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Abstract

With the widespread application of online diagnosis systems, users can upload their physical characteristics
anytime and from anywhere to receive clinical diagnoses. However, for privacy and intellectual property
considerations, users’ physical characteristics, diagnosis results, and the medical diagnosis model should be
protected. To achieve an efficient and secure online diagnosis, secure outsourcing and low burden become
research objectives. However, few of the existing privacy-preserving schemes focus on the secure outsourcing
of the training process, and few consider the supervision of the hospital for the online diagnosis process.
By introducing a four-party architecture with two non-colluding servers, a hospital and users, in this paper,
we propose a controllable privacy-preserving online diagnosis scheme (CPPOD) with outsourced SVM over
encrypted medical data. Concretely, an integer vector homomorphic encryption is employed to protect
medical data and user requests. In the encrypted domain, a series of collaborative protocols including data
collection, sequence minimum optimization solver, SVM model building, and online diagnosis are constructed
and take place between different participants, while no significant increase in computation on either the
hospital or user side. CPPOD enables the hospital to delegate online diagnosis services to a cloud server while
ensuring that its regulatory capabilities cannot be bypassed unauthorized. Security analysis and performance
evaluation suggest that CPPOD performs well regarding security and efficiency.
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1. INTRODUCTION
Motivated by rapid data accumulation and the
requirement of convenient medical services, online
medical diagnosis has attracted much attention[1–3].
By introducing different machine learning methods,
various online diagnosis schemes have been proposed,
e.g.[4–8]. As a readily available diagnostic service,
it effectively reduces the cost of the medical system
and has contributed significantly to the advancement
of the medical industry [9, 10]. As one of the
most potent classification algorithms, support vector
machine (SVM) exhibits high efficiency in dealing
with sparse and high-dimensional data. Moreover, they

∗Corresponding author. Email: pingyuan@xcu.edu.cn

demonstrate exceptional accuracy and effectiveness in
classification tasks, making them widely used in the
field of medical diagnosis [7, 11–13]. To establish a
comprehensive online diagnosis system, the hospital
usually trains an SVM-based diagnosis model and then
outsources the trained model to the cloud. Users can
access the online diagnosis service by transmitting
physical characteristics to the cloud and receiving the
diagnosis suggestion.

With the cloud’s assistance, not only the burden of
the hospital can be alleviated, but it also enhances
user experience. However, despite many benefits with
the cloud, outsourcing the model to a semi-trusted
cloud also raises serious privacy concerns [14]. For
patients, sensitive information may be included in
their physical characteristics that should not be leaked
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to the cloud. For the hospital, the clinical decision
model is also a valuable intellectual property that
should be protected. Any information leaked can cause
irreversible consequences.

For online medical diagnostics, therefore, the main
challenges are how to achieve secure outsourcing,
privacy protection, and low burden. That is, we have
to ensure that the users’ private information and
diagnostic decisions are not known to the cloud, and
the diagnostic model is also kept secret from the
cloud server [15]. Meanwhile, we should also reduce
the computational complexity and communication
complexity of the hospital and the user as much
as possible. Towards these objectives, most of the
existing schemes introduce homomorphic encryption
(HE) [16, 17] and secure multi-party computation
(MPC) [18, 19]. Methods based on HE can perform
the necessary calculations in the encrypted domain
that can support privacy protection. At present, partial
homomorphic encryption (PHE) built on algorithms
such as RSA, ElGamal, and Paillier are preferred[20].
By contrast, MPC allows multiple parties to jointly
compute a function without revealing their inputs and
ensures that each party only obtains its calculation
results and cannot infer the input and output data
of any other party through the interactive data in the
computation process. However, few consider diagnosis
model training and diagnostic decision with more than
a third-party cloud’s assistance. Moreover, most of them
hand over the trained model directly to a server for
online diagnosis without considering the supervision of
the hospital for the online diagnosis services.

Considering the above issues, in this paper, we pro-
pose a controllable privacy-preserving online diagnosis
scheme (CPPOD) with outsourced SVM over encrypted
medical data. Firstly, inspired by [21, 22], we consider
a four-party architecture with two non-colluding cloud
servers, i.e., users, a hospital, a computing server, and
a key server. Users provides pathological data, the
hospital protects the data, and cooperates with the
computing server to complete the model construction
in encrypted domain (ED). Then, the computing server
utilizes the model to provide online diagnostic services.
The key server is responsible for the key management
and identity authentication. Secondly, to train the diag-
nosis model, we have designed a complete protocol
based on the HE of integer vectors [23, 24], which con-
ducts collaborative training of the hospital and the com-
puting server. Finally, with a specifically designed deci-
sion outsourcing protocol, the hospital can supervise
the online diagnostic service without being bypassed.
The main contributions can be summarized as follows.

(i) A secure outsourcing protocol for the diagnosis
model training phase is designed. By introducing
the HE on integer vectors, the outsourcing

protocol supports a collaborative model training
between the hospital and the cloud server in
ED. So, pricey computations towards the kernel
function and model training can be securely
transferred to the cloud server equipped with
sufficient computing resources from the hospital.

(ii) We present an improved decision outsourcing
protocol that ensures the hospital’s regulation
over the online diagnostic service. Through
an indispensable phase design in the online
diagnosis process, the lightweight participation
of the hospital can not be bypassed without
authorization in the four-party collaboration
scenario. It not only ensures data privacy but also
protects the rights and interests of the hospital
as the model owner from the perspective of
intellectual property.

(iii) Extensive experiments on real-world datasets are
conducted to evaluate the proposed CPPOD,
e.g., Breast Cancer Wisconsin (BCW), Maternal
Health Risk Data (Maternal), and HCV data.
Both performances in plain domain (PD) and ED
are considered. Experimental results demonstrate
that CPPOD can significantly avoid pricey
computation on both the hospital and user,
and prevent model abuse by the cloud server
while guaranteeing data privacy and comparable
accuracies with working in PD.

Unlike most of the traditional SVM-based privacy-
preserving online diagnosis schemes, CPPOD supports
secure outsourcing of both the model training and
online diagnosis phases, and it guarantees the hospital’s
regulation over online diagnostic service performed
on the cloud server. In addition, CPPOD is secure
and efficient in terms of time and communication. In
Table 1, we compare CPPOD with several represen-
tative schemes from the model architecture and the
implemented functions.

The remainder of this paper is organized as follows.
Section 2 introduces the related works. Section 3
provides essential definitions and relevant background.
Then, Section 4 gives the system model whose critical
protocols and implementations are detailed in Section
5. In Section 6 and 7, we analyze CPPOD’s security
and performance, respectively. Experimental results
are presented and discussed in Section 8. Finally, the
conclusion is drawn in Section 9.

