Use MOOC to learn image denoising techniques

Ting Zhao

School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China

Abstract

This article focuses on using MOOCs to learn image denoising techniques. It begins with an introduction to the concept of MOOCs - these innovative online learning platforms that offer a wide range of courses across disciplines, providing convenient and affordable learning opportunities for a global audience. It then explains the characteristics of MOOC’s wide coverage, high flexibility, and different from traditional education models. It then introduces the advantages of MOOCs: accessibility and inclusiveness (open to anyone with an Internet connection), cost-effectiveness (a cost-effective alternative, many courses available for free), flexibility and self-paced learning (the ability to learn at your own pace), a diverse curriculum and global expertise. Then the concept of image denoising is introduced - image denoising is a basic process of digital image processing, and the common denoising methods are described: filter method and the applicable range of various filters, the advantages and disadvantages of wavelet change, the advantages of deep learning method and the principle of non-local mean denoising technology. It then describes how MOOCs can help learn image denoising: integrating course content, getting expert guidance, hands-on exercises and projects, and community and peer communication. In addition, it introduces the challenges encountered by MOOCs: high dropout rate, quality and credibility of MOOCs, lack of interaction and humanization in traditional classrooms, accessibility. The relationship between E-learning and MOOC is also introduced – E-learning and MOOC play complementary roles in modern education. MOOC provide a structured, flexible, cost-effective environment and a transformative educational experience for learning about biological image denoising.

Keywords: MOOC, Image denoising, E-learning, Filtering Methods, Wavelet Transform, Deep Learning Approaches, Non-local Means Denoising

Received on 15 November 2023, accepted on 20 November 2023, published on 21 November 2023

Copyright © 2023 T. Zhao et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.

doi: 10.4108/eetel.4396

*Corresponding author. Email: zting@home.hpu.edu.cn

1. Introduction of MOOC

Massive Open Online Courses, commonly known as MOOCs, have transformed the landscape of education in recent years [1]. These innovative online platforms offer a wide range of courses across various disciplines, providing accessible and affordable learning opportunities to a global audience. MOOCs have gained immense popularity due to their flexibility, scalability, and potential to democratize education [2]. As shown in Table 1, MOOCs compare to traditional education.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>MOOC</th>
<th>Traditional education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage area</td>
<td>Accommodate tens of thousands of students simultaneously</td>
<td>Accommodate a maximum of about 100 students</td>
</tr>
<tr>
<td>Category of subjects</td>
<td>From computer science and mathematics to humanities and social sciences</td>
<td>Few types of subjects</td>
</tr>
<tr>
<td>Learning content</td>
<td>Various multimedia resources</td>
<td>Relatively simple face-to-face teaching</td>
</tr>
</tbody>
</table>
MOOCs are characterized by their massive reach. Unlike traditional classroom settings, MOOCs can accommodate tens of thousands of students simultaneously [3]. This scalability is made possible by the internet and modern technology, allowing learners from all corners of the globe to enrol in courses offered by prestigious institutions and renowned instructors [4]. This democratization of education helps bridge educational gaps and disparities, making high-quality learning experiences available to a broader and more diverse population.

One of the key features of MOOCs is their flexibility. Learners can access course materials at their own pace, allowing for a personalized learning experience [5]. Most MOOCs are self-paced, enabling students to balance their studies with work, family, and other commitments [6]. Furthermore, these courses often include a variety of multimedia resources, such as video lectures, quizzes, and discussion forums, enhancing the overall learning experience.

MOOCs have disrupted traditional education models by offering a wide array of subjects, from computer science [7] and mathematics to humanities and social sciences. Many top universities and organizations partner with MOOC platforms to offer courses that are not only diverse but also affordable [8]. Learners can often audit courses for free or pay a fee for certification, which can be a fraction of the cost of a traditional degree program. Overall, MOOCs have revolutionized education by making high-quality learning experiences accessible, flexible, and affordable to a global audience, ushering in a new era of lifelong learning. Paper structure is as in Figure 1:

2. Advantages of MOOC

The advantages of MOOCs are shown in this Figure 2, these are the advantages of accessibility and inclusion, cost-effectiveness, flexibility and self-paced learning, as well as a diverse curriculum and global expertise.

![Figure 2. Advantages of MOOC](image)

Accessibility and Inclusivity: One of the most significant advantages of MOOCs is their unparalleled accessibility. These courses are open to anyone with an internet connection, making education available to individuals who may not have had access to traditional educational institutions. This inclusivity is particularly beneficial for learners in remote or underserved areas, those with disabilities, or people who have busy schedules and cannot attend physical classes. MOOCs remove many barriers to education, allowing people from diverse backgrounds to acquire new skills and knowledge [9].

