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Abstract 
Alzheimer's disease (AD), one of the major neurodegenerative diseases, has become the most common cause of dementia 
problems. Up to now, there is a lack of effective targeted therapeutic drugs and effective treatment modalities to stop the 
progression of the disease. With the continuous development of computer technology, the use of computer-aided diagnostic 
technology tools for AD early classification studies will provide clinicians with important assistance. Deep learning-based 
Alzheimer's disease (AD) imaging classification has become a current research hotspot. In this paper, we first describe the 
commonly used publicly available datasets in the AD imaging classification task; then introduce the commonly used deep 
learning classification models for AD diagnosis; secondly, we compare the studies that target different biomarkers of the 
subjects and the use of unimodal or a combination of different modalities for the early classification of AD; and finally, The 
challenges of AD classification are summarized and future research directions are proposed. 
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1. Introduction 

Alzheimer's disease (AD) is a neurodegenerative disease 
characterized by cognitive dysfunction [1]. Currently, the 
conventional diagnostic method is for doctors to utilize 
their professional knowledge and clinical experience to 
interpret brain neuroimages, and the diagnostic efficiency 
depends on the level of medical resources such as medical 
personnel and image acquisition equipment, which may 
lead to missed diagnosis and misdiagnosis due to the lack 
of timely feedback of patient information. Therefore, many 
scholars have developed advanced computer-aided 
diagnosis (CAD) systems [2, 3] to assist clinicians in 
improving the diagnostic efficiency and early prediction 
accuracy of AD. 

In recent years, CAD systems based on deep learning 
methods have achieved remarkable results in the diagnosis 
of sleeve degenerative diseases such as Parkinson's disease, 
amyotrophic lateral sclerosis, and AD [4-6]. The deep 
learning method automatically extracts image abstract 
features by constructing a deep network, and improves the 
network architecture, global or local contextual 
information extraction, and multi-scale fusion of features, 

to realize the control of subjects with Controlled Normal 
(CN), progressive mild cognitive impairment (pMCI), 
stable mild cognitive impairment (sMCI), and Alzheimer's 
disease (AD) [7]. With the development of computer vision 
technology, deep learning methods are more and more 
widely used in the field of image processing, and many 
classical neural networks have emerged, especially 
convolutional neural network (CNN) [8], which is a class 
of feed-forward neural networks containing convolutional 
computation with deep structure, and mining deep features 
of images through end-to-end learning. CNN is a type of 
feed-forward neural network with convolutional 
computation and deep structure, which learns end-to-end to 
mine the deep features of an image without the need for 
complex manual feature extraction, CNN and its derivative 
models have shown great potential in the field of early 
diagnosis and prediction of AD patients' disease course [9-
11]. 

In this paper, we firstly organize the commonly used 
datasets for Alzheimer's disease research, and secondly, we 
introduce the commonly used deep learning models for AD 
classification based on deep learning; subsequently, we 
introduce the research progress in AD diagnosis [12, 13] 
using different modalities; finally, we introduce the 
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challenges in deep learning-assisted AD diagnosis, and 
finally, we provide an outlook on the future research 
direction. 

2. Datasets

Datasets are one of the important factors for conducting 
deep learning research. In recent years, with the 
development of medical information technology, large-
scale and standardized neuroimaging datasets provide 
support for deep learning in the field of AD-assisted 
diagnosis. Now the data samples of global public datasets 
are abundant, and researchers can choose single-modality 
data or joint multi-modality data from the corresponding 
datasets to construct assisted diagnosis models according 
to their work requirements. Table 1. summarizes the 
commonly used datasets in Alzheimer's disease research, 
which are organized and introduced through the paper 
reports of AD-related journals and related open-source 
dataset websites in recent years. 