2. RELATED WORK
With the construction of smart hospitals, many hos-
pitals apply digital and healthcare big data to pro-
vide data services, such as intelligent pre-consultation,
prescription dispensing, and clinical assistant decision-
making. As one of the representative services, online
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Table 1. Model Architecture and Phase Implementation Comparison

Rahulamathavan et al[25] Zhang et al.[26] Chen et al.[12] Chen et al.[27] Wang et al.[28] Xie et al.[29] CPPOD

model architecture 2-party 3-party 3-party 4-party 6-party 4-party 4-party
Secure outsourcing of the model training − % − ✓ ✓ % ✓
Secure outsourcing of the model testing ✓ ✓ ✓ − ✓ ✓ ✓

Regulation of online services % % % − % % ✓

diagnosis offers medical suggestions for users by
employing machine learning models on the cloud that
greatly facilitate users and hospitals. However, privacy
concerns can not be avoided even though it brings con-
venience. Many different privacy-preserving machine
learning schemes have been proposed [30–32]. Specif-
ically, based on naive Bayesian classification, Wang et
al. [30] proposed an efficient privacy-preserving disease
risk assessment scheme. In the scheme, an improved
Paillier cryptosystem is designed for secure model
training, and the random mask technology is used to
provide users with privacy-preserving disease risk pre-
diction services. By introducing improved KNN com-
putation and elementary matrix permutation, Zhang
et al. [31] constructed a privacy-preserving decision
tree evaluation scheme for e-health systems. Liu et al.
[32], based on Paillier homomorphic cryptosystem and
secret sharing, designed a series of building blocks
that perform secure computation under the two-cloud
model for privacy-preserving KNN classification. In the
literature[20], SVM is widely preferred for clinical deci-
sions in online diagnosis systems for its solid mathe-
matical background and high efficiency in dealing with
high-dimensional and complex data. These solutions
can be divided into HE-based schemes and MPC-based
schemes.

HE is a particular encryption scheme that allows
any third party to operate on encrypted data without
decrypting it beforehand. For instance, by employing
additively homomorphic encryption, Rahulamathavan
et al. [25] proposed a privacy-preserving decision
support system for SVM with a Gaussian kernel.
Although it protects diagnosis data and results,
there are still some robustness and security issues,
such as repetitive attacks[33]. Later, based on the
Okamoto-Uchiyama (OU) cryptosystem, Zhang et al.
[26] constructed a three-party model architecture of
privacy-preserving multi-class SVM over encrypted
data for medical diagnosis assistance. It not only
protects the medical dataset but also ensures that
the cloud server does not know the diagnosis
results. However, the user has to request the model
parameters from the hospital, compute the decision
function by himself in ED, and upload the encrypted
diagnosis results to the cloud server for the final
decision. Since users do many works, the user side
has to afford a relatively large computational cost.

Recently, Chen et al. [12] constructed a privacy-
preserving medical diagnosis scheme using distributed
two trapdoors public key cryptosystem (DT-PKC)
and Boneh-Goh-Nissim (BGN) cryptosystem. Since the
main objective is to give a secure implementation of the
diagnosis process, it suits SVMs with different kernel
functions. However, the scheme cannot endow essential
regulatory capability to the hospital, and the efficiency
improvement on either the user or hospital side is
insignificant.

MPC is a general cryptographic primitive that pro-
vides privacy protection for cooperative computation.
It deals securely with the problem of several parties
with private data performing collaborative analysis in
distributed computing scenarios. It is widely used for
SVM-based online diagnosis. For example, Chen et al.
[27] privately train SVM on outsourced genomic data
via MPC. Using the semi-honest adversary model and
oblivious transfer, they train non-linear SVM on the
combined data of multiple data sources without sacri-
ficing personal privacy. However, as the model owner,
the hospital has to undertake a relatively significant
computation burden. Towards a better solver of data
privacy in the medical internet of things, Wang et al.
[28] designed eight secure computing protocols to make
the cloud server efficiently execute basic integer and
floating-point computations. Thus, gradient descent
(GD) based SVM training can be achieved in a six-
party scenario. Due to complex roles with different
abilities with respect to data, intermediate results, and
models, the correct online diagnosis process may be
vulnerable to interference from malicious adversaries,
and the service provider may be bypassed by the cloud
storage server. Another insightful and user-friendly
online diagnosis model was proposed by Xie et al.
[29] based on two non-colluding cloud servers with
high security and high efficiency in computation and
communication. In the scheme, a class of secure two-
party protocols using HE was proposed to support the
diagnosis decision outsourcing based on a multi-class
SVM.

Among the above SVM-based schemes, few of them
focus on secure outsourcing both diagnosis model
training and decision processes. Even though data
privacy can be guaranteed, for most schemes, the
user or hospital side has to afford a relatively large
amount of computation. Due to the architecture
setting, the cloud server frequently acts as a service
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agent not a computation agent, throughout the online
medical diagnosis process. Once we directly migrate
the trained model to the cloud server to remit the
hospital’s computational burden, the hospital can
hardly control or regulate the diagnosis process. As
a response to these issues, in this study, our CPPOD
prefers a four-party online diagnosis system with
two non-colluding cloud servers, one of which is
responsible for complex computing tasks and online
diagnostic services (computing server), and the other
is responsible for key management (key server).
Meanwhile, CPPOD adopts an integer vector-supported
HE to match the linear SVM, performs the privacy-
preserving model training between the hospital and
the computing server, and makes diagnosis decisions
between the user and the computing server under the
lightweight control of the hospital. Although the major
computations are conducted on the computing server,
the intellectual property of the medical diagnostic
model owned by the hospital can be guaranteed because
unauthorized bypassing of the hospital will lead to
unusable diagnostic results.

3. PRELIMINARY
In this section, we briefly introduce vector homomor-
phic encryption (VHE) and SVC to be employed in the
proposed CPPOD. All the notations are summarized in
Table 2.

3.1. Vector Homomorphic Encryption
Designed by [23], VHE operates directly on integer
vectors that supports three fundamental operations:
addition, linear transformation, and weighted inner
products.

Let x ∈ Zm
l be the integer vector of length m and

alphabet size l. Let c ∈ Zn
q be the ciphertext of x with

length n > m and alphabet size q ≫ l. In general, q is
super-polynomial in the ciphertext length n. The secret
key is a matrix S ∈ Zm×n

q , and the process of encrypting
x is to find a ciphertext c such that Sc satisfies

Sc = qk + rx + e, (1)

for some integer vector k and noise vector e. Here,
r is an integer parameter that satisfies r > 2|e|. | · |
returns the maximum absolute value of the elements in
vector “·”. Given the secret key S, decrypting c can be
formulated by

x = ⌈Sc
r
⌋q, (2)

where ⌈a⌋q means the nearest integer to a with modulus
q. If |e| is smaller than r

2 , the decryption is successful.
So, we consider that both |S| and |e| are much smaller
than r.

Key-switching in VHE allows us to change the
original secret key into another one we specify (which
satisfies certain conditions). Of course, we also need to
change the ciphertext accordingly so that the switched
ciphertext can be decrypted with the new secret key
to obtain the same plaintext as the original. Following
[23], we formulate the key-switching method in two
steps. (1) Step one: The secret key S is switched to
an intermediate secret key S∗ and the corresponding
ciphertext is c∗. After key-switching, we have S∗c∗ = Sc.
(2) Step two: Towards switching the intermediate secret
key S∗ ∈ Zm×nℓ to a desired secret key S′ ∈ Zm×n′

q , we

construct an integer matrix M ∈ Zn′×nℓ satisfying

S′M = S∗ + E mod q (3)

where E is a noise matrix with a small magnitude. If S =
[I,T] with an identity matrix I, M can be constructed by

M =
(
−TA + S∗ + E

A

)
mod q, (4)

where A ∈ Z(n′−m)×nℓ
q is a random matrix. Correspond-

ing to the new secret key S′ , we have a new ciphertext

c′ = Mc∗ mod q, (5)

satisfying
S′c′ = qk′ + rx + e′ . (6)

Let c1, c2 be the two ciphertexts of integer vectors
x1, x2 separately encrypted by secret keys S1, S2. They
satisfy

Sici = qki + rxi + ei , (7)

with |Si |, |ki | and |ei | much smaller than q. Three
fundamental operations supported by VHE are as
follows.