Cost-Efficiency: MOOCs often offer a cost-effective alternative to traditional higher education. Many of these courses can be audited for free, enabling learners to access high-quality educational content without the burden of tuition fees or expensive textbooks. For those seeking certification, the cost is typically lower than that of a traditional degree program. This affordability is especially advantageous for individuals who want to upskill, reskill, or explore new subjects without committing to a full-time degree program.

Flexibility and Self-Paced Learning: MOOCs provide learners with the flexibility to study at their own pace. Unlike traditional classroom settings, students are not tied to rigid schedules [10]. They can access course materials, lectures, and assignments whenever it’s most convenient for them. This flexibility is particularly valuable for working professionals, parents, and those with busy lifestyles, as it allows them to balance their educational pursuits with other commitments.

Diverse Course Offerings and Global Expertise: MOOC platforms offer a wide range of courses in various subjects, often taught by experts from top universities and institutions worldwide [11]. This diversity of course offerings allow learners to explore their interests, discover new fields, or gain specialized skills. The global nature of MOOCs also means that students can benefit from a wealth of knowledge and perspectives from instructors and fellow learners around the world. This exposure to different cultures and teaching styles enhances the overall educational experience and promotes a global perspective.
In summary, MOOCs offer numerous advantages, including increased accessibility, cost-efficiency, flexibility, and access to a diverse array of courses and expertise. These benefits have made MOOCs a valuable tool for lifelong learning, career development, and personal enrichment [12], empowering individuals to take control of their education and adapt to the evolving demands of the modern world.

3. Image Denoising

Image denoising is a fundamental process in digital image processing that aims to remove or reduce unwanted noise from images while preserving the essential details and structures [13]. Noise, often manifested as random variations in pixel intensity, can degrade image quality and impact the performance of various computer vision and image analysis tasks [14]. As shown in Table 2, common noises are Gaussian noise, Poisson noise, multiplicative noise and salt and pepper noise. As illustrated in the Table 3, several techniques have been developed to address this challenge and enhance the visual quality of images.

<table>
<thead>
<tr>
<th>Noise</th>
<th>Concept</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian noise</td>
<td>The probability density function obeys a Gaussian distribution (that is,</td>
<td>1) The field of view of the image sensor is not bright enough and the brightness is not uniform enough when shooting;</td>
</tr>
<tr>
<td></td>
<td>a normal distribution)</td>
<td>2) The noise and mutual influence of the circuit components;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) The image sensor works for a long time, and the temperature is too high.</td>
</tr>
<tr>
<td>Poisson noise</td>
<td>The noise model conforms to the Poisson distribution, which is suitable for the probability distribution describing the number of random</td>
<td>Due to the nature of discrete charge, related to the uncertainty of photons, the fundamental reason is because light is made up of discrete photons (particle nature of light)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noise</th>
<th>Theory</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian filters</td>
<td>The pixel value of the whole image is weighted average, and the value of each pixel is obtained by weighted average of its own value and other pixel values in the neighbourhood.</td>
<td>Reduce high-frequency noise.</td>
</tr>
<tr>
<td>Median filters</td>
<td>Select the median value of each pixel value in a neighbourhood of the pixel to be processed to replace the pixel to be processed.</td>
<td>It is robust to pulse noise.</td>
</tr>
<tr>
<td>Bilateral filters</td>
<td>The principle of Gaussian filter (spatial proximity) is optimized as the product of the weight calculated by spatial proximity and the weight calculated by pixel similarity, and the optimized weight is convolved with the image.</td>
<td>Considering both spatial and strength information, it is suitable for preserving edges and fine structures.</td>
</tr>
<tr>
<td>Wavelet Transform Deep</td>
<td>The image is decomposed into wavelet coefficients</td>
<td>While preserving Ability to</td>
</tr>
</tbody>
</table>

Table 2. Common noise and causes

Table 3. Common methods of noise reduction
Filtering Methods: Filtering is a common and widely used image denoising technique. Various filter types, such as Gaussian filters [15], median filters [16], and bilateral filters [17], are applied to images to suppress noise. Gaussian filters are effective in reducing high-frequency noise but may blur fine details [18]. Median filters are robust against impulsive noise [19], while bilateral filters consider both spatial and intensity information, making them suitable for preserving edges and fine structures [20].

