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Abstract 

CT scan acquisition is fast and cost-effective and has become the main lung imaging tool. However, the increase in large 
numbers of CT scans has placed a heavy burden on radiologists; therefore, automated lung nodule detection techniques are 
needed to reduce the workload of radiologists and computer-aided detection systems are proposed for further accurate 
diagnosis of the condition. This review provides a comprehensive overview of recent automated lung nodule detection 
techniques and challenges, etc., as well as a detailed overview and discussion of current research gaps, future developments, 
and research trends. Relevant articles published in databases such as IEEE Xplore, Science Direct, PubMed, and Web of 
Science cover research algorithms published from 2014 to 2023, mainly discussing deep learning-based techniques. The 
schemes presented in these articles, the databases used, the experimental results, and the performance of the algorithms are 
compared and discussed. This work aims to introduce researchers and readers to the latest techniques and their advances in 
the detection of lung nodules in the last decade, which will help researchers and radiologists to further understand the latest 
techniques in this field. 
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1. Introduction

Generally, pulmonary nodules are characterized as round 
opaque, or irregular lung lesions with a diameter of up to 
30 mm in the chest[1], and the different types of nodules 
are shown in Figure 1. Of these, nodules with large size 
(>8 mm diameter), subsolid, acicular, and lobulated 
features are more likely to be malignant[2, 3]. Studies have 
shown that the five-year survival rate with lung cancer 
ranges from 10% to 16%, which can increase to 52% if 
diagnostic treatment is implemented early in the formation 
of lung cancer[4]. 

Current literature states that the most commonly 
observed nodules range in size from 3 mm to 30 mm[5], 
with the majority of these being less than 9 mm and 
considered small nodules, and those less than 3 mm are 
called micronodules, as defined by the American Thoracic 
Society. Due to their unique nature, they pose many 
challenges to the task of lung nodule detection. First, 
similarity. Micronodules are discontinuous in their location 
and show diversity in their shapes, leading to blurring of 

the distinction from normal tissues. Second, less feature 
information. In the commonly used lung nodule dataset, the 
samples have low resolution and small labeled areas, which 
contain less obvious feature information and are 
susceptible to the interference of noise points. Third, the 
distribution of positive and negative samples in the dataset 
is uneven. In most of the datasets used for lung nodule 
detection, the samples containing small targets are 
predominant, while the samples with large and medium 
targets are small. Fourth, 3D characteristics. Nodule 
detection is a more difficult 3D target detection problem 
than 2D target detection. 

There are several different imaging modalities used to 
detect lung nodules, such as computed tomography (CT) 
[6, 7], positron emission tomography (PET) [8, 9], and 
magnetic resonance imaging (MRI) [10, 11]. The most 
sensitive imaging modality, As the most sensitive imaging 
modality, CT is the newest and leading imaging tool used 
to capture images of the lungs, with strong competitive 
advantages such as fast acquisition speed, cost-
effectiveness, and a wide range of applications. Therefore, 
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most of the research work in this field has been devoted to 
the detection of lung nodules on chest CT scans. 

However, the large increase in CT scans places a 
heavy burden on radiologists and is a very tedious and 
time-consuming task. Therefore, automated lung nodule 
detection and diagnostic technologies are needed to reduce 
the workload of radiologists and help them make more 
accurate diagnoses. These technologies are called 
computer-aided diagnosis (CAD) systems [12, 13]. In 
general, CAD systems are divided into two systems: 
computer-aided detection (CADe) systems and computer-
aided diagnosis (CADx) systems. CADe systems focus on 
the location of suspicious lesions in medical images, while 
CADx systems are designed to help radiologists determine 
the type of abnormality. CADe systems focus on the 
location of suspicious lesions in medical images [14, 15], 
while CADx systems are designed to help radiologists 
determine the type and malignancy of the abnormality. 
This article focuses on the CADe system. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 1. Types of lung nodules. (a) Isolated solid 
nodule; (b) Frosted glass nodule; (c) Partial solid 
nodule; (d) Isolated nodule in CT slice; (e) Non-

nodule in CT slice; (f) Micro-nodule in CT slice; (g) 
Nodule in pleural effusion; (h) Subpleural nodule; 

and (i) Hemivascular nodule. 

