodes on the weighted average, so the 
subsequent many methods aimed at solving the problem of 
parameter sharing. 

3.2. Spectral-based graph convolutional 
neural networks 

Convolution based on spectral methods is a special case of 
convolution based on spatial methods. Spectral domain-
based graph convolution via neural network investigates 
the properties of the graph with the help of eigenvalues and 
eigenvectors of the Laplace matrix of the graph. Filters are 
introduced to define convolution from a signal-processing 
perspective. Firstly, multiplication is done on the signal in 
the spectral domain using the theorem of convolution. 
Secondly, the convolution is implemented by transforming 
the signal into the original space using the Fourier 
transform [41]. This approach avoids the problem of 
difficulty in defining convolution caused by the fact that 
the graph data does not satisfy translation invariance. 
Because the structure of the graph does not satisfy the 
translation invariance, it is not possible to define the 
convolution directly in the spatial domain, so the signal is 

transformed to the frequency domain, the convolution 
operation is implemented in the frequency domain and 
converted back to the spatial domain, which is the spectral 
method. 

Graph convolutional neural networks based on spectral 
methods assume that the graph is undirected. The 
normalized graph Laplace matrix is the mathematical 
representation of the undirected graph and is defined as: 

 ( 1/2) ( 1/2) ,nL I D ED− −= −  (1) 

where 𝑫𝑫 denotes the diagonal matrix of node degrees. 
𝑫𝑫𝑖𝑖𝑖𝑖 = ∑ (𝑬𝑬𝑖𝑖 ,𝑗𝑗)𝑗𝑗 , 𝑬𝑬  denotes the adjacency matrix of the 
graph. Using the property of symmetric positive 
semidefinite of the graph Laplace matrix, the normalized 
Laplace matrix can be decomposed as: 

 ,TL U U= Λ  (2) 

where 𝑼𝑼 = [𝒖𝒖𝟎𝟎,𝒖𝒖𝟏𝟏,⋯ ,𝒖𝒖𝒏𝒏−𝟏𝟏] ∈ 𝑹𝑹𝑛𝑛×𝑛𝑛  is the Feature 
vector matrix, 𝜦𝜦  is the diagonal matrix of 
eigenvalues (spectrum), 𝜦𝜦𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖. The feature vectors 
of the regularised Laplacian matrix form a set of orthogonal 
bases. In graph signal processing, the signal of a graph 𝑋𝑋 ∈
𝑅𝑅𝑁𝑁 is a feature vector consisting of the individual nodes of 
the graph, 𝑋𝑋𝑖𝑖  representing the 𝑖𝑖 th node. The Fourier 
transform and Fourier inverse transform of a graph G are 
defined as: 

 ( ) ,TF X U X=  (3) 

 ( 1) ˆ ˆ( ) ,F X UX− =  (4) 

where, 𝑋𝑋� is the result of the Fourier transform. To better 
understand the Fourier transform of a graph, we can see 
from its definition that it does project the input graph signal 
into an orthogonal space whose base is made up of the 
eigenvectors of the regularised graph Laplacian. The 
elements of the transformed signal are the coordinates of 
the graph signal in the new space so that the original input 
signal can be expressed as: 

 ˆ .i ii
X X u=∑  (5) 

This is the result of the Fourier inverse transform. Next, 
we can define the graph convolution operation on the input 
signal 𝑋𝑋. 
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𝑋𝑋 ∗𝐺𝐺 𝑔𝑔 = 𝐹𝐹−1�ℱ(𝑋𝑋) ⊙ℱ(𝑔𝑔)�
= 𝑈𝑈(𝑈𝑈𝑇𝑇𝑋𝑋 ⊙ 𝑈𝑈𝑇𝑇𝑔𝑔)

, (6) 

where, 𝑔𝑔 ∈ 𝑅𝑅𝑁𝑁 is the filter we define; ⊙ Indicates the 
Hadamard product. Suppose we define such a filter: 

 ( ).Tg diag U gΘ =  (7) 

Thus, the graph convolution operation can be represented 
in a simplified way as: 

 𝑋𝑋 ∗𝐺𝐺 𝑔𝑔𝜃𝜃 = 𝑼𝑼𝒈𝒈𝜃𝜃𝑼𝑼𝑇𝑇𝑋𝑋. (8) 

Spectral-based graph convolution networks all follow 
this pattern, with the key difference between them being 
the choice of filters. Existing spectral-based graph 
convolution network models are the following: Spectral 
CNN, Chebyshev Spectral CNN (ChebNet), and Adaptive 
Graph Convolution Network (AGCN). 