• Addition Operation: If c1 and c2 have the same
secret key, i.e., S1 = S2 = S, then

c1 + c2 = [[x1 + x2]] (8)

• Linear Transformation: The ciphertext c′1 of the
linear transformation Gx1 can be formulated by

c′1 = c1 = [[Gx1]], (9)

with an switched secret key S′1 = GS′1.

• Weighted Inner Products: By introducing a key-
switching matrix M, the ciphertext of a weighted
inner products xT1 Hx2 can be calculated by

M⌈
vec

(
c1cT

2

)
r

⌋q = [[xT1 Hx2]], (10)

where H is the weight matrix.
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3.2. Support Vector Machine
Let D be a dataset with N data samples
{(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi ∈ Rm,
yi ∈ Y = {+1,−1}, i = 1, 2, . . . , N . The fundamental
concept of a linear SVM for classification is to find
the optimal separating hyperplane w · x + b = 0 in the
feature space, which maximizes the interval between
positive and negative training samples by solving the
following dual problem.

min
α

1
2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj −

N∑
i=1

αi

s.t.
N∑
i=1

αiyi = 0

0 ⩽ αi ⩽ C, i = 1, 2, ..., N

(11)

where α = [α1, α2, . . . , αN ]T is the Lagrange multiplier
vector, C is the penalty parameter. Thus, we have

w =
N∑
i=1

αiyixi , (12)

and

b = yj −
N∑
i=1

yiαi < xi · xj > . (13)

Based on the prediction function f (x) = w · x + b, the
decision function g(x) is

g(x) = sign(w · x + b)

= sign

 N∑
i=1

αiyi < xi · x > +b

 . (14)

If D is not linearly separable, we can replace the inner
product < xi · x > by a nonlinear kernel function such
as radial basis function exp(−q||xi − x||2) to construct a
nonlinear classifier. q is the kernel width.

4. SYSTEM MODEL
In this paper, we consider a four-party framework
for outsourcing the privacy-preserving online diagnosis
service to the cloud. As shown in Figure.1, four entities
include two non-colluding cloud servers CSA and CSB,
the hospital H, and users Us.

(i) Two cloud servers (CSA and CSB): CSA and
CSB are two non-colluding cloud servers. CSA is
equipped with sufficient computation, communi-
cation, and storage resources for model training in
cooperation with H. Meanwhile, given the trained
model, CSA provides online diagnosis services for
Us. CSB is mainly responsible for key manage-
ment and identity authentication.

Table 2. Notations and Description

Notations Descriptions

x Data sample in the form of integer
vector with length m

l The alphabet size of x
c The ciphertext of x with length n
q The alphabet size of c, and q ≫ l
S The secret key in Zm×n

q

r An integer parameter satisfies r > 2|e|
e The noise vector
S∗ Intermediate secret key of m × nℓ

matrix
c∗ Intermediate ciphertext with length nℓ
ℓ An integer satisfies 2ℓ > |ck | whereck

is the member of c with the largest
absolute value

S′ The desired secret key of a m × n′
matrix

c′ The ciphertext encrypted by S′ with
length n′

M The n′ × nℓ key-switch matrix
P KH, SKH The public key and private key of H
P KU, SKU The public key and private key of Us
P KA, SKA
KS, K ′S
[[·]]
ID
Rd

||
D
D ′

Q
K
α

w, b

The public key and private key of CSA 
The session key
The encrypted form of data
The user ID who uploads x
A random response number generated 
for user
Message connection symbol
The original medical dataset
The processed medical dataset
A random orthogonal matrix
The kernel matrix
The optimal solution to the dual 
problem
The model parameters

R
d
N
NUs

NUi

Nclass

The prediction result given by CSA 
The final clinical diagnosis
The number of m-dimensional data 
The number of data samples uploaded 
by Us
The number of request data samples 
submitted by Us
The number of classes

(ii) Hospital (H): As a user data agent, H collects
medical data from a large number of Us to
form the medical dataset D, and conduct the
model training together with CSA. Data privacy
is guaranteed throughout the two phases. In
addition, H authorizes CSA to provide online
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Hospital

（H）

Cloud Server A

（CSA）

Cloud Server B

（CSB）

Public Private 

Key Pairs

Public Private 

Key Pairs

Online diagnosis phase

Users

（Us）

Public Private 

Key Pairs

Figure 1. System Model

diagnosis services and must be able to get the
business volume externally provided by CSA.

(iii) Users (Us): Us are entities who have some physi-
cal discomfort and want to query a clinical diag-
nosis. They submit the physical characteristics
and receive the diagnosis results.

Utilizing a four-party architecture, the proposed 
scheme encompasses three distinct operational phases: 
data collection, model training, and online diagnosis. 
During the data collection phase, Us transmit their 
physical characteristics to H, which reciprocates the 
security parameters to Us. The model training phase is 
collaboratively undertaken by H and CSA. H dispatches 
the medical dataset to CSA and the collaborative model 
training ensues the complex computation tasks are
done by CSA without decrypting any medical data. 
Finally, H will send the model parameters to CSA which 
is authorized to provide online diagnosis services. In the 
online diagnosis phase, once received the request data 
from Us, H processes these data and sends them to CSA. 
Thus, CSA makes predictions and returns the results to 
H who will determine the final clinical diagnosis results 
and send them to Us. As depicted in Figure.1 with locks, 
all the data transferred among the four parties are in 
ED.

In the online diagnosis system, H and Us are honest 
entities. CSA and CSB are non-colluding, but CSA acts 
in an honest-but-curious way. It means that CSA follows 
the designed protocols honestly but tries to learn more 
information during the training of the model and the 
execution of the online diagnosis service. So, we should 
preserve the privacy of the diagnosis result and medical 
data against CSA, and the diagnosis model is unknown 
by CSA.

5. THE PROPOSED CPPOD
As depicted by Figure.1, the four-party scheme mainly 
consists of three work phases, i.e., data collection, 
model training, and online diagnosis. Before entering
these three phases, essential authentications for CSA, H, 
and Us should be passed that are suggested yet omitted 
for out of this study’s scope. Thus, these three phases 
will be detailed below.

5.1. Data collection
In the data collection phase, communication mainly 
takes between H and Us. H collects the physical 
characteristics from Us and stores them in the medical 
dataset D. Due to privacy concerns, x is encrypted 
before being sent to H. As the data owner, Us encrypt 
x with a session key KS generated by himself/herself 
to get [[x]], then KS is encrypted with the public key 
of H (P  KH) to get [[KS]]. After receiving [[x]] and [[KS]], 
H firstly d ecrypts [[KS]] u sing t he p rivate k ey S KH to 
get KS, by which [[x]] can be decrypted for analysis or 
correction. Meanwhile, H can give the user a response 
for confirmation. In the considered scenario, we suggest 
that the hospital should have full control over the 
pathological data. Otherwise, the diagnosis model can 
not be learned with correctly labeled data for online 
services. The whole procedure of the data collection 
phase is presented by Algorithm 1. Line 8 is an optional 
response from H.