In the past decade, thanks to the further development 
of artificial intelligence, research related to pulmonary 
nodule detection has received more and more attention 
from researchers. Figure 2 shows the number of 
publications in this field from 2014 to 2023, searched using 
the keywords "pulmonary nodule detection" or "lung 
nodule detection", which are statistically derived from the 
core database of the Web of Science. 

A significant increase in the number of papers 
published each year can be seen, reaching a total of 367 in 
2022. The total number of papers published in the last 
decade reached 2,503. This suggests that CADe protocols 
on lung nodule detection have been a popular research 
topic over the past 10 years. Although there are many 

review papers on CADe protocols, most of these papers do 
not include CADe protocols that have been studied in 
recent years; for example, Zhang et al. [16] outlined 
techniques developed from 2015 to May 2018, which lack 
a generalized summary of the techniques in recent years 
and does not do a good job of keeping researchers and 
radiologists informed of the latest advances. 

Figure 2. Number of papers on lung nodule 
detection (2014 to 2023) 

This paper not only describes the experimental 
benchmarks and composition of CADe systems but also 
compares the key technologies of these systems, 
emphasizing the various systems developed based on state-
of-the-art convolution neural networks (CNNs). In 
addition, the selected articles are published in databases 
such as IEEE Xplore, Science Direct, PubMed, and Web of 
Science. In this paper, the algorithms proposed in these 
publications, the databases used, the experimental results 
obtained, and the performance of the algorithms are 
discussed in comparison. Research trends, current 
challenges, and future work of the algorithms are also 
pointed out at the end of the paper. Therefore, this paper is 
suitable for beginners to learn about lung nodule detection 
methods, as well as for professional researchers and 
radiologists to learn more about the latest technology in 
CADe systems, which is the purpose of this paper. 

The architecture of this paper is described according 
to the following threads. Firstly, it introduces the common 
datasets and evaluation metrics for lung nodule detection, 
explains the five important components of lung nodule 
detection algorithms, and describes their significance, 
difficulties, and related techniques. Subsequently, the 
algorithms that have good results on the task of lung nodule 
detection in recent years are reported, which are useful as 
a guide for subsequent research. Then, the paper discusses 
the comparison from several perspectives and points out 
the research trends, current challenges, and future 
directions in the development of CADe systems for lung 
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nodule detection. This review is summarized in the last 
part. 

2. Datasets and evaluation indicators 

To develop an effective CADe system, researchers need to 
focus on datasets and evaluation metrics. A large number 
of CT scans of the lungs are required to train a detection 
model for pulmonary nodules, so the acquisition of public 
datasets is crucial. Second, reliable evaluation metrics are 
necessary to fairly validate the performance of various 
algorithms. 

2.1. Datasets 

Numerous public datasets of lung CT scans have been 
created to develop, train, and evaluate CADe systems. 

1) LIDC-IDRI 
The Lung Image Database Consortium and Image 

Database Resource Initiative (LIDC-IDRI)[17, 18] is the 
largest publicly available reference database for lung 
nodules. It contains 1018 CT scans and associated 
annotated XML files from four experienced radiologists. 

2) LUNA16 
The Lung Nodule Analysis 2016 (LUNA16)[5] 

dataset is a subset of LIDC/IDRI. It consists of a total of 
888 chest CT scans, based on the fact that each case 
contains a lesion that has been labeled by at least three of 
the four medical experts involved in the annotation process. 
In this dataset, only nodules with a diameter of less than 3 
mm were considered positive samples, while all remaining 
lesions were considered negative samples. 

3) ELCAP 
The Early Lung Cancer Action Program 

(ELCAP)[19] is a dataset of 50 low-dose CT cases. The 
image slice thickness is equal to 1.25 mm, and most of the 
identified nodules range from 2 to 5 mm in diameter. It is 
worth mentioning that all labeled lesions in this dataset 
were nodules and the medical expert did not label any non-
nodules. 

4) NELSON 
The Nederlands Lung Cancer Study (Nederlands-

leavens Longkanker screenings Onderzoek, NELSON)[20] 
included LDCT scans with data from approximately 
15,822 participants. The slice thickness for each set of 
images was 1 mm and the overlap between slices was 0.7 
mm. Annotations were generated using LungCare software 
or manually. 