4. Graphical Attention Network 

Graph Attention Network(GAT)[27] consists of many 
functionally identical blocks (Graph Attention Layer). Its 
properties include high efficiency, low storage type, 
inductive learning, and full graph access. The graph 
attention layer has a feature value of ℎ�⃗ =
�ℎ�⃗ 1, ℎ�⃗ 2,⋯ , ℎ�⃗ 𝑁𝑁� , ℎ�⃗ 𝑖𝑖 ∈ ℝ𝐹𝐹  for the node at input. where 𝑁𝑁 
represents the number of nodes and 𝐹𝐹  represents the 
dimensionality of the node features. After a Graph 
Attention Layer, a new feature vector is output, which can 
be represented as ℎ′��⃗ = �ℎ′��⃗ 1, ℎ′��⃗ 2, … , ℎ′��⃗ 𝑁𝑁� , ℎ′��⃗ ∈ ℝ𝐹𝐹

′
, assuming 

that the dimension of the node feature of this feature vector 
is 𝐹𝐹′. As shown in Figure 5. 

Softmax

 
Figure 5: Attention layer in GAT  

The purpose of using Self-attention is to improve the 
expressiveness of ℎ′��⃗ . In the Graph Attention Layer, a 
weight matrix 𝑾𝑾 ∈ ℝ𝐹𝐹

′×𝐹𝐹  is first applied to each node 
using a weight matrix, and then self-attention is used for 
each node to calculate an attention coefficient, the shared 
self-attention mechanism used here, denoted as:  

 𝑒𝑒𝑖𝑖𝑗𝑗 = 𝑎𝑎�𝑾𝑾ℎ𝑖𝑖 ,𝑾𝑾ℎ�⃗ 𝑗𝑗�, (9) 

𝑒𝑒𝑖𝑖𝑗𝑗  represents the importance of node 𝑗𝑗 for node 𝑖𝑖 . In 
theory, we can calculate the weight of any node in the graph 
to the central node. In GAT, to simplify the calculation, the 
nodes are restricted to the one-hop neighbors of the central 
node, and in addition, the nodes take themselves into 
account as neighboring nodes. In the existing studies, there 
are many ways to choose. For example, choosing a single-
layer feedforward network with parameter �⃗�𝑎 ∈ ℝ2𝐹𝐹

′
 and 

then using LeakyReLU to do a non-linearisation gives. 
𝑒𝑒𝑖𝑖𝑗𝑗 = LeakyReLU��⃗�𝑎𝑇𝑇�𝑾𝑾ℎ�⃗ 𝑖𝑖 ∥ 𝑾𝑾ℎ𝑗𝑗��. (10) 
Finally, the neighboring nodes of the central node are 

normalized using softmax: 

 
exp( )

softmax ( ) .
exp( )

ij
ij ij

ikk i

e
a e

e
∈

= =
∑ N

 (11) 

The output feature ℎ′��⃗  is obtained by weighting the input 
features.  

 ℎ′��⃗ = 𝜎𝜎�∑ 𝑎𝑎𝑖𝑖𝑗𝑗ℎ�⃗ 𝑗𝑗𝑗𝑗∈𝒩𝒩𝑖𝑖 �. (12) 

To improve the generalization of the attention 
mechanism, GAT chose to use a multi-headed attention 
layer, i.e. a single-headed attention layer from a set of K 
mutually independent graph attention layers, and then 
stitch their results together. At this point, ℎ𝑖𝑖

′  is: 

 ℎ𝑖𝑖
′  =∥𝑘𝑘=1𝐾𝐾 𝜎𝜎�∑𝑣𝑣𝑗𝑗 ∈ 𝒩𝒩�(𝑣𝑣𝑖𝑖)𝑎𝑎𝑖𝑖𝑗𝑗

(𝑘𝑘)𝑾𝑾𝑘𝑘ℎ𝑗𝑗�, (13) 

where ∥ represents the splice operation, 𝑎𝑎𝑖𝑖𝑗𝑗
(𝑘𝑘) represents 

the weight factor calculated from the 𝑘𝑘th group of attention 
mechanisms, and 𝑾𝑾𝑘𝑘  is the weight factor of the 𝑘𝑘 th 
module. To reduce the dimensionality of the feature vector, 
we can also use the averaging operation instead of the 
splicing operation, as shown in the following equation. 
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 ℎ′��⃗ 𝑖𝑖 = 𝜎𝜎 �1
𝐾𝐾
∑ ∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑘𝑘𝑾𝑾𝑘𝑘ℎ�⃗ 𝑗𝑗𝑗𝑗∈𝒩𝒩𝑗𝑗
𝐾𝐾
𝑘𝑘=1 �. (14) 

5. Application of graph neural networks 
in medical image denoising 

Graph neural networks have a wide range of potential 
applications in medical image denoising. Medical images 
[42] usually have complex structures and are highly noisy, 
e.g., X-rays [43, 44], CT scans [45], MRIs [46], etc., which 
must be of high quality in diagnosis and analysis. The main 
application directions of graph neural networks in medical 
image denoising [47, 48] include image noise reduction, 
image enhancement, motion artifact removal, data 
recovery, super-resolution reconstruction, and sequence 
image denoising. These applications will be specifically 
described below. Figure 6 is the comparison of medical 
images before and after denoising. 