Algorithm 1 Data collection

Input: data sample x of physical characteristic
Output: medical dataset D
Us:

1: Random generation of KS
2: [[x]] = Enc(KS, x)
3: [[KS]] = Enc(P KH, KS)
4: Us→ H: [[x]] and [[KS]]

H:
5: KS = Dec(SKH, [[KS]])
6: x = Dec(KS, [[x]])
7: D ← D ∪ x
8: H→ Us : [[Rd||ID]] = Enc(P KU, Rd||ID)

5.2. Model training
In the model training phase, the communication is
mainly between H and CSA. By introducing VHE,
CPPOD prefers the classical sequence minimum
optimization (SMO) algorithm to solve the dual
problem (11) in the training process. In addition,
we adopt an essential data preprocessing before
outsourcing data to CSA. Next, we will show how this
stage is implemented in detail.
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SMO in PD. As a heuristic algorithm, SMO is
to decompose the original quadratic programming
problem into a quadratic programming subproblem
containing only two variables and constantly solve the
subproblem until all the variables satisfy the KKT
condition[34]. It mainly consists of two parts: an
analytical method for solving two-variable quadratic
programming and a heuristic method for selecting
variables.

Without loss of generality, we use Kij to denote
K(xi , xj )(i, j ∈ [1, N ]). For linear SVC classifier, K(xi , xj )
is the inner product < xi · xj >. To solve the dual prob-
lem (11) , we choose α1 and α2 as the optimiza-
tion objects satisfying

∑N
i=1 yiαi = 0, i.e., α1y1 + α2y2 =

−
∑N

i=3 yiαi = ξ. Thus, we get α1 = (ξ − α2y2)y1. Sup-
pose vj =

∑N
i=3 yiαiKij and

∑N
i=3 αi = Constant, the dual

problem can be reformulated by

min
α2

W (α2) =
1
2
K11(ξ − α2y2)2 +

1
2
K22α

2
2

+ y2K12(ξ − α2y2)α2 + v1(ξ − α2y2)

+ y2v2α2 − y1(ξ − α2y2)

− α2 − Constant

(15)

By solving (15), we can get

(K11 + K22 − 2K12)α2

= y2(y2 − y1 + ξK11 − ξK12 + v1 − v2)
(16)

Consider the prediction model f (x), we have the
predicted deviation

Ei =

 N∑
j=1

αjyjKji + b

 − yi , j = 1, 2. (17)

Then, Eq. (16) can be reformulated by

(K11 + K22 − 2K12)α2
new

= y2(E1 − E2) + (K11 + K22 − 2K12)α 2
old.

(18)

Let η = K11 + K22 − 2K12, we can get

αnew
2 = αold

2 +
y2(E1 − E2)

η
(19)

Assume that the upper and lower boundaries
of α2 are H and L, respectively. According to
α1y1 + α2y2 = ξ and 0 ≤ α1, α2 ≤ C, we have L =
max (0, α2 − α1) and H = min (C,C − α1 + α2) if y1 , y2,
or L = max (0, α2 + α1 − C) and H = min (C, α1 + α2) if
y1 = y2. Therefore αnew

2 can be obtained by

αnew
2 =


H, αnew

2 > H
αnew

2 , L ≤ αnew
2 ≤ H

L, αnew
2 < L

(20)

Due to αnew
1 y1 + αnew

2 y2 = αold
1 y1 + αold

2 y2, we can get
αnew

1 = αold
1 + y1y2(αold

2 − αnew
2 ). Since b is directly

related to f (x), along with α changes, b should be
updated as follows

bnew =


bnew

1 0 < αnew
1 < C

bnew
2 0 < αnew

2 < C
bnew

1 +bnew
2

2 otherwise,
(21)

where

b1
new=bold − E1 − y1K11(α1

new − α1
old)

− y2K21(α2
new − α2

old),
(22)

and
b2

new=bold − E2 − y1K12(α1
new − α1

old)

− y2K22(α2
new − α2

old).
(23)

According to the formula derivation, the whole SMO
algorithm for the dual problem (11) in PD can be
completed after several iterations.

SMO in ED. Since VHE deals with integer vectors, data
samples of D and model parameters outsourced to CSA
should be encrypted in vectors. Therefore, to conduct
SMO solver in ED, [[Ei]], [[α]] and [[b]] should also be
correctly obtained in ED. In this section, we formulate
them and describe the corresponding SMO algorithm in
ED (SMO-ED).

Following (17) with VHE, [[Ei]] can be formulated by

[[Ei]] =
N∑
j=1

[[αjyjKji]] + [[b]] − [[yi]], (24)

where  [[αjyjKji]] = 1
m ⌈

vec([[αjyj ]][[Kji ]]T)
r ⌋q,

[[αjyj ]] = 1
m ⌈

vec([[αj ]][[yj ]]T)
r ⌋q.

(25)

Meanwhile, given [[η]] = [[Kii]] + [[Kjj ]] − 2[[Kij ]], [[αj ]]
can be obtained by

[[αj ]] = [[αold
j ]] + [[

yj (Ei − Ej )

η
]], (26)

with [[yj (Ei − Ej )]] = 1
m ⌈

vec([[yj ]]([[Ei ]]−[[Ej ]])T)
r ⌋q,

[[
yj (Ei−Ej )

η ]] = 1
m ⌈

vec
(
[[yj (Ei−Ej )]][[ 1

η ]]T
)

r ⌋q.
(27)

Given [[αj ]], [[αi]] thus can be updated through

[[αi]] = [[αold
i ]] + [[yiyj (α

old
j − αj )]], (28)

with [[yiyj ]] = 1
m ⌈

vec([[yi ]][[yj ]]T)
r ⌋q,

[[yiyj (α
old
j − αj )]] = 1

m ⌈
vec

(
[[yiyj ]]([[α

old
j ]]−[[αj ]])T

)
r ⌋q.

(29)
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Based on [[αi]], [[αj ]] and [[Ei]], [[b1]] and [[b2]] are
separately obtained by

[[b1]] =[[b]] − [[Ei ]] − [[yi Kii (αi − αold
i )]]

− [[yj Kij (αj − αold 
j

)]],
(30)

and
[[b2]] =[[b]] − [[Ej ]] − [[yi Kij (αi − αold

i )]]

− [[yj Kjj (αj − αold 
j

)]].
(31)

Here, we have

[[yiKii]] = 1
m ⌈

vec([[yi ]][[Kii ]]T)
r ⌋q

[[yiKii(αi − αold
i )]] = 1

m ⌈
vec([[yiKii ]]([[αi ]]−[[αold

i ]])T)
r ⌋q

[[yjKij ]] = 1
m ⌈

vec([[yj ]][[Kij ]]T)
r ⌋q

[[yjKij (αj − αold
j )]] = 1

m ⌈
vec

(
[[yjKij ]]([[αj ]]−[[αold

j ]])T
)

r ⌋q
(32)