Table 1. Commonly used datasets for Alzheimer's 
disease 

Datasets Years Stage Types and 
numbers 

Imaging 
type 

ADNI 2004 

ADNI-1 
ADNI-
GO/2 

ADNI-3 

483 CN 
551 MCI 
437 AD 

300 sMCI 
150 pMCI 

MRI、
PET 

OASIS 2007 
OASIS-1 
OASIS-2 
OASIS-3 

701 CN 
503 MCI 
164 AD 

MRI、
PET 

AIBL 2006 None 
768 CN 

133 MCI 
211 AD 

MRI、
PET 

MIRIAD 2013 None 23 CN 
46 AD MRI 

2.1. ADNI 

ADNI was founded in 2003 and is currently the most 
successful and widely used comprehensive research dataset 
for Alzheimer's disease. It has the characteristics of 
multicenter and cross disciplinary research, mainly 
studying human brain MRI neuroimaging, human brain 
PET imaging, other human biomarkers such as 
cerebrospinal fluid (CSF), blood biomarkers, as well as 
human genetic information, clinical data, 
neuropsychological evaluation, and other information. 800 
adults from 59 countries and regions around the world have 
been recruited as participants, with an age range of 55 to 
90 years old. Providing valuable clinical medical data for 
global AD research, ADNI has become a core data resource 
adopted by researchers [14]. 

2.2. OASIS 

The OASIS dataset consists of 2 major categories, the 
cross-sectional dataset and the longitudinal dataset. The 
cross-sectional dataset covers MRI data resources of 416 
subjects aged 18 to 96 years. The longitudinal dataset 
covers the MRI data resources of 150 subjects aged 60-96 
years, and each subject generally has 2 or more scans with 
a full-year interval. Currently, OASIS is a core data 
resource second only to ADNI [15]. 

2.3. AIBL 

The AIBL provides survey statistics on baseline 
demographics, diagnosis, cognitive function, health, and 
lifestyle for 1,000 subjects aged 60 years and older. 
Approximately 25% of the subjects participated in amyloid 
PET imaging scans with the Pittsburgh Compound 
(PiBPET) and MRI brain imaging. The AIBL's repeated 
assessment of subjects over 18-month intervals allows for 
more adequate identification of different biomarkers and 
strengthens the predictive criteria for AD in the context of 
the involvement of cognitive parameters and lifestyle, 
among other factors. The AIBL plays an important role. 

2.4. MIRIAD 

The MIRIAD dataset subjects consisted of 46 individuals 
with mild Alzheimer's disease and 23 normal controls and 
contained a series of longitudinal volume T1-weighted 
MRI scan medical imaging images of the above subjects. 
All of these images above consisted of the same sequence 
of 708 scans acquired by the same radiologic technologist 
using the same scanning equipment. Scan intervals ranging 
from 2 weeks, 6 weeks, 14 weeks, 26 weeks, 38 weeks, 52 
weeks, 18 months, and 24 months from baseline were 
included in these images [16]. The dataset contains records 
of subjects' status regarding gender, age, and score on the 
Summary Mental State Examination. 

3. Common Classification Models

3.1. Convolutional neural network (CNN) 

CNN is the most widely used artificial neural network in 
deep learning, inspired by the principle of optic nerve in 
primates. It can preserve the image features while 
compressing the data volume.CNN is mainly composed of 
four parts: the convolutional layer, excitation layer, pooling 
layer, and fully connected layer [17]: firstly, the main 
function of the convolutional layer is to extract and analyze 
the image through convolutional kernel computation and 
unify the output size of the image by padding, and it can 
also be adjusted to achieve the height and width of the 
feature map by adjusting the parameter's step size to reduce 
The excitation layer uses ReLU, Sigmoid, and other 
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excitation functions to introduce nonlinear factors, which 
makes the final expression of the convolutional neural 
network more generalized; the main function of the pooling 
layer is to extract the maximum features from the 
convolutional neural network under the guarantee of local 
invariance of the features, which prevents the data from 
overfitting and underfitting while compression of the data 
and enhances the robustness of the neural network. After 
that, the fully connected network built by the fully 
connected layer receives the extracted data features and 
performs classification to evaluate the final output. Figure 
1. shows the common CNN model for input 2D images
including the input layer, convolutional layer, pooling
layer, fully connected layer, and output layer:

Input Image

Convolutional 
layer Pooling layer Convolutional 

layer Pooling layer Fully connected 
layer Output layer

Feature Map Feature Map Feature Map Feature Map

Figure 1. CNN model framework diagram 

3.1.1. 2D CNN 
2D CNNs for AD diagnosis are usually based on 2D slices 
of sagittal, cross-sectional, and coronal scans from 2D 
brain neuroimages such as MRI of the brain, which are 
mainly selected from structurally or functionally 
predefined brain regions, and representative features are 
extracted from each region. 