2.2. Evaluation indicators 

Validating and measuring the performance of various 
algorithms requires the use of evaluation metrics. The 
evaluation metrics commonly used for lung nodule 
detection are listed below: 

1) 𝑇𝑇𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇𝑇𝑇, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

True positive rate (𝑇𝑇𝑇𝑇𝑇𝑇), false positive rate (𝐹𝐹𝑇𝑇𝑇𝑇), 
and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are the main evaluation indexes of nodule 
detection, which need to be calculated using 4 parameters: 
true positive (𝑇𝑇𝑇𝑇), true negative (𝑇𝑇𝑇𝑇), false positive (𝐹𝐹𝑇𝑇), 
and false negative (𝐹𝐹𝑇𝑇). An abnormality in a CT image of 
the lung is defined as 𝑇𝑇𝑇𝑇 or 𝐹𝐹𝑇𝑇 if it is a pulmonary nodule, 
or 𝑇𝑇𝑇𝑇 or 𝐹𝐹𝑇𝑇 if the abnormality is excluded, i.e., if it is not 
a pulmonary nodule. 

 

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇𝑇𝑇𝑇𝑇 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇𝑇𝑇 =
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

(1) 

 
2) ROC and FROC  
The receiver operating characteristic (ROC) curve 

represents the relationship between 𝑇𝑇𝑇𝑇𝑇𝑇  and 𝐹𝐹𝑇𝑇𝑇𝑇 , with 
𝐹𝐹𝑇𝑇𝑇𝑇  on the X-axis and 𝑇𝑇𝑇𝑇𝑇𝑇  on the Y-axis. The free-
response ROC (FROC) is similar to the ROC curve, except 
that the number of 𝐹𝐹𝑇𝑇𝐹𝐹 per scan replaces the 𝐹𝐹𝑇𝑇𝑇𝑇. 

3) CPM 
The competition performance metric (CPM) refers to 

the average sensitivity at 1/8, 1/4, 1/2, 1, 2, 4, and 8 𝐹𝐹𝑇𝑇𝑇𝑇 
per scan, defined as the final score of the FROC curve, and 
has become the evaluation criterion for most competitions 
in the detection of lung nodules. The CPM is expressed 
using equation (2), where 𝑖𝑖 denotes the number of 𝐹𝐹𝑇𝑇𝐹𝐹 per 
scan at each of the seven predefined 𝐹𝐹𝑇𝑇𝑇𝑇  levels, and s 
denotes the sensitivity. 
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3. CADe system for lung nodule 
detection 

The CADe system is designed to improve diagnostic 
accuracy, assist in the early detection of cancer, and 
reduce the radiologist's examination and evaluation time. 
As a potential assistant in clinical practice, CADe systems 
[21, 22] may have different configurations. 

In general, CADe consists of five basic steps: data 
acquisition, preprocessing, lung segmentation, candidate 
nodule detection, and false positive reduction. These steps 
are shown in Figure 3. 
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Figure 3. Steps in the CADe system 

1) Data acquisition
CT is usually the first choice for early lung nodule

screening due to its high sensitivity and relatively low cost 
compared to other modalities[23]. 

2) Preprocessing
Generally, to reduce the radiation hazard, radiologists

reduce the radiation dose in CT scans, which can degrade 
the image quality and produce extraneous information such 
as noise, artifacts[24], etc., and therefore the images need 
to go through a pre-processing step. The common filters 
used in this stage of the method are the median filter[25], 
Gaussian filter[26], point enhancement filter[27], 
histogram equalization filter[16], and Laplacian of 
Gaussian (LoG) filter[28]. 

3) Lung segmentation
To reduce the search space, a lung segmentation

operation is required for CT images. The aim is to 
accurately separate the lung parenchyma from other tissues 
and organs for better understanding and analysis at 
subsequent stages to enhance important information[29]. 
Traditional segmentation algorithms used for lung 
parenchyma segmentation include thresholding methods, 
shape-based methods, edge-based methods, morphological 
methods, etc. In addition, the deep learning-based 
segmentation algorithms U-Net [30] and FCN [31] are the 
most widely used. 

4) Candidate nodule detection
The purpose of this step is to separate all suspected

lung nodules from the volume of interest (e.g., lung 
parenchyma) as much as possible and to highlight the 
location of the nodule. This process not only improves 
CADe's sensitivity in identifying lung nodules, but also 
ensures that the physician is able to more quickly localize 
and focus on these suspicious nodules when reviewing 
diagnostic results. 