Based on the analysis above, Algorithm 2 details the
implementation of the SMO algorithm in ED (SMO-
ED). First, H initializes the parameters and sends
them to CSA after encrypting them with P KA. For
convenience, selecting the first variable is frequently
determined by judging the samples in turn. Specifically,
for i ∈ N , CSA calculates [[Ei]] and sends it to H
for KKT condition violation judgment. If it violates
the KKT condition, it is kept as the i-th variable of
the optimization objective. Once the i-th variable is
determined, any different data sample can be randomly
selected as the j-th variable in line 11. Thus, H
calculates the upper and lower bounds (i.e., H and
L) based on the two variables selected. Based on the
selected variables i and j, the optimization procedure
with respect to them can be conducted. CSA computes
[[Ej ]], [[η]] and saves [[αi]], [[αj ]] without optimization
(i.e., [[αold

i ]], [[αold
j ]]). Then, it sends [[Ej ]], [[αold

i ]], [[αold
j ]]

and [[η]] to H. Since VHE operates on vectors, H is
required to compute [[ 1

η ]]. Therefore, upon receiving

[[η]], H decrypts it, calculates 1
η , and then sends [[ 1

η ]]

(encrypted with P KA) to CSA. After receiving [[ 1
η ]], CSA

calculates [[αj ]] and returns it to H for the following
pruning based on (20). Once getting the pruned result,
CSA computes [[αi]], and calculates [[b1]] and [[b2]] based
on [[αi]] and [[αj ]]. After the computation is completed,
CSA sends the results to H who will decrypt and judge
to obtain b. Further, H sends [[b]] back to CSA for
the next round of optimization until the termination
condition is satisfied.

SVC Model Training with VHE. To collaboratively train
the SVC model in ED, based on VHE, the whole
procedure detailed in Algorithm 3 consists of three
critical works, i.e., data processing, solving the dual
problem, and model parameters calculations.

Algorithm 2 SMO-ED

Input: Dataset [[D]], penalty parameter C, tolerance tol
Output: [[α]], [[b]]
H:

1: Initialize α and b
2: [[α]] = Enc(P KH,α)
3: [[b]] = Enc(P KH, b)
4: H→ CSA: [[α]] and [[b]]
5: while true do
6: for i = 1, 2, . . . , N do

CSA:
7: calculate [[Ei]] following (24)
8: CSA → H: [[Ei]]

H:
9: Ei = Dec(SKH, [[Ei]])

10: judge whether (yiEi < −tol) && (αi < C) or
(yiEi > tol) && (αi > 0)

11: randomly select j , i
12: calculate L and H

CSA:
13: calculate [[Ej ]] and [[η]]
14: [[αold

i ]]← [[αi]], [[αold
j ]]← [[αj ]]

15: CSA → H: [[Ej ]]||[[αold
i ]]||[[αold

j ]]||[[η]]
H:

16: η = Dec(SKH, [[η]])
17: [[ 1

η ]] = Enc
(
P KH,

1
η

)
18: H→ CSA: [[ 1

η ]]
CSA:

19: calculate [[αj ]] following (26)
20: CSA → H: [[αj ]]

H:
21: αj = Dec

(
SKH, [[αj ]]

)
22: prune αj following (20)

23: [[αj ]] = Enc
(
P KH, αj

)
24: H→ CSA: [[αj ]]

CSA:
25: calculate [[αi]], [[b1]] and [[b2]]
26: CSA → H: [[αi]]||[[b1]]||[[b2]]

H:
27: (αi , b1, b2) = Dec(SKH, [[αi]]||[[b1]]||[[b2]])
28: obtain b following (21)
29: [[b]] = Enc(P KH, b)
30: H→ CSA: [[b]]
31: end for
32: end while

• Data processing. H first performs matrix per-
turbation (that is, for an m-dimensional physi-
cal characteristics vector, multiply it by an m-
dimensional orthogonal matrix Q) and rounding
processing on its stored data, then encrypts the
processed data block by block and sends it to
CSA. In addition, H calculates the key-switching
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matrix M based on the key-switching technique
and sends it to CSA as well.

• Solving the dual problem. After receiving the
encrypted data and M, based on the weighted
inner product calculation in 3.1, CSA quickly
calculates the kernel function of SVM and
cooperates with H to solve the dual problem by
invoking SMO-ED.

• Model parameters calculations. Given [[α]] and
[[b]] , H can easily calculate [[w]] which, together
with [[b]], will be outsourced to CSA for online
diagnosis.

Algorithm 3 SVC-VHE

Input: Dataset D, penalty parameter C, tolerance tol
Output: [[w]], [[b]]
H:

1: Generate an orthogonal matrix Q, then
2: x′ = ⌈Qx⌋q
3: D ′ ← D ′ ∪ x′

4: [[D ′]] = Enc(P KH, D
′)

5: calculates M following (4)
6: H→ CSA: [[D ′]] and M

CSA:
7: calculates [[K]] based on [[D ′]] following (10)

CSA and H:
8: [[α]], [[b]]← SMO-ED([[D ′]],C, tol)

H:
9: obtain [[w]] following (12)

10: H→ CSA: [[w]] and [[b]]

Given [[w]] and [[b]], the decision function can be
constructed following (14). Meanwhile, the typical
one-vs-rest (OVR) strategy is suggested by CPPOD
to train multiple classification hyperplanes. As the
expected medical diagnosis model, they will be securely
outsourced to CSA.

5.3. Online diagnosis
In the online diagnosis phase, communications occur
among Us, H, and CSA. Before submitting a request,
Us should pass the authentication of CSB. Following
the privacy-preserving data collection algorithm (1),
Us thus upload the physical characteristics x protected
by [[K ′S]] and P KH for online diagnosis. For correct
medical diagnosis, CPPOD suggests that the hospital
has the highest authority. To regulate online diagnosis,
the hospital, as the only owner of the model, can
not be bypassed without authorization. Meanwhile,
the hospital’s participation should be lightweight for
efficiency. Towards these considerations, Algorithm 4
presents the online diagnosis (OD) provided by CSA
with the outsourced SVC model from H.

Notice that the pathological data is valuable to the
hospital. So, in OD, the request data x from Us will
be stored inD (for further model optimization) and
sent to CSA for analysis in ED after being encrypted.
After receiving [[x′]], CSA calculates the prediction
values [[R]] = [[(R1, R2, · · · , Rz)]] and returns them to
the hospital H. Then, H decrypts [[R]] and get the
clinical diagnosis result d with a simple voting strategy
based on g(x). Besides, H sends d′ = d ⊕ Rd to Us
for security. For the sake of simplicity, we omit the
negotiation for a random number Rd between H and
Us since many practical key negotiation protocols
(such as Diffie-Hellman key exchange) can be found
in literature[35]. Apparently, H contributes to each
diagnosis decision, and CSA can not give a reasonable
[[d′]] without H. Even though CSA conducts a replay
attack by randomly sending a used one to Us, it will
be picked out for incorrect Rd. Consequently, H can
control each online diagnosis service offered by CSA at
the cost of lightweight operations in lines 9-12. That is,
CSA can not provide online diagnosis service without
authorization from H.

Algorithm 4 OD - online diagnosis

Input: the encrypted physical characteristics [[x]]
Output: the clinical diagnosis result d
Us:

1: Us→H: [[x]] and [[K ′S]] (Data collection by Algorithm
1 )

H:
2: x′ = ⌈Qx⌋q
3: [[x′]] = Enc(P KH, x′)
4: H→ CSA: [[x′]]

CSA:
5: for z ∈ [1, Nclass] do

6: [[Rz]] = ⌈vec([[w]][[x′]]T)
r ⌋q + [[b]]

7: end for
8: CSA → H: [[R]]

H:
9: R← Dec(SKH, [[R]])

10: vote for d, then calculates d′ = d ⊕ Rd
11: [[d′]] = Enc(P KU, d

′)
12: H→ Us: [[d′]]
Us:
13: d′ = Dec(SKU, [[d′]])
14: d = d′ ⊕ Rd.