Khagi et al. [18] used the OASIS dataset tuned 
AlexNet to extract sagittal and cross-sectional lesion 
features from 2D MRI slices. However, its recognition 
performance depends on the initial pre-training weights 
resulting in a weak ability to filter several residual features 
in MRI images. To remove the irrelevant features from the 
image, Lee et al. [19] proposed a feature selection method 
combining entropy slicing and outlier removal to extract 
the local information from the image, and the accuracy of 
this model in the binary classification of CN/AD in the test 
set reached 98.53%. 

However, the above studies focus on screening more 
valuable multi-slices for training, which makes it difficult 
to capture the subtle lesion information on the image. For 
this reason, Nawaz et al. [20] proposed a Deep-CNN 
network. The convolutional layer uses 4~128 size filters to 
extract the feature representations for each stage of AD 
classification. However, the deep mesh structure of this 
algorithm takes up a lot of training time. To solve the above 
problem, Jain et al. [21] have fine-tuned the pre-trained 
network VGG-16 based on screened MRI coronal slices to 
reduce the cost of training time. Unlike the network 
framework improvement in the above literature, Saratxaga 
et al. [22] made an attempt at the training strategy and used 
an efficient CLR triangular learning strategy to construct 

BrainNet2D convolutional mesh for AD classification, 
which greatly accelerated the convergence speed of the 
diagnostic network. 

In AD classification diagnosis, 2D CNNs often 
increase the depth and complexity of the mesh end to 
improve the nonlinear expression ability of the model, but 
this approach is accompanied by the proliferation of the 
number of network parameters and gradient dissipation. 
Therefore, Tufail et al. [23] used depth-separable 
convolution to construct a lightweight mesh end, which 
effectively reduces the number of convolutional 
parameters by separating the zone city information and 
channel convolution. To address the gradient problem of 
deep mesh endings, Puente-Castro et al. [24] introduced the 
idea of residual learning while deepening mesh endings, 
and connected feature vectors such as gender and age of 
subjects with the full connectivity layer of the model to 
improve the model extensibility and generalization, but the 
simple fusion of demographics ignores the heterogeneity of 
the pathogenesis of AD among different races. For this 
reason, Bae et al. [25] cross-trained the net terminals using 
two cross-racial datasets, Seoul National University 
Bundang Hospital (SNUBH) and ADNI, and the AD 
recognition accuracy reached more than 88% in both 
datasets. 

The above analysis shows that the method of 2D 
convolutional neural net-termination has the following 
advantages: (1) The combination of feature selection 
algorithms such as outlier removal and entropy slicing can 
improve the feature utilization of 2D sliced images, which 
can help to improve the accuracy of AD classification. (2) 
The use of pre-trained models such as AlexNet as 
initialization or feature extractor saves the detailed and 
tedious hyper-parameter steps, which can promote the 
effectiveness of the end-of-network training and learning. 
(3) MRI imaging is rich in brain details, which is conducive 
to the construction of deeper 2D convolutional neural nets
to be used for high-precision recognition and diagnosis [26,
27].

However, the method also has the following problems 
that need to be solved: (1) For the evaluation of 
stereoscopic regional atrophy in MRI, the 2D convolution 
often needs to analyze multiple cuts, which results in very 
rough feature extraction and fails to capture the spatial 
information of the image completely. (2) 2D CNN 
diagnostic model initializes the net end by migration 
learning method, although it can reduce the difficulty of 
model training, in the practical application of AD 
classification and diagnosis, the stability of target type 
discrimination is low for complex neuroimages such as 
MRI. (3) The 2D CNN deep learning algorithm applied to 
MRI is often based on a single-scale feature extraction 
method to distinguish between the CN and AD populations, 
and this two-classification cannot provide effective 
information about early brain changes to achieve diagnosis 
and prediction of the MCI stage. (4) The deep neural net-
end structure implies the need to deal with large-scale data 
and a large number of parameters, and it is difficult to avoid 
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the problems of gradient dissipation and net-end 
performance degradation faced in the training phase. 