After denoising image Before denoising image

 

Figure 6 Comparison of images before and after 
denoising 

(i) Image Noise Reduction. Graph neural networks can 
remove noise from medical images and improve 
image quality by learning the relationships between 
pixel points or blocks of pixels in an image. This 
approach is particularly important for image quality 
improvement in low-dose imaging techniques such as 
X-ray images. 

(ii) Image Enhancement. In medical images, certain 
subtle structures may be masked by noise, and graph 
neural networks can help enhance these details, 
allowing doctors to see important features in the 
image more clearly. 

(iii) Motion Artifact Removal. Artifacts due to factors 
such as patient movement or breathing are a common 
problem in medical imaging. Graph neural networks 
can learn and remove these artifacts to improve the 
accuracy of images. 

(iv) Data Recovery. During medical image acquisition, 
data may be missing due to reasons such as equipment 
failure or sensor damage. Graph neural networks can 
be used to recover these missing data, enabling 
doctors to get more complete image information. 

(v) Super-resolution reconstruction. Graph neural 
networks can be used for super-resolution 
reconstruction of medical images, i.e., recovering 
high-resolution images from low-resolution images to 
improve the clarity and detail of the images. 

(vi) Sequence image denoising. In medical images, some 
data exists in the form of sequences, such as time-
sequenced images in magnetic resonance imaging 
(MRI). Graph neural networks can be applied to these 
sequential data for denoising in the temporal and 
spatial domains to improve the quality of the images. 

In conclusion, graph neural networks can better cope 
with the complex structure and highly noisy features of 
medical images by learning the relationship between pixel 
points or pixel blocks in medical images, providing clearer 
and more accurate images for medical imaging diagnosis. 

6. Training and Learning Methods of 
GNNs 

The training and learning of graph neural network (GNN) 
is similar to that of traditional neural networks, but since 
graph neural networks are trained on graph-structured data, 
the following special factors also need to be considered. 

Forward propagation and backpropagation. During 
forward propagation, the GNN passes information through 
the graph. In each GNN layer, nodes aggregate information 
from their neighbors based on aggregation functions (e.g., 
mean, sum, maximum). This aggregated information is 
used to update the node embeddings[49-51]. The GNN 
uses gradient-based optimization techniques such as 
backpropagation to learn the model parameters, compute 
the loss function (a measure of the error between the 
predicted value and the actual value), and update the 
model's weights by backpropagating the gradients through 
the graph neural network layers. 

Initialization and parameter learning. GNNs usually 
start with random or pre-trained node embeddings, which 
are used as initial node representations. Meanwhile, GNNs 
learn parameters through training to improve the model's 
effectiveness. Commonly used parameter optimization 
algorithms include stochastic gradient descent (SGD) 
algorithm [52] or its variants, etc. Figure 7 illustrates the 
stochastic gradient descent. 

Semi-supervised learning. GNN[53] is very effective in 
semi-supervised learning environments where only a small 
fraction of the nodes in the graph are labeled. During 
training, the GNN makes predictions using both labeled 
and unlabelled nodes. Unlabelled nodes benefit from the 
information propagated through the graph, which helps to 
improve generalization. The loss function typically 
consists of a supervised loss term for the labeled nodes and 
a regularisation term, which encourages smoothness in the 
embedding of neighboring nodes. The regularisation term 
ensures that nodes with similar network neighborhoods 
have similar embeddings. 
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Figure 7: Stochastic Gradient Descent (SGD) 

Overfitting and regularisation. Like other neural 
networks, GNNs can suffer from overfitting problems, 
especially when the graph is small or the model is too 
complex. To prevent overfitting, regularisation techniques 
such as dropout and L2 regularisation can be used. In 
addition, aggregation functions (e.g. attention-based 
mechanisms) in the GNN architecture can weigh 
neighboring nodes so that they learn to focus on important 
neighboring nodes, which can be used as a form of implicit 
regularisation. 

Graph Convolution and Aggregation Functions. The 
choice of aggregation function is crucial in GNN training. 
Different functions lead to different results in information 
propagation. Researchers often experiment with various 
aggregation functions to find the best fit for a particular 
task. Architectures such as Graph Convolutional Neural 
Networks (GCN), Graph Attention Networks (GAT), and 
GraphSAGE use specific aggregation functions that are 
effective in different scenarios. Learning the parameters of 
these functions is an important part of GNN training. 

