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Abstract 
A convolution graph attention model based on self-distillation convolutional graph attention network (SDC-GAT) is 
proposed for multi-channel electroencephalograph (EEG) emotion recognition. Firstly, two-dimensional feature matrix 
based on EEG time-domain features are constructed, and the matrix is fed into the graph attention neural network to learn 
the internal connections between electrical brain channels located in different brain regions. Meanwhile, the three-
dimensional feature matrix is constructed according to the relative positions of the electrode channels, and the self-distillation 
network is employed to extract local high-level abstract features containing electrode spatial position information from the 
three-dimensional feature matrix. Finally, outputs of the two networks are integrated to determine the emotional states. 
Experiments were performed on the DEAP dataset. The experimental results show that the spatial domain information of 
the electrode channel and the internal connection relationship between different channels are beneficial for emotion 
recognition. In addition, the proposed model can effectively fuse this information to improve the performance of multi-
channel EEG emotion recognition. 
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1. Introduction

Humans produce emotions as a physiological state in the face 
of external stimuli [1]. Emotion is a crucial factor in human 
life, which affects people's ability to work, spiritual state and 
judgment. Therefore, the recognition of emotions is essential 
for medical diagnosis, human-computer interaction, product 
design, and other fields [2]. Due to the ability of humans to 
self-camouflage, it is inaccurate to use non-physiological 
signals such as facial expressions to predict changes in human 
emotions. Electroencephalogram (EEG) signals are 
physiological signals, which can represent different 
emotional states and have the advantage of being difficult to 
camouflage. It manifests as waves of different frequencies, 
amplitudes, and shapes, which can accurately reflect 
fluctuations in emotional states in real time. As one of the 
most active research topics in affective computing, EEG 
emotion recognition has been widely concerned by the 

computer vision and pattern recognition research community 
[4]. 
Deep neural networks have shown good results in the field of 
EEG emotion recognition. Convolutional Neural Network 
(CNN) is an important deep learning model [5-8]. It can 
comprehensively mine and fuse the representation 
information of samples and is applied to EEG emotion 
recognition. However, a single network with fewer 
parameters cannot get more valuable information from 
training. When a network has a large number of parameters, 
it can be overfitted, which can affect performance. 
Knowledge distillation (KD) is a training method that can be 
used for the compression of ensemble models. The purpose 
of knowledge distillation is to use a network of teachers of 
high complexity to instruct a network of students of low 
complexity during training. However, the traditional 
knowledge distillation has two problems: teacher mode 
selection and knowledge transfer efficiency. Self-distillation 
(SD) [12,13] circumvents these problems. Self-distillation 
first appends several shallow classifiers based on concerns 
after the middle layers of the neural network at different 
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depths. In this paper, the self-distillation method is introduced 
into EEG emotion recognition, and the convolutional neural 
network based on self-distillation is used to extract the local 
spatial information of EEG signals. Self-distillation not only 
reduces training overhead, but also has higher recognition 
accuracy. 
Due to the complex structure of the human brain, the 
arrangement of each channel is irregular during the EEG 
signal acquisition process. In the existing research, the 
continuous EEG signals are converted into a regular grid 
structure for signal sampling. But the assumption of this 
approach is that the electrodes are equidistant and ignores the 
functional neural connections between different parts of the 
brain. The EEG feature extraction process is oversimplified, 
so that the complex neural connectivity between different 
electrode locations cannot be explored. In order to solve this 
problem, some studies have used the connection relationship 
between electrode positions to construct the topological map 
structure of EEG signals. Then, the graph neural network 
(GNN) is used for EEG emotion recognition, and the graph 
neural network can update the state of vertices by exchanging 
neighborhood information periodically. Song et al. [14] 
proposed a multi-channel EEG-based Dynamic Graph 
Convolutional Neural Network (DGCNN) for emotion 
recognition. Yin et al. [15] proposed a fusion model of Graph 
Convolutional Network (GCN) and Long Short Term 
Memory (LSTM), and obtained better sentiment 
classification results on the DEAP dataset. Some studies 
[16][17] have used graph theory-based EEG network 
measurements or single-channel EEG complexity estimation 
for affective state studies.  
Although deep learning has gotten good results in sentiment 
recognition, there are still some problems. Firstly, the 
location of EEG signal channels is complex, and it is worth 
exploring how to use the position relationship between 
different electrodes in the brain to improve the efficiency of 
emotion recognition. However, the approach of GCN needs 
to predetermine the weights between different connected 
nodes, which limits the flexibility and generalization ability 
of the network. Therefore, the use of graph attention network 
(GAT) to parameterize the weights between nodes is more 
helpful for sentiment recognition. Secondly, a single network 
with fewer parameters cannot get more valuable information 
from training. When a network has many parameters, it can 
be overfitted, which can affect performance. Therefore, self-
distillation is introduced into emotion recognition to improve 
the performance of sentiment recognition while reducing 
network parameters. In order to solve the above problems, 
this