Wavelet Transform [21]: Wavelet denoising is a popular technique that leverages the mathematical concept of wavelet transforms to analyse and process images in different scales and orientations [22]. By decomposing an image into wavelet coefficients, noise can be separated from the signal [23]. Wavelet thresholding methods then selectively shrink or remove coefficients associated with noise, effectively reducing noise while retaining image features [24]. This approach is especially useful for handling images with both low and high-frequency noise components [25].

Deep Learning Approaches [26]: Deep learning methods [27, 28], particularly convolutional neural networks (CNNs) [29], have shown remarkable success in image denoising. Training CNNs on large datasets of noisy-clean image pairs enables them to learn complex noise patterns and denoise images effectively [30, 31]. Techniques like denoising autoencoders [32] and deep residual networks have been developed to produce visually pleasing results [33]. The advantage of deep learning approaches [34, 35] is their ability to adapt to diverse noise types and levels [36].

Non-local Means Denoising [37]: The non-local means (NLM) denoising technique is based on the principle that pixels of similar intensity values should have similar surrounding patterns [38]. The clean latent image A is represented mathematically by estimating it from an observational model of noise degradation:

$$B = A + V$$

Where V is additive noise and can be expressed as:

$$\hat{A}(i) = \sum_{j=1}^{num} w(i, j) B(j)$$

Where B is a noisy image, \hat{A} is a de-noised image, num is the total number of pixels in B, $B(j)$ is the pixel intensity at position j. NLM compares image patches and calculates weighted averages to denoise each pixel [39]. This method is highly effective for reducing Gaussian noise while preserving image structures and textures [40].

4. How MOOC helps learn image denoising

Comprehensive Course Content: MOOCs often provide comprehensive courses on digital image processing and computer vision, which include modules on image denoising. Shown in Figure 3, these courses cover fundamental concepts, algorithms, and practical applications related to image denoising. They typically offer a structured curriculum, video lectures, interactive assignments, and quizzes, providing a well-rounded learning experience. Learners can start with the basics and gradually progress to more advanced denoising techniques, understanding the underlying principles and best practices.

Access to Expert Instructors: MOOCs often feature renowned experts and instructors in the field of image processing who can provide valuable insights and guidance [41]. These instructors may share their experience, research findings, and practical knowledge, helping learners grasp the nuances of image denoising. Additionally, learners can interact with instructors through discussion forums, Q&A sessions, or even virtual office hours, allowing them to seek clarification and explore the subject in depth [42].

Hands-On Exercises and Projects: Many MOOCs incorporate hands-on exercises and projects that require learners to apply image denoising techniques in real-world scenarios. These practical assignments help learners develop essential skills and gain experience by working on actual image denoising problems [43]. By applying the concepts they’ve learned, students can refine their abilities and understand how to address the challenges of noise reduction in various images [44].

Community and Peer Support: MOOCs often foster a strong online community of learners from around the world. This community can be an excellent resource for individuals studying image denoising. Learners can engage in discussions, share insights, and collaborate on projects with their peers. The diversity of backgrounds and
perspectives within the MOOC community can offer different viewpoints and innovative solutions to image denoising challenges, enhancing the overall learning experience.

In conclusion, as shown in the Figure 4, MOOCs provide a flexible and effective means of learning image denoising. Through comprehensive course content, access to expert instructors, hands-on exercises, and a supportive online community, individuals interested in mastering image denoising techniques can acquire the knowledge and practical skills required to excel in this field. MOOCs democratize education by making high-quality learning opportunities accessible to a global audience, allowing learners to gain expertise in image denoising and apply it in various professional or academic settings.

One of the most significant challenges MOOCs face is high dropout rates [45]. Many students enroll in MOOCs but do not complete the courses they start [46]. The lack of in-person interaction, accountability, and structure can contribute to this issue [47]. Dropout rates are a concern because they affect the overall completion rates and the value of certifications offered by MOOC platform [48].

Ensuring the quality and credibility of MOOCs is another challenge [49]. While many prestigious universities and institutions offer MOOCs, the wide variety of courses and instructors can lead to inconsistent quality [50]. Establishing standardized quality assurance measures is essential to maintain the reputation and reliability of MOOCs. Additionally [51], the credibility of MOOC certifications is sometimes questioned by employers and traditional educational institutions, which can hinder their acceptance in the job market and academic institutions [52].