5.4. Work Mode of CPPOD
By introducing the phases above, i.e., data collection,
model training, and online diagnosis, Figure.2 gives
the flow diagram of CPPOD. For ease of distinction,
three phases are highlighted by different backgrounds.
Even in different phases, arrows starting from the same
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end prefer the same style, i.e., the long dotted line 
representing communication launched by Us. The only 
double-sided arrow denotes a number of exchanges
between H and CSA due to iterations in SMO-ED. 
Eventually, as discussed by[36], a limited number of 
iterations can also give a reasonable performance. 
During the implementation of CPPOD, all the crucial 
information is encrypted. For clarity, we simplify 
the key distribution protocol by using [[·]] to denote 
protection through encryption with the target’s public
key or signature with CSB’s private key. That is, 
CPPOD does not introduce any limitation over the key 
distribution.

6. SECURITY ANALYSIS
In this section, we prove the security of the proposed 
scheme from two aspects. Firstly, we demonstrate the 
correctness of the protocol. Secondly, we study the issue 
of privacy protection under the framework based on 
theoretical analysis.

6.1. Correctness
To ensure data security, we pre-processed the data
before submitting it to CSA. In order to verify the 
correctness of the results after data pre-processing, we 
will carry out theoretical proof.

Consider two sample vectors x1 and x2, the 
corresponding ciphertexts are c1 and c2, respectively. 
These ciphertexts can be decrypted using the key S. 
More specifically,

Sc1 = qk1 + rx1 + e1, (33)

Sc2 = qk2 + rx2 + e2. (34)

Following the weighted inner products (10), we get

⌈vec
(
STS

)T
·

vec
(
c1cT

2

)
r

⌋q = qk + r
(
xT

1x2

)
+ e (35)

Given an orthogonal matrix Q satisfying QTQ = QQT =
I, we perturbs x1 and x2 to get x′1 = Qx1 and x′2 = Qx2.
On the basis of VHE encryption, the ciphertext c1

′

and c2
′ can be separately calculated with the key S′ as

follows
S′c′1 = qk′1 + rx′1 + e′1, (36)

S′c′2 = qk′2 + rx′2 + e′2, (37)

where S′ = QS. So, we have

⌈
vec

(
STS

)T
· vec

(
c′1c
′T
2

)
r

⌋q = qk′ + r
(
xT1 x2

)
+ e′ (38)

Proof. First, by introducing (10), we get

⌈
vec

(
S′TS′

)T
· vec

(
c′1c
′T
2

)
r

⌋q = qk′ + r
(
x′T1 x′2

)
+ e′ . (39)

Since QTQ = QQT = I, we have

x′T1 x′2 = (Qx1)T (Qx2)

= xT1 Q
TQx2

= xT1 Ix2

= xT1 x2,

(40)

and
S′TS′ = (QS)T (QS)

= STQTQS

= ST I S

= ST S.

(41)

Based on (40) and (41), thus (39) becomes

⌈
vec

(
STS

)T
· vec

(
c1
′c2
′T
)

r
⌋q = qk′ + r

(
xT

1x2

)
+ e′ . (42)

According to (42), we find that by decrypting

ciphertext ⌈vec(c1
′c2
′T)

r ⌋q with the secret key vec(STS)T,
the inner product of x1 and x2 can be obtained. So,
the perturbation by multiplying Q does not affect the
kernel function calculation, as well as the calculation of
α and b.

Since w =
∑N

i=1 αiyixi , however, w will change
to Qw when xi is replaced by Qxi , i.e., Qw =∑N

i=1 αiyi (Qxi). Therefore, when we formulate the
classification hyperplane in ED, we will get the
ciphertext c′w of Qw instead of cw with respect to w.
Once a new physical characteristics vector x arrives,
it will be perturbed and changed to Qx. Fortunately,
according to (42), the diagnosis result will not be
affected when wT x is calculated in ED.

6.2. Privacy Protection
We discuss the privacy of physical characteristics and
model data. Our primary concern is that cloud servers
do not know sensitive information.

First, in the model training phase, we preprocess
the original data samples and encrypt them with the
hospital’s public key P KH. Since the corresponding
private key SKH can only be held by the hospital, the
outsourced dataset [[D]] can not be decrypted by the
cloud server.

Secondly, an orthogonal matrix Q ∈ Rm×m generated
randomly is employed to perturb the original data.
Thus, even though the server gets several data samples
of D, to leak the original data, it must evaluate the
matrix equivalent to constructing m2 linear equations
to solve the unknown variables of Q. Unfortunately, this
is a hard problem for the cloud server since different
vector tuples in D are independent. Additionally, due

10
EAI Endorsed Transactions on 

e-Learning 
| Volume 9 | 2023 |



Controllable Privacy-Preserving Online Diagnosis with Outsourced SVM over Encrypted Medical Data

Hospital

( H )

User

( Us )

Cloud Sever A

( CSA )

Cloud Sever B

( CSB )

Ⅰ. Data Collection:

Hospital H collects 

pathological data  

encrypted by user

（Algorithm 1）

Ⅱ. Model training:

With the outsourced 

d a t a ,  H  a n d  C S A 

jo intly conduct SVC 

model training

  （Algorithm 3）

Ⅲ. Online diagnosis:

Online diagnost ic 

services are provided 

for authorized users

（Algorithm 4）

Figure 2. The flow diagram of the proposed CPPOD scheme

to the disturbance of the data, there will be a gap (as
discussed in Section 6 ) between the final model and the
original model. Therefore, the privacy of the SVC model
can be guaranteed.

7. PERFORMANCE ANALYSIS
In this section, we conduct a performance analysis of
the proposed CPPOD scheme in terms of time and
communication complexity.

7.1. Time Complexity
Suppose D contains N data samples, Nsv is the number
of support vectors, Nclass is the number of classes, Tk
is the time consumption for key generation, and a unit
time is required for once encryption or decryption. So,
it takes O (k) to perform an encryption or decryption
operation on k data samples in the form vector. Once
receiving a communication request, CSB will conduct
an identity authentication for the requester that costs a
fixed amount of time. Table 3 lists the time complexity
of each participant at different phases.

Data Collection Phase. The data collection phase
involves specific tasks done by the hospital H and
any user of Us. For Us, all the data samples should
be encrypted by a newly generated session secret key.
Therefore, if a user wants to upload NUs data samples,
the time cost by the user is O(NUs + Tk). For H, it will
decrypt the user’s data and then generate an ID and
random number Rd for the user. We omit the time of
generating the ID and random number, so the total time
complexity of the hospital is O(NUs).