3.1.2. 3D CNN 
Two-dimensional convolutional neural networks (CNNs) 
have limited ability to express global features based on 
MRI 2D slices, which can easily lead to the loss of spatial 
and organizational information of the brain, while 3D 
CNNs can make better use of 3D features and extract high-
resolution features from them, thus effectively improving 
the AD classification accuracy. In contrast, 3D 
convolutional neural networks can make better use of the 
3D characteristics of images and extract high-resolution 
features from them, thus effectively improving the 
classification accuracy of AD. 3D CNNs for AD diagnosis 
are mainly based on two methods: (1) a morphological 
method that quantitatively analyses the differences in the 
local compositions of different brain tissues in the whole-
brain MRI images in terms of voxels [28], to measure the 
occurrence of cerebral atrophy in the brain regions; (2) a 
morphological method that selects the regions of interest 
for AD, and then selects the regions of interest for AD, and 
then selects the areas of interest for AD and then selects the 
areas of interest for AD. (2) a predefined method to select 
the region of interest (ROI) of AD to form a 3D image 
block and extract subtle local lesion features from it in 
high-dimensional brain images. 

Maqsood et al. [29] combined 3D voxels of brain grey 
matter, white matter, and cerebrospinal fluid into a single 
image, and used a migration learning method to combine 
abstract feature representations of MRI brain region 
structures and AD/CN obtained 89.6% classification 
accuracy. Considering the high-dimensionality of whole-
brain voxel features, Basheera et al. [30] proposed a voxel-
by-voxel 3D CNN network based on independent 
component analysis. The model shows good specificity and 
sensitivity for grey matter voxel features. To further refine 
the features at different semantic levels and overcome the 
limitation of the difficulty in obtaining high-standard 
samples, Mehmoo [31] and others fine-tuned the VGG-19 
network to capture the spatial features of voxels of 3D MRI 
signals and optimized the training set by combining with 
data augmentation methods, but the final structure of the 
network would be accompanied by gradient problems 
when extracting high-dimensional features. To achieve 
gradient optimization, Karasawa et al. [32] proposed a 
ResNet-based 3D convolutional AD diagnostic mesh and 
removed 50% of the nodes of the network to further 
simplify the number of parameters. However, achieving a 
balance between model compression and maintaining 
performance is still challenging. The above 3D voxel-
based methods can assess the global changes in the 
anatomical structure of a patient's brain but are weak in 
extracting local small-size features in high-dimensional 
brain images. To solve this problem, some studies have 
selected candidate frames of specific regions of interest 
(ROIs) in AD patient images as feature inputs to the end of 
convolutional neural nets. Zhu et al. [33] proposed a patch-
net with spatial attention blocks to extract the 

discriminative features of ROI nuggets to improve the 
classification accuracy of the model. 

The above analysis shows that the 3D convolutional 
neural network method has the following advantages: (1) 
The 3D convolutional neural network can make full use of 
the 3D spatial structure information between voxels in MRI 
images to extract more expressive and clinically 
meaningful semantic features, to achieve the accurate 
diagnosis of AD diseases. (2) The voxel-based method can 
quantitatively detect the density difference of brain tissue 
without the need of a priori assumption on the region of 
interest, which is objective and comprehensive. (3) The 
method based on ROI image blocks can make full use of 
the effective information of MRI images to extract the 
subtle local features of high-dimensional brain images. 

However, the method also has the following problems 
that need to be solved: (1) The feature vectors extracted 
when analyzing whole-brain MRI images are high-
dimensional, which results in a long training time for the 
neural nets, a large number of computational parameters, 
and a high cost of computational resources, so the future 
research direction needs to be explored towards the path of 
a lightweight model under the premise of maintaining the 
performance of the nets. (2) The training of 3D 
convolutional neural nets in the field of AD analysis 
requires a large amount of sample data, and there is a lack 
of large-scale standard databases, such as ImageNet, so 
deepening the structure of the nets to improve the 
performance of the nets may cause overfitting due to the 
lack of sample size. (3) Abnormalities of the brain lesions 
in all diseased populations do not always occur in the same 
brain regions of the selected ROIs, and fixing the brain 
regions of the same ROIs may result in the loss of critical 
information used to distinguish patients from others. 
critical information used to differentiate patients. 