MOOCs often lack the level of interactivity and personalization found in traditional classrooms [53]. Tailoring education to individual learning styles and needs is a complex challenge in the online learning environment [54]. Some students may struggle to engage with the course material, as they miss the face-to-face interaction with instructors and peers that can enhance the learning experience [55]. While efforts have been made to incorporate more interactive elements, there is room for improvement in this area.

Accessibility remains a significant challenge for MOOCs [56]. Not everyone has equal access to the internet and the necessary technology, particularly in underserved or remote regions. This digital divide can limit the reach of MOOCs and exclude potential learners. Additionally, some individuals may lack the digital literacy skills needed to navigate and participate effectively in online courses, further exacerbating disparities in access to education [57].

Figure 4. How MOOC helps learn image denoising

Figure 5. Challenges of MOOC

5. Challenges of MOOC

MOOC has become an innovative model in modern education, from the Figure 5, but it also faces some difficulties and challenges.
6. Relation of E-learning and MOOCs

E-learning [58] is a broad term encompassing all forms of education delivered electronically, often via the internet [59]. This includes online courses, virtual classrooms, webinars, and digital educational resources [60]. MOOCs, on the other hand, are a specific subcategory of e-learning [61]. As depicted in the Figure 6. They are characterized by their massive scale, open access, and the ability to accommodate a vast number of learners simultaneously. In essence, MOOCs represent a particular format or model within the broader realm of e-learning.

Figure 6. Relationship between E-learning and MOOC

MOOCs have distinct characteristics that set them apart from traditional e-learning methods. These courses are typically open to anyone interested, irrespective of geographical location or prior educational background. MOOCs often incorporate elements of social learning, with discussion forums, peer assessment, and collaborative activities [62]. While e-learning can be highly structured and may include instructor-led courses, MOOCs often provide greater flexibility and autonomy to learners, allowing them to set their own pace and explore a wide range of subjects [63].

MOOCs have significantly influenced the e-learning landscape by popularizing online education and pushing the boundaries of what is possible in terms of scale and accessibility [64]. The introduction of MOOCs has spurred innovations in online course delivery, including more interactive content, automated assessment systems, and adaptive learning techniques. Many traditional educational institutions now incorporate MOOC elements into their online offerings, blending the benefits of MOOCs with the structure of traditional e-learning [65]. As a result, the influence of MOOCs has permeated the broader e-learning ecosystem, leading to improved learning experiences for all types of online learners [66].

Figure 7. The complementary role of E-learning and MOOCs in modern education

E-learning and MOOCs play complementary roles in modern education [67]. As shown in the Figure 7, the complementary role of E-learning and MOOCs in modern education. E-learning caters to a diverse range of educational needs, including corporate training, K-12 education, and specialized professional development [68]. MOOCs, with their openness and scalability, are particularly well-suited for broad public access to higher education and lifelong learning [69]. Together, they contribute to the flexibility and democratization of education, enabling learners to choose the format that best suits their goals and preferences.

7. Conclusion

Utilizing Massive Open Online Courses (MOOCs) as a platform for learning image denoising techniques offers a valuable and accessible opportunity for individuals looking to enhance their digital image processing skills. MOOCs provide a structured, flexible, and cost-effective environment in which learners can delve into the intricacies of image denoising [70]. The advantages of MOOCs, such as comprehensive course content, access to expert instructors, hands-on projects, and a supportive online community, make them a compelling choice for those seeking to master this critical aspect of digital image processing [71].

MOOCs empower learners to acquire the knowledge and skills required for image denoising from the comfort of their own homes, eliminating geographical and financial barriers that often hinder access to quality education. The structured curriculum ensures that students’ progress from fundamentals to advanced concepts, providing a solid foundation in image denoising. Additionally, the guidance and insights of expert instructors, as well as the opportunity for interaction with peers in a global online community, contribute to a rich learning experience [72].

In conclusion, MOOCs offer a transformative educational experience for individuals interested in image denoising techniques [73]. They open doors to a world of knowledge and skill development, providing a pathway to expertise in a field that is increasingly relevant in today's digital age [74]. As technology continues to advance, MOOCs remain a dynamic and effective way to stay at the
forefront of image denoising and related digital image processing advancements [75].

Acknowledgements.
We thank all the anonymous reviewers for their hard reviewing work.

Funding
This research did not receive any grants.

Conflict of Interest
The author declares there is no conflict of interest regarding this paper.

Data Availability Statement
There is no data associated with this paper.

References
International Conference on Medical Imaging with Deep Learning, 2022, pp. 653-664.

Use MOOC to learn image denoising techniques