Model Training Phase. The model training phase is
finished between the hospital H and the cloud server
CSA. Before outsourcing data to CSA, H takes O(N )
to encrypt D, O(nn′) to generate a key-switch matrix
M, and O(m2) to generate a random orthogonal matrix
Q, respectively. Once entering the iteration process of
SMO-ED, H only needs to decrypt intermediate data
and make simple judgments. Let ζ be the essential
number of iterations, and each iteration requires p
decryptions and encryptions on average. The hospital
thus spends O (ζp). Notice that p is proportional to the
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Table 3. Time complexities of the participators except the key server CSB in CPPOD scheme

Phase Users (Us) Hospital (H) Cloud Server (CSA)

Data Collection O (NUs + Tk) O (NUs) −
Model Training — O

(
Nclass (ζp + Tw) + N + nn′ + m2

)
O

(
Nclass

((
N2 + t

)
n3 + un2

))
Online Diagnosis O

(
NUi

+ TXOR

)
O

(
NUi

(Nclass + 1) + TXOR

)
O

(
NUi

Nclass

(
n3 + n2

))
number of sample pairs violating the KKT condition.
Besides, the hospital needs to calculate the final model
parameters following (12) that can be denoted by O(Tw).
Therefore, for a Nclass classes problem, the total time
complexity for the hospital H is O(Nclass(ζp + Tw) + N +
nn′ + m2).

For CSA, it takes O(N2n3) to obtain the kernel
function matrix since an inner product consumes
O(n3). During the iteration process, CSA also performs
calculations, mostly for the inner product and addition
operations on vectors. If each iteration requires t times
the inner product and u times the addition calculation,
a total of O(tn3 + un2) is spent. Thus, CSA consumes
O(Nclass((N2 + t)n3 + un2)) when training Nclass sub-
models in ED.

Online Diagnosis Phase. The phase of online diagnosis
requires participation from Us, H, and CSA. Us only
encrypt their data, decrypt the final result, and perform
an XOR calculation. If an user submits NUi

query data
samples and each XOR calculation costs O(TXOR), then
the user consumes O(NUi

+ TXOR) in total. For H, it
firstly costs O(NUi

) to decrypt and encrypt the query
data. Meanwhile, it will also require O(NUi

Nclass) to
make decision based on NUi

intermediate diagnosis
results [[R]] and send [[d′]] to the user. That means H has
to consume O(NUi

(Nclass + 1) + TXOR). Finally, for CSA,
the inner product and addition operations in ED cause
a total time complexity of O(NUi

Nclass(n3 + n2)).

7.2. Communication Complexity
Regarding the communication complexity of the
proposed CPPOD scheme, the transmission of physical
characteristics [[x]], dataset [[D]], key-switch matrix M,
parameters in SMO-ED, model parameters [[w]], [[b]],
intermediate diagnosis results [[R]] and the final result
[[d ⊕ Rd]] are the main causes of network bandwidth
consumption. Since an m-dimensional vector will
become a n-dimensional vector after encryption.
Generally, the numeric type of double supplies enough
precision for computation, which requires 8 Bytes for
each item. So, the size of an encrypted vector is 8n
bytes. For clarity, we show the bandwidth consumed at
each stage for a single round. For the data collection
phase, the user uploads NUs physical characteristics
[[x]] consume 8nNUs bytes of bandwidth. For the model

training phase, H takes 8n(N + n′) bytes to send the
medical dataset [[D]] and key-switch matrix M. In the
iteration process, each iteration requires an average
of p times of data transmission, which is equal to
the number of encryption and decryption operations
carried out by the hospital. Since ζ iterations are
assumed, a total of 8npζNclass bytes is consumed
when there are Nclass classes in the iteration process.
Moreover, after the hospital calculates the model
parameters, it outsources [[w]], [[b]] to the server, which
consumes 16nNclass bytes. For the online diagnosis
phase, 8nNui bytes are required for the user to
submit Nui query data samples, which is equal to the
bandwidth consumed by the hospital to transmit the
pre-processed data samples. In addition, 8nNclassNUi

bytes are required when the server sends intermediate
diagnosis result [[R]] to the hospital, and 8n bytes are
required to send the final result to the user.

8. EXPERIMENTAL RESULTS

8.1. Experimental Setup

To conduct effectiveness and efficiency analysis, we
have implemented the proposed CPPOD by mixed
programming with MATLAB and C++ with NTL library
version 9.6.01. For the sake of simplicity, programs
corresponding to the cloud server, the hospital, and
the client are modeled as different threads of a single
program, which passes data or parameters to each other
following the rules shown in Figure.2. Meanwhile, we
conducted all the experiments on a computer with
Quad-Core 2.30 GHz CPUs and 40 GB main memory
running on Windows 10-X64.

Due to different model architectures adopted by the
existing scheme, as well as distinguishing implemen-
tations of the involved phases, in this section, our
experiments will concentrate on the effectiveness anal-
ysis in ED compared with linear SVC in PD and effi-
ciency checks of whether the four-party scheme avoid-
ing imposing pricey computation on both the hospital
and user.

1https://libntl.org/
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8.2. Experimental Dataset
For the experiments, we consider three typical medical
datasets with multiple classes provided by UC Irvine
Machine Learning Repository(UCI)2, i.e., Breast Cancer
Wisconsin (Original)(BCW) [37], Maternal Health Risk
Data (Maternal) [38], and HCV data [39]. Table 4 shows
the statistical information of these datasets.

BCW contains 699 data samples with 9-
dimensional integer attributes separately represent
Clump_thickness, Uniformity_of_cell_size,
Uniformity_of_cell_shape, Marginal_adhesion,
Single_epithelial_cell_size, Bare_nuclei,
Bland_chromatin, Normal_nucleoli, and Mitoses. 
All the data samples are divided into benign and 
malignant classes with imbalanced distribution. 
Maternal contains 1014 data samples from three risk 
levels: low risk, mid risk, and high risk. The amount 
of data in these three categories is slightly unbalanced. 
Different from BCW, six attributes for each data sample 
in Maternal correspond to age, SystolicBP, DiastolicBP, 
BS, BodyTemp, and HeartRate. The final data HCV has 
615 samples in five h ighly u nbalanced c lasses: Blood 
Donor, suspect Blood Donor, Hepatitis, Fibrosis, and 
Cirrhosis. Twelve attributes are Age, Sex, ALB, ALP, 
AST, BIL, CHE, CHOL, CREA, CGT, PROT, and ALT. 
Different from BCW and Maternal, these attributes are 
mixed with integer, binary, and real variables. These 
sensitive attributes in medical datasets raise privacy 
concerns. Therefore, towards online diagnosis in ED, 
the essential preprocessing with multiplier is employed 
as described in Section 8.4.

For fairness and objectivity, all the datasets are 
grouped in a ratio of 7 to 3, of which 70 percent is used 
as the training data for SVC model training, and the 
remaining 30 percent is employed as the testing data 
submitted by users in terms of online diagnosis queries. 
Furthermore, data for each experiment is randomly 
scrambled such that we can conduct at least ten rounds 
of experiments to get the final e valuation o n average. 
To evaluate the proposed CPPOD scheme, we conduct 
several series of experiments in both PD and ED 
described in the following sections.

8.3. Experiments in the Plain Domain
In this section, we conduct experiments in PD to 
check the validity of CPPOD following the four-party 
flow d iagram. B oth t he a verage a ccuracies o f online 
diagnosis and time-consumptions for each party over 
the three medical datasets in PD are considered.

Benchmark Results for Classification A ccuracy. To facilitate 
the experiment, we adopt the OVR strategy for these 
multiple classification p roblems a nd t ake Liblinear,

2https://archive.ics.uci.edu/

which is a typical implementation of the linear SVC
by [40] as the baseline. By setting C to 1, columns 2-3
of Table 5 illustrate the benchmark results separately
achieved by Liblinear and the proposed CPPOD in
PD. CPPOD in PD reaches diagnosis accuracies of
96.07%, 46.63%, and 86.63% on BCW, Maternal, and
HCV, respectively. Notice that CPPOD in PD performs
even better than Liblinear on HCV data. Therefore,
these results confirm that CPPOD in PD can achieve
comparable performance with Liblinear even though
all the datasets have been processed to match the
requirement of VHE.