5) False Positive Reduction
Due to the high sensitivity of the detection algorithms, 

certain tissues that are morphologically similar to real lung 
nodules may also be incorrectly labeled as nodules. 
Therefore, the main task of this step is to accurately 
differentiate real lung nodules from these pseudonodules, 
thus screening out real nodules among suspicious ones. By 
effectively eliminating false nodules, not only can the 
false-positive rate of the computer-aided detection system 

(CADe) be significantly reduced and the diagnostic 
accuracy be improved, but it can also provide physicians 
with a more reliable and precise diagnostic basis. 

4. Detailed description of the algorithm

With the continuous progress of lung nodule detection 
technology, in recent years, the focus of research has 
gradually shifted to deep learning-based algorithms, 
especially CNNs.CNNs, with their excellent feature 
learning and characterization capabilities, have achieved 
remarkable results in target detection tasks, which not 
only promote the rapid development of computer-aided 
detection systems (CADe), but also establish the 
mainstream development direction in this field. The 
CNNs have been used in a variety of applications, 
including the following. 

The CNN structure is shown in Figure 4, which 
usually contains two major parts: the feature extraction 
layer and the output layer. The feature extraction layer 
mainly consists of alternating stacks of convolutional and 
maximum pooling layers, which are responsible for 
extracting key features from the input image. After feature 
extraction, the feature map output from the last 
convolutional layer is usually flattened, i.e., the multi-
dimensional feature map is converted into a one-
dimensional feature vector. Then the fully connected layer 
(FC layer) is accessed for higher level feature integration 
and classification. Finally, the network passes through the 
SoftMax layer or the output layer, which outputs the 
category of the image and other relevant information such 
as target location, confidence level, etc. 

Figure 4. The general structure of CNN 

4.1. Detection based on nodule type 

The growth morphology and speed of small nodules have 
an important impact on the formation of lung cancer, 
therefore, the detection of small nodules is essential.  

Zhang Mengyi et al. [32] implemented an 
improvement on the feature pyramid network (FPN)[33] to 
address this problem by adding an SE module with a 
channel attention mechanism to improve detection 
performance. The optimized 3D FPN architecture was 
obtained to achieve lung nodule detection. Its effectiveness 
was validated on the LUNA16 dataset with a CPM of 
0.8934. Zheng et al. [34] did the same for small nodule 
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detection. First, to explore whether MIP-based images can 
improve the accuracy of nodule detection, four 2D CNNs 
based on the U-Net architecture and using MIP images with 
corresponding thickness and axial slices as inputs were 
applied to detect candidates from the four streams. 
Subsequently, the results from the four streams are merged 
into candidate nodules. In the FP removal stage, two VGG-
Net-based 3D CNNs are used. The system is trained on the 
LUNA16 dataset and achieves a sensitivity of 95.36% with 
20.4 FPs/scan. However, the algorithm only considered 
axial slices. Therefore, they proposed another improved 
architecture in their subsequent work[35]. The designed 
scheme consists of two stages, namely multiplanar 
candidate nodule detection and false positive reduction. 
First, nodule candidates in axial, coronal, and sagittal 
planes are detected using U-net++. The backbone of U-
net++ is the Efficient-Net[36] classification model, pre-
trained on ImageNet to efficiently extract a variety of 
essential features. Predictions from all three planes are 
merged for higher sensitivity. Subsequently, a multi-scale 
dense CNN was applied to efficiently remove false-
positive nodules. Validation of the LIDC-IDRI dataset 
showed that the multiplanar approach improved the 
performance of small nodule detection. A sensitivity of 
94.2% was achieved at 1 FPs/scan and 96.0% at 2 FPs/scan. 

4.2 Improvements based on traditional 
detection algorithms 

In the target detection task, Faster R-CNN is the classical 
detection network, which achieves high accuracy 
detection performance, but still has some shortcomings 
for the field of lung nodule detection, mainly since the 
feature maps extracted by backbone are single-layer with 
small resolution. Therefore, Ding et al. [37] and Su et al. 
[38] also started from the architecture of Faster R-CNN to 
develop improved Faster R-CNN for lung nodule 
detection. 