3.2. Recurrent neural network (RNN) 

RNNs have memory, which CNNs do not have, and are 
suitable for learning sequential nonlinear features, so they 
are usually applied to the field of natural language 
processing. Although RNNs are not often applied to the 
field of computer vision, there are still a few researchers 
who have applied RNNs to AD imaging classification tasks 
because AD is a long-term developmental disease with 
obvious time series. For example, Abuhmed et al. [34] used 
RNN to learn the image features of a subject in the past 
time to predict the future condition of that subject. 

It can be visualized from Figure 2 that the RNN has 
an input 𝑥𝑥𝑡𝑡 at each moment, and the output ht at the current 
moment is obtained after the state 𝐴𝐴𝑡𝑡  of the network at 
moment t. The network state at moment t is jointly 
determined by the network state at the moment (t1) as well 
as the inputs, and such a design allows the network to have 
a memory function in the time series. The bidirectional 
recurrent neural network (BRNN) and bidirectional long 
short-term memory (BiLSTM) are both improved models 
based on RNN. 
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Figure 2. RNN model framework diagram 

In terms of model selection, recurrent neural networks 
such as LSTMs and other models such as CNNs and graph 
attention layers are usually used together to better make 
dynamic temporal features useful for AD classification. 
For example, Haijing Sun et al. [35] combined 
convolutional neural network with LSTM for diagnosing 
AD. The classification based on this model extracts spatial 
features by convolutional neural network, and finally a 
three-layer LSTM model is constructed to extract the time-
varying features of the spatial features, which achieves an 
accuracy of 93.5% for AD classification. Lu Zhang et al. 
[36] proposed a DCMAT network consisting of a recurrent
neural network map attention layer, which uses the LSTM
to deal with dynamic temporal features of MRI signals.

The above analysis shows that the method of recurrent 
neural network (RNN) has the following advantages:(1)It 
can fully extract the dynamic temporal features from the 
patient's time interval follow-up data, thus accelerating the 
process of early diagnosis of AD. (2) For irregularly 
collected clinical data, RNN can make the input data stable 
in dimensional changes and has the ability to store the data 
for a long period of time. However, the following problems 
exist in this method: (1) the application of long-time 
interval follow-up data will generate a very large amount 
of computational volume and computing time. (2) 
Although LSTM solves the gradient problem of the 
traditional RNN, the classification accuracy on small data 
sets is not ideal. 

3.3. Graph neural network (GNN) 

Compared with the fully connected layer in the basic 
network structure of the above neural network, the graph 
neural network has one more adjacency matrix.GNN 
transforms the attributes of the input graph such as node 
edges and global context under the guarantee of graph 
alignment invariance but does not change its connectivity, 
and the GNN can achieve information exchange and 
attribute updating of its critical points through message 
passing similar to convolutional operation. Based on multi-
channel inputs or outputs, the conduction of information 
data can be better achieved. Compared with CNN, GNN 
can recognize more complex dynamic graphs and classify 
them. Currently, graph neural networks include graph 
convolutional networks, graph generative networks, graph 

attention networks, and so on, as shown in Figure 3. It is 
also more capable of recognizing the size and structure of 
graphs without a fixed order of nodes in the processing of 
graph parameters. The main purpose of using GNN is to 
extract and integrate features to the nodes, which is 
especially suitable for fast integration of irregular and 
unfixed data information. For most of the neural networks 
that can only deal with the analysis of data based on fixed 
input formats, GNN stands out for its advantages in 
processing complex information. Currently, GNNs are 
being used in chip design, traffic flow sensing and 
prediction, autonomous driving, drones, medical, and other 
applications [37, 38]. 

X1

X2

X3
X4

X5

Z1

Z2

Z3 Z4

Z5

Graph Convolutional Network
generated classifiers

Classification

Figure 3. Framework of Graph Convolutional 
Network 

Sarah Parisot et al. [39] first used graph convolutional 
neural networks to analyze fMRI images in ADNI in 2018. 
Classification based on the graph convolutional neural 
network approach begins by representing the population as 
a sparse graph whose nodes are associated with imaging-
based feature vectors. The study evaluation explored the 
impact of the individual components of the framework on 
disease prediction, comparing it to an alternative baseline 
with an accuracy of 80.0% on the ADNI dataset. 