Time-Consumption Required by The Hospital. In PD, the
model training phase can only be conducted by the
hospital. Until the online diagnosis phase, the user
participates in submitting a diagnosis query that can be
omitted in time-consumption analysis. For each dataset,
therefore, we separately measure the time the hospital
consumes in these two phases. On BCW, the hospital
costs 0.024s and 0.002s to finish the model training
and online diagnosis, respectively. On Maternal, these
two phases for the hospital are separately 0.265s
and 0.002s. On HCV data, they become 0.377s and
0.002s. Due to fast computations of the linear kernel,
classification on the 30% testing data samples is almost
indistinguishable.

8.4. Experiments in the Encrypted Domain
In this section, we conduct a series of experiments to
verify the validity of CPPOD in terms of effectiveness
and time consumption in ED. As shown in Algorithm 4,
data collection (Algorithm 1) can be a part of the online
diagnosis service. Therefore, for the whole system of
CPPOD, the time-consumption measurement can be
simplified by concentrating on the main occupation
phases, model training and online diagnosis for clarity.
In these two phases, each participant’s costs will be
separately evaluated.

Effectiveness Measurement in ED. As mentioned in
Section 3.1, VHE is targeted at integer vectors. Towards
better conducting the subsequent experiments, we
introduce a scaling factor mul = 104 following [25,
36] for the dataset with hybrid data types, e.g., HCV
data. Since mul is a linear scalar, its impacts can be
restricted or eliminated along with the procedure of
CPPOD. Or, a small yet practicable iteration number
like what was discussed in [36] can also avoid
unnecessary operations in ED. However, we prefer
the former for clarity. Column 4 of Table 5 lists the
average accuracy obtained by CPPOD over encrypted
datasets of BCW, Maternal, and HCV data. CPPOD
in ED has very close accuracies with that achieved by
CPPOD in PD. The random partition of training and
testing data brings tiny differences between CPPOD
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Table 4. The Details of the Datasets

Dataset No. Samples No. Attributes No. Classes Classes and the number of each class

BCW 699 9 2 benign: 458 malignant: 241
Maternal 1014 6 3 low risk: 406 mid risk: 336 high risk: 272
HCV data 615 12 5 Blood Donor: 533 suspect Blood Donor: 7 Hepatitis: 24 Fibrosis: 21 Cirrhosis: 30

Table 5. Accuracies Achieved by Liblinear[40], and CPPOD in
PD and ED

Dataset Liblinear[40] CPPOD (in PD) CPPOD (in ED)

BCW 96.19% 96.07% 95.95%
Maternal 51.64% 46.63% 46.37%
HCV data 86.41% 86.63% 84.78%

in PD and CPPOD in ED. Meanwhile, CPPOD in PD
and CPPOD in ED achieve comparable results with
Liblinear[40] on BCW and HCV data, but there is about
10.20% reduction on the linear inseparable Maternal.
Therefore, classification over encrypted data is not
suggested for low-dimensional and linear inseparable
data due to the accumulated loss of data precision.
However, this is not a challenging issue. On the one
hand, we can increase the scaling factor to utilize VHE’s
advantage of supporting vector computation. On the
other hand, we can also change the proposed CPPOD
to support nonlinear separable data by replacing the
linear kernel function with a nonlinear one (e.g., radial
basis function) and fine-tuning lines 7-9 of SMO-
ED. Moreover, a pre-computation for kernel matrix in
ED may also benefit model training for using both
computation and storage advantages of the cloud server.
As aforementioned, the proposed CPPOD can be well
applied or extended to any classification problems with
privacy concerns for its ability to handle encrypted data
without noticeable classification accuracy loss.

Time-Consumptions for Each Participant in ED. We measure
the time consumption in terms of the average running
time required by each participant in the proposed
scheme. Results are listed in Table 6, where “(Enc/Dec
Ratio)” denotes the proportion of run-time cost
by data encryption and decryption function in the
corresponding algorithms, e.g., “[[α]] = Enc(P KH,α) ” in
line 2 of SMO-ED. Just as HE operations are conducted
by CSA, the major time consumptions of H and Us
are data encryption and decryption, which make model
training and online diagnosis over encrypted data
practical. To make the results more intuitive, we also
use Figure.3 to depict the proportion of time consumed
by each participant in the two phases. Apparently,
for privacy protection, both model training and online
diagnosis consume much more than consumptions in
PD, as discussed in Section 8.3. Even so, the role of CSA
affords the vast majority of computations, particularly
in the model training phase. Since both CSA and

H run on the same platform, the observations are
easy to get. Once we transfer CSA to a cloud with
sufficient computing resources, its time consumption
will significantly reduce. Notice that Us and H have
very similar time consumptions (< 2.0s) in the phase of
online diagnosis that are acceptable for making medical
diagnoses on about 185 to 305 samples. Therefore, for
practical use, with the assistance of CSA, we can also
move the capabilities of Us and H to a smart terminal
once the model training is completed.

9. CONCLUSION
In this paper, a new privacy-preserving SVC scheme,
namely CPPOD, is proposed to respond to privacy
concerns in online medical diagnosis. Based on a four-
party participation model architecture, it endows the
hospital control ability over the online diagnosis at
a tiny computation cost. Based on existing research,
the core works of SVC can be optimized to achieve
linear operations. Therefore, we present an SMO-ED
solver to solve the classical dual problem (11) in
ED by introducing VHE. Thus, the expected medical
diagnosis model can be obtained by SVC-VHE over
encrypted data. Further, the trained model can be
outsourced to the computing cloud server, which offers
online diagnosis service to users under the control and
monitoring of the hospital. To provide a reasonable
service, the procedure control and monitoring can
not be bypassed. Furthermore, in the four-party
architecture, the vast majority of computations are
afforded by the computing cloud server. Theoretical
analysis proves the correctness and security of CPPOD,
and experimental results give evidence corresponding
to effectiveness and efficiency. However, even though
CPPOD can be easily extended to support nonlinear
separable problems as discussed in Section 8.4,
interactions between the computing cloud server and
the hospital due to frequent iterations in SMO-
ED require further control for energy consumption
reduction. Therefore, improving the design of the
dual problem solver with fundamental operations well-
matching HE is valuable to be investigated in the future.
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Table 6. Runtime(s) of each phase on all the datasets in ED

Dataset Model Training (s.) Online Diagnosis (s.)
Total H (Enc/Dec Ratio) CSA Total Us (Enc/Dec Ratio) H (Enc/Dec Ratio) CSA

BCW 24024.3 16.5 (98.04%) 24007.8 17.2 1.0 (99.90%) 1.1 (99.71%) 15.1
Maternal 216668.6 52.3 (97.81%) 216615.9 18.5 0.6 (99.83%) 0.8 (98.39%) 17.1
HCV data 100318.4 122.9 (98.83%) 100195.1 177.4 1.7 (99.94%) 1.9 (99.45%) 173.8
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Figure 3. The time proportion consumed by each participant in model training and testing.
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