Ding et al. introduced an anti-convolutional structure 
in Faster R-CNN for detecting nodule candidates from 
axial slices, and this axial slice composition in 3D helps to 
reduce the computational effort. Then, the authors utilize 
3D DCNN to reduce false positives. The LUNA16 
experimental results demonstrate the good performance of 
the proposed nodule detection method, and the system has 
an average FROC score of 0.891, which is located in the 
first place of the challenge. Su et al. concluded that 
parameter optimization based on Faster R-CNN can 
theoretically improve the network structure as well as the 
detection accuracy. Experiments on LIDC-IDRI data 
showed that the parameters were set to a basic learning rate 
of 0.001, a step size of 70,000, a decay coefficient of 0.1, a 
Dropout value of 0.5, and a Batch Size of 64, at which point 
the highest average accuracy of 83.9% was achieved. 

 

4.3 Based on changes in nodule size and 
shape 

Challenges posed by variations in nodule size and shape 
are a noteworthy issue, and it is difficult to establish a 
universal diagnostic criterion because lung nodules are 
characterized by both size and irregular shape. Based on 
this, Gu Junhua et al. [39] and Nguyen et al. [40] proposed 
different ideas. 

Inspired by spatial transformation networks[41] and 
DPM[42, 43], Gu Junhua et al. proposed a deformable 
convolutional structure to cope with the variable shapes of 
lung nodules and make the feature extraction process more 
suitable for the shape of nodules themselves. Another 
simple but effective strategy is proposed to deal with the 
variable size of lung nodules. First, the high-level feature 
maps are deconvoluted and combined with the low-level 
feature maps to obtain feature maps with rich feature 
information, and then these feature maps of different levels 
are used as a prediction layer on which a sliding window is 
run to generate anchors with different sizes and 
proportions, and finally, each anchor is classified and 
bounding-box regressed to ensure that different sizes of 
lung nodules are detected. The average accuracy of the 
proposed system can reach 82.7%. 

Nguyen et al. argued that most of the designs used for 
anchors are adopted by default or manually, and these sizes 
do not match the real lung nodule sizes and shape well, so 
the authors proposed a Faster R-CNN-based model 
designed with adaptive anchor sizes. Specifically, the 
authors generate the adaptive anchor size based on the true 
nodule size of the dataset by mean-shift (Mean-shift)[44] 
clustering technique, which produces better performance 
than the manually-configured anchor method or other 
clustering-based methods. Subsequently, the authors used 
ResNet to reduce false positives in the output of the system. 
Proposed to be trained and tested on the LUNA16 dataset, 
a high sensitivity of 95.64% was achieved at 1.72 false 
positives per scan, with a CPM score of 88.2%, which 
outperforms other recently proposed detection methods. 

4.4 Questions based on receptive fields 

If the receptive field is too small, only limited contextual 
information can be utilized to train the network and its 
recognition ability should not be sufficient to handle large 
changes in the detection target. If the receptive field is too 
large, it will result in more redundant information or even 
noise, reducing the efficiency of the network. Zhang 
Haowan et al. [45] proposed a framework called LungSeek 
for nodule detection and classification. For the nodule 
detection task, they combined selective kernel networks 
(SK-Net)[46] and 3D ResNet to form a 3D SK-ResNet and 
applied them to a deep 3D RPN to detect lung nodules. 
Notably, the SK-Net module can adaptively adjust the 
receptive field according to the multiple scales of nodules, 
resulting in better detection of nodules of various sizes. 
Validated on the LUNA16 dataset, the system achieves 
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sensitivities of 89.06, 94.53%, and 97.72% for false 
positives of 1, 2, and 4, respectively. 

5. Challenges and prospects 

In order to clearly and visually compare and explore the 
performance of these computer-aided detection (CADe) 
systems, Table 1 summarizes some of the key algorithms 
from recent years and organizes them in chronological 
order from recent to distant. Each item details the year of 
publication, author information, dataset used, and a range 
of key performance metrics including the number of false 
positives per scan (FPs/scan), sensitivity, accuracy, 
competitive metrics (CPM), and free response receiver 
operating characteristic (FROC). With this table, we can 
comprehensively and systematically evaluate the strengths 
and weaknesses of each CADe system and provide useful 
references for researchers and practitioners in related 
fields. 