Xiaoxiao Li et al. [40] proposed an interpretable 
graph neural network framework with a new regularised 
pooling layer, where the regions of interest that are more 
important for AD classification are calculated from the 
pooling scores of the nodes in the pooling layer. This 
method achieves higher accuracy than ordinary graph 
neural networks by regularising the pooling function. Xin 
Bi et al. [41] on the other hand, using the research on the 
final classification of the brain network, proposed a graph 
neural network with an ExtremeLearning Machine (ELM) 
aggregator, which has a very fast aggregation speed and 
powerful aggregation capability. ChundeYang et al. [42] 
proposed a method called PSGR to classify fMRI images 
by inputting the transformed brain maps into a graph 
attention network. 

Graph Convolutional Networks can effectively 
process graph data but cannot handle high-dimensional 
brain networks and noise well. Lanting Li et al. [43] 
proposed a sparse brain network ensemble framework TE-
HI-GCN model that combines hierarchical graph 
convolutional networks and migration learning to address 
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this problem. This model proposes an integrated 
framework involving hierarchical graph convolutional 
neural networks and sparse brain network migration 
learning compared to the traditional graph convolutional 
network model, which can improve network embedding 
learning for disease diagnosis. 

4. Classification of AD based on different
modality imaging

4.1. A deep learning approach based on 
unimodal 

A modality is a form in which something occurs or exists 
and can be information such as sounds, images, and words. 
For AD early diagnosis research, it can be AD biomarkers 
such as MRI, PET, and SPECT. The use of different 
modalities of biomarkers for AD early classification 
studies is one of the main tasks of deep learning methods 
applied to biomedical research. Next, the application of 
different unimodal neuroimaging in AD diagnosis will be 
presented. 

4.1.1. sMRI images for AD classification 
AD is a neurodegenerative disease that manifests itself as 
functional changes caused by structural changes in the 
patient's brain, which in turn cumulatively cause structural 
changes. Such structural changes will be well reflected in 
sMRI images, especially T1-weighted imaging, MRI does 
not produce ionizing radiation, which is harmless to the 
human body, and sMRI is also the modality with the largest 
amount of data in the publicly available dataset, so sMRI 
images are the most widely used in the imaging-based 
classification of AD. 

YiGiT et al. [44] used axial, sagittal, and coronal 
planes of sMRI images as inputs to CNNs respectively, and 
found that the classification accuracy using axial plane 
projection data reached up to 83% for AD and CN 
classification tasks: for MCI and CN classification tasks, 
the classification accuracy using sagittal projection data 
reached up to 82%. Deep learning-based image 
classification tasks require a large amount of data as a 
training set, and CNN, as a supervised learning model, 
relies on labeled images, and labeled medical images are 
difficult to obtain. To solve such a problem, Bi et al. [45] 
proposed an unsupervised learning-based classification 
model for AD, MCI, and CN, where the training set uses 
unlabelled SMRI images, combines principal component 
analysis (PCA) and CNN for feature extraction, and uses 
k-means clustering algorithm (k-eans) for feature
extraction. clustering algorithm (k-means) for
classification, the final classification accuracy is 97.01%
for AD and MCI, and 91.25% for AD, MCI, and CN.

4.1.2. fMRI images for AD classification 
Many researchers have used fMRI to study the AD 
classification problem. MRI estimates brain activity by 

detecting blood oxygen level dependence, sacrificing 
spatial resolution but improving temporal resolution. fMRI 
can be used to study task-specific relevant brain regions 
and is often used in psychology and cognitive science. 
fMRI, among other things, can be used in resting-state MRI 
to enable the functional regions of the human brain and 
functional networks to be constructed, and also provides 
important relationships on the temporal order of regions 
[46], therefore, for diseases affecting cognitive functions, 
fMRI can provide information on the function of brain 
regions compared to sMRI. Parmar et al.. [47] selected 53 
3D MRIs with continuous time series from 4DfMRI as the 
input of 3D CNN, and after five convolutional layers and 
three fully connected layers, finally obtained the 
classification model with AD and CN classification 
accuracy of 94.58%. Bi et al. [48] constructed a brain 
spectrum based on an AAL board, then constructed a brain 
network, learned neighbouring positional features by RNN, 
and finally used an extreme learning machine (ELM) as a 
classifier, which resulted in an AD and CN classification 
AUC of 91.3%. 