7 Importance of Medical Image 
Denoising 

Medical image denoising plays a vital role in all aspects of 
healthcare and medical research, Table 2 describes several 
common methods of denoising medical images. The 
importance of denoising medical images includes several 
aspects. 

Improved diagnosis and treatment. Medical images such 
as X-rays, CT scans, MRI scans, and ultrasound images are 
essential tools for medical professionals to diagnose 
diseases and develop treatment plans. Noise in these 
images can distort important features, making it difficult to 
detect subtle anomalies. By reducing noise in medical 
images through denoising technology, medical 
practitioners can obtain clearer and more accurate 
anatomical structures, lesions, and other pathological 
features. This will lead to more confident diagnoses, better 
treatment planning, and ultimately improv ed patient 
outcomes. 
 

Table 2: Medical image denoising methods 

Medical image 
denoising methods 

Method Description 

Mean Filtering Replace the value of each pixel 
with the average of the 
surrounding neighborhood pixels 
for mild noise. 
 

Gaussian Filtering Smooths the image using the 
Gaussian function, effective for 
Gaussian noise (normally 
distributed noise). Consider pixel 
weights for continuity noise. 
 

Median Filtering Replacing the value of each pixel 
with the median value of the 
neighborhood pixels works well 
for pretzel noise (bursty noise). 
 

Wavelet Denoising The image is decomposed into 
different frequency subbands and 
the noise is removed by 
thresholding. 
 

Non-local Means 
Denoising 

Compare the similarity of 
different regions, weighted 
average per pixel, for high 
similarity regions. 
 

Deep Learning Using Convolutional Neural 
Networks (CNNs) and 
Generative Adversarial Networks 
(GANs), image noise distribution 
is learned and denoised on large-
scale datasets, adapting to 
different noise types. 
 

Total Variation 
Denoising 

Nonlinear denoising method for 
smoothing images, preserving 
edge information. 
 

K-SVD Denoising Based on dictionary learning, the 
image is decomposed into linear 
combinations of bases, and noise 
is removed. 

Reduce radiation exposure. In the case of X-rays and CT 
scans, denoising medical images helps to reduce the 
required radiation dose. Reducing the amount of radiation 
is essential for patient safety, especially for patients who 
require frequent imaging, such as cancer patients 
undergoing radiation therapy. Denoising algorithms can 
improve the quality of low-dose images, making them 
diagnostic while minimizing the potential risks associated 
with radiation exposure. This ensures that patients are not 
unnecessarily harmed while undergoing the necessary 
medical imaging. 

Contribute to research and training. Denoising medical 
images is critical to medical research because clean and 
high-quality images are needed to study diseases, develop 
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new treatments, and evaluate the effectiveness of medical 
interventions. Medical professionals and researchers also 
use denoised images for educational and training purposes. 
Clear images are essential for the teaching of medical 
students and for the training of medical practitioners in 
image interpretation and surgical planning. 

Telemedicine and tele-consultation. With the rise of 
telemedicine and remote consultations, especially in 
underserved or remote areas, denoising technology can 
help improve the quality of transmitted medical images. 
Telemedicine relies heavily on the accurate interpretation 
of images by remote medical specialists. Removing noise 
from images before transmission ensures that telemedicine 
providers make accurate diagnoses and treatment 
recommendations. This is especially important in 
emergency cases and in situations where specialized 
medical services are limited. 

8. Conclusions 

This paper describes graph neural networks and the 
application and impact of graph neural networks in medical 
image denoising. With the continuous deepening of 
research, graph neural network technology is also 
developing, and new models and algorithms are emerging. 
Therefore, we can foresee that the future research and 
application of graph neural networks in medical image 
denoising will be more extensive and in-depth. However, 
the current application of graph neural networks in medical 
image denoising also faces many challenges. For example, 
(1) insufficient data volume and labeling difficulties. 
Medical image[54] data is usually relatively limited, and 
labeling medical image data is a very expensive and time-
consuming task. Therefore, the lack of large-scale and 
high-quality labeled data is a challenge, especially when a 
large amount of labeled data is required in deep-learning 
models. (2) Complex noise types and distribution. There 
are various types of noise in medical images, including 
random noise, artifacts, motion artifacts, etc., and the 
distribution may be very complex. Different types of noise 
require different processing methods, and it is a challenge 
to design graph neural networks that can handle various 
types of noise. (3) Computational complexity. Graph 
neural networks usually require a large amount of 
computational resources, especially for complex graph 
structures and large-scale medical image datasets. In 
practical applications, it is necessary to consider how to 
efficiently train and deploy these models in environments 
with limited computational resources. In the future, 
research on the application of graph neural networks in 
medical image denoising should be considered in the 
context of these issues. 
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