Table 1. Proposed algorithm 

Year Author Dataset Performance 

2022 Zhang[47] LUNA16 0.977 Sen 
0.912 CMP 

2022 Zhu[48] LUNA16 0.95 Sen 
0.895 CPM 

2022 Huang[49] LUNA16 8 FPs/s, 0.962 Sen 
CPM 0.905 

2022 Zhang[50] LUNA16 0.927 CPM 

2022 Zhang[45] LUNA16 
1 FPs/s, 0.891 Sen 
2 FPs/s, 0.945 Sen 
4 FPs/s, 0.977 Sen 

2022 Luo[51] LUNA16 7 FPs/s, 0.892 Sen 

2021 Nguyen[40] LUNA16 1 FPs/s, 0.956 Sen 
0.882 CPM 

2021 Yuan[52] LUNA16 
4 FP/s 0.952 Sen 
8 FP/s 0.962 Sen 

0.881 CPM 

2021 Lin[53] LUNA16 0.739 Acc 

2021 Lai[54] LUNA16 0.864 Sen 
0.950 Acc 

2021 Su[38] LIDC/IDRI 0.839 Acc 

2021 Zhang[21] LUNA16 0.893 CPM 

2021 Mei[55] PN9 0.645 FROM 

2021 Peng[56] LUNA16 0.923Sen 

2020 Zheng[35] LIDC/IDRI 1 FPs/s, 0.942 Sen 
2 FPs/s, 0.960 Sen 

2020 Xiao[57] LUNA16 0.991 Sen 

5.1. Comparison 

This subsection will compare the selected works from 
different perspectives, categorized as follows: 

1) Datasets 
As publicly available datasets, LIDC/IDRI and 

LUNA16 are applied in most of the people's studies, 
reaching 92.5% of these selected works. New datasets have 
also been proposed, such as the PN9 dataset by Mei et al. 
[55], to solve the problem of limited samples and 
categories in these publicly available datasets. 

2) 2D/3D Processing 
For the early developed systems, since 3D-based 

algorithms are not mature, most of them use 2D-based 
processing, and they do it by inputting the slices into the 
system one by one. Compared with the 3D approach, 
although the amount of computation is reduced, the 
correlation between slices is ignored, while the 3D nature 
of CT scans is not noticed. Considering these factors, in 
recent years, 2D-3D or 3D-based input approaches have 
been adopted by more and more CADe schemes, such as 
Zhang Guanglu et al. [47] and Zhu Xiaoyu et al. [48]. 

3) Balance between sensitivity and false positives 
Generally speaking, to make the developed CADe 

system detect as many suspicious nodules as possible, the 
detector threshold is set very low, but at the same time, 
some normal tissues such as blood vessels are also 
determined as suspicious nodules, resulting in a high 
number of false positives. For example, in the nodule size 
adaptive depth model proposed by Wang et al. [58], when 
the sensitivity reaches 96.8%, 60 false positives appear in 
each scan, and when it is reduced to 15 false positives, the 
sensitivity will also be reduced to 90%. It is therefore 
difficult to strike a good balance between the two. 
However, some researchers have broken this limitation, for 

EAI Endorsed Transactions on 
e-Learning 

| Volume 9 | 2023 |



Deep Learning-based Lung Nodule Detection: A Review  
 

7 

example, Nguyen et al. [40] achieved a low false positive 
rate of 1.72 FPs/s with a sensitivity of 95.64%, which may 
be due to their proposed Mean-shift technique. 

4) Types of nodules 
Most current protocols aim to detect a wider range of 

nodules without regard to the type of nodule, and some 
focus more on detecting specific nodules. For example, Gu 
Yu et al. [59] and Zhang Mengyi et al. [32] focus on the 
detection of small nodules, Monkam et al. [60] focus on the 
detection of micronodules, while Li et al. [61] address the 
identification of three types of nodules. These detection 
schemes dedicated to specific domains or specific nodules 
do not achieve high sensitivity and accuracy and have low 
performance compared to other schemes. 