4.1.3. PET images for AD classification 
PET is a relatively advanced imaging technique in nuclear 
medicine, and since one of the distinguishing features of 
AD is the accumulation of amyloid plaques in the brain, 
PET imaging of amyloid allows physicians to detect brain 
plaques in patients with AD, and some studies [49] have 
shown that the introduction of PET images of amyloid has 
had a significant impact on the diagnosis of AD disease and 
that 82% of patients with MCI and 91% of patients with 
dementia were recommended by clinicians to take 
medication for AD, respectively, as a result of the 
significant amyloid deposits in their brains as shown by 
PET brain scans. For patients with significant amyloid 
deposits on PET brain scans, 82% of patients with MCI and 
91% of patients with dementia were advised by clinicians 
to take AD-specific medications, whereas only 40% of 
patients with MCI and 63% of patients with dementia were 
taking AD-specific medications before PET scanning [50], 
showing that amyloid positivity is highly correlated with 
AD, which can be evidenced by the use of deep learning 
AD image classification based on PET data. which can also 
be corroborated in deep learning AD image classification 
based on PET data. 

Punjabi et al. [51] compared in detail the effect of 
SMRI images and AV-45 amyloid PET images on AD and 
CN classification efficacy. In the paper, 1299 sMRI data 
and 585 AV-45 amyloid PET data were used, and the CNN 
was trained using all SMRI data, all PET data, and the same 
amount of SMRI data as PET data, respectively, and the 
results showed that only about half the amount of PET data 
from sMRI was used to achieve 85.15% accuracy rate in 
AD and CN classification accuracy. 
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4.2. A deep learning approach based on 
multimodality 

Multimodal deep learning is relative to unimodal and refers 
to the use of information from multiple unimodal 
modalities in deep learning methods to achieve information 
fusion between different modalities. Many researchers 
have used multimodal data for AD early classification 
studies[52, 53]. 

Forouzannzhad et al. [54] combined positron emission 
tomography (PET) and magnetic resonance imaging (MRI) 
multimodal imaging techniques and standard 
neuropsychological test scores to conduct a classification 
study for the early diagnosis of AD using a deep neural 
network DNN (Deep Neural Networks). The classification 
accuracy of CN with early mild cognitive impairment 
EMCI was as high as 84.0% for normal controls, and 
84.1%,96.8%,69.5%,90.3%, and 80.2% for CN with late 
mild cognitive impairment LMCI, CN with AD, EMCI 
with LMCI, EMCI with AD, and LMCI with AD, 
respectively. In contrast, the classification accuracy of CN 
with EMCI on MRI images alone was only 68.0%. The 
study demonstrated that the multimodal approach was 
superior to unimodal image analysis. 

Kang et al. [55] constructed a migration learning 
method for the VGG16 model based on SMRI and 
Diffusion Tensor Imaging DTI (Diffusion Tensor Imaging) 
bimodal data for classification study of EMCI and CN. The 
data were obtained from the ADNI dataset, and the 
experiments used the multimodal fusion strategy to merge 
the slices with the same index into RGB slices to form a 
slice dataset for inputting into the model for training, and 
LASSO (Least Absolute Shrinkage and Selection 
Operator) algorithm was used to extract the part of the 
features related to the disease of EMCI, and 94.2% of the 
features were obtained in the experiment. The experiment 
obtained a classification accuracy of 94.2% and a 
sensitivity of 97.3%. The experimental results show that 
multimodal data can provide more and more useful 
information for distinguishing EMCI and CN and validate 
that DTI images can be used as an important biomarker for 
EMCI from a clinical point of view. 

Khvostikov et al. [56] compared the unimodal data 
used in experiments by fusing SMRI and DTI imaging 
modalities in the hippocampal region of interest city and 
the AD classification algorithm based on the 3D-CNN 
model and obtained an accuracy of 93.3% in the 
multimodal case in the classification of AD and MCI, 
which is a big advantage compared to the 65.8% in the 
unimodal case of sMRI. This is an advantage over the 
65.8% accuracy in the sMRI unimodal case. To balance the 
classes with different sizes of data in the experiments, the 
data augmentation method is used to eliminate the 
influence of different sizes of data on the net final training 
process. 