5) Detection method 
Lung nodules appear as circular or elliptical tissue 

lesions, and the use of traditional bounding boxes does not 
match their representational properties. Luo et al. [51] 
replaced the commonly used bounding box with a 
bounding sphere in order to match the annotation of 
nodules in clinical practice, in order to represent nodules 
with center of mass, radius, and local offsets in 3D space. 
A compatible sphere-based loss function (LSIoU++, where 
SIoU is fully referred to as Sphere Intersection-over-
Union) is introduced to stably and efficiently train lung 
nodule detection networks. 

5.2. Discussion 

From the above survey of CADe systems, it is clear that 
significant progress has been made in automated lung 
nodule detection systems. In this subsection, research 
trends, challenges, and future directions will be discussed. 

1) Research Trends 
Deep learning and especially CNN-based schemes 

have shown good performance and are the main methods 
for lung nodule detection and classification. As in Section 
1, this paper searches the Web of Science core database for 
literature in the last decade and uses the keywords 
"pulmonary nodule detection" or "lung nodule detection" 
with "CNN". "and "CNN" as logical expressions to get the 
statistical results, as shown in Figure 5. 

The statistics in the direction of lung nodule detection 
show that CNN-based solutions are on the rise in general. 
Among the CNN-based papers published in the decade 
2014-2023, the number of publications in 2020 was 83, 
accounting for 21%. The total number of published papers 
has reached 393 in the last decade. This shows that CNN-
based schemes are the research trend for lung nodule 
detection. 

 

Figure 5. Number of papers on CNN-based lung 
nodule detection (2014 to 2023) 

2) Challenges 
1. Insufficient medical datasets 
It is worth noting that the large number of labeled 

medical images is a key factor for the great success of deep 
learning techniques. However, there are many difficulties 
such as labeled data being too cumbersome and time-
consuming, privacy and ethical requirements, etc., which 
cause collecting such medical datasets to remain 
challenging. 

2 . Complexity of model architecture 
Typically, CNN-based detection systems achieve 

better performance by deepening the depth of the network, 
but as the depth of the network increases, the performance 
improvement can be minimal, while introducing a new 
problem of a slow training process. In addition, the 
complexity of the model architecture can make it difficult 
to deploy to servers or cell phones, resulting in limited 
application of the model. 

3. Poor interpretability of test results  
Most of the currently developed systems do not 

provide clinically relevant interpretations. However, the 
interpretability of the detection system not only allows 
radiologists to understand how the predictions are 
generated but also allows radiologists to clarify the reasons 
behind the CADe system's predictions when they are 
different from the physician's assessment, to eliminate 
doubts and concerns. 

4. Detection of micronodules 
Micronodules <3mm in diameter are too difficult to 

detect compared to other common nodules, and few studies 
have been done specifically in this area. 

3) Future directions 
To improve the performance of the CADe system and 

make a positive contribution to the lung cancer detection 
task, this paper proposes the following points in the future 
optimization direction to address the problems mentioned 
above:  

1. To alleviate the problem of insufficient medical 
datasets, data enhancement strategies can be applied. In 
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addition, a generative adversarial network (GAN)[62] can 
be used to get new images. Semi-supervised or 
unsupervised as well as self-supervised algorithms are 
most appropriate when there are CT images with missing 
labels. Of course, it is also good to use migration learning 
algorithms, by pre-training 3D CNNs on other large-scale 
datasets and then applying them to the lung nodule 
detection task. 

2. Lightweight development is necessary to address 
the complexity of the network architecture. The main 
measures are "network pruning", "quantization" and 
"knowledge distillation". Deeply separable convolution 
instead of normal convolution is also a measure to realize 
lightweight CNN. 3. 

3. For the poor interpretability of the model results, a 
system can be developed to make the detection process 
open and transparent, rather than just giving the results, so 
that radiologists can understand the exact process of 
detecting lung nodules. The TIDE[63] tool can also be used 
to analyze the causes of errors and the extent to which these 
errors affect the performance of the model. In addition, 
Grad-CAM[64] can be used to generate heat maps for 
visualization and analysis, showing the model's areas of 
interest and enhancing the interpretability of its decision-
making process. 

4. to improve the detection of micronodules, this can 
be achieved by introducing relevant techniques specialized 
for small targets. For example, the detection of small 
targets can be realized through multi-scale feature 
extraction and inverse convolution operations. The 
mechanism of the adaptive receptive field can also be 
applied to the detection of small targets. 
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