5. Challenges and prospects

5.1. Challenges 

With population aging becoming a global trend, AD has 
become one of the leading causes of death among people 
in developed countries. As a neurodegenerative brain 
disease, AD seriously affects the quality of life of patients 
and families. Therefore, early diagnosis and detection of 
AD are of great importance to patients and their families. 
In this paper, we systematically review the current status of 
the application of deep learning on AD classification [57] 
and summarise the latest research progress of the model, 
which shows that deep learning has a key role in the early 
diagnosis of AD, but some problems need to be solved at 
present: 

(1) Model performance is limited by data sources.
Existing studies based on MRI, PET, and other imaging 
histology in AD are mostly retrospective analyses of 
different scanning equipment, different imaging 
parameters and scanning modalities in different medical 
centers will vary. Therefore, it will affect the classification 
effect of the neural network model on diseases, and there 
will be a situation that the model is trained better on a 
certain dataset, but performs poorly on other datasets, 
which makes it difficult to popularise the application in the 
actual clinic. 

(2) The diagnostic performance of the multimodal
model needs to be improved. The fusion algorithms for 
data in different formats (image and laboratory data) need 
to be improved. Considering the practical clinical 
application of multimodal technology, the model may be 
affected by the loss of its modal data, and if only the 
existing complete modal data are used for training. It will 
further exacerbate the small sample problem and lead to the 
degradation of the model performance. 

(3) The "black box" nature of deep learning methods
leads to poor model interpretability. The deep neural 
network includes multiple hidden layers, which leads to 
great uncertainty in the feature selection and decision-
making process. Deep learning-based AD classification of 
three-dimensional, multimodal medical images involves 
nonlinear convolution and pooling of different dimensions 
from the source data, making it difficult to interpret the 
importance of feature recognition in the original data. 

5.2. Prospects 

Combining the above issues, the future development 
direction of deep learning in the classification application 
of AD should focus on improving the algorithmic accuracy, 
increasing the model's ability to learn from small samples, 
and optimising the existing deep learning model to meet 
the needs of classifying AD at multiple stages. In the future, 
further research can be carried out in the following aspects: 

(1) AD classification study based on incomplete
multimodal images 

A common problem in AD assisted diagnosis studies 
based on multimodal images is the problem of missing 
images. In the clinic, most subjects refuse to undergo PET 
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scanning due to the high cost of PET scanning or 
radiological hazards. In previous multimodal fusion 
studies, most of the subjects with missing modal data were 
directly abandoned for adoption. In recent years, 
adversarial generative networks (GANs) have been 
successfully applied to learn bi-directional mappings 
between related images. Since MRI and PET images of the 
same subject are potentially correlated, the bi-directional 
mapping between MRI images and PET images can be 
learnt with the help of GAN to generate the missing modal 
data of the subject, saving a lot of human and financial 
resources. 

(2) AD classification research based on different
biomarkers 

Improve the accuracy of early diagnosis of AD by 
fusing data from different biomarkers. The etiology of AD 
is complex and heterogeneous, and fusing multimodal is 
better than unimodal methods for classification. Adding 
other biomarkers based on neuroimaging, such as clinical 
diagnostic data and genetic data, is conducive to further 
understanding the underlying physiological mechanisms of 
Alzheimer's disease and improves the classification 
accuracy for MCI transformation prediction. 

(3) AD classification research based on
interpretability 

Combining visualisation techniques to improve deep 
learning model interpretability. Deep neural networks 
combined with visual analysis methods such as class 
activation maps to understand the distribution 
characteristics of focal brain regions, improve model 
transparency while ensuring decision-making accuracy, 
further explain the relationship between imaging features 
and diagnostic results, and assist doctors in clinical 
decision-making. In addition, the interpretability of the 
model can be further enhanced by inputting ablation 
experiments, usually by removing or retaining certain brain 
regions in the input image to investigate which brain 
regions contribute more to AD image classification. If the 
removal of certain brain regions does not have a negative 
effect on the classification result, these brain regions are 
considered to have little contribution; if the addition of 
certain brain regions has a positive effect on the 
classification result, these brain regions are considered to 
be favourable for AD classification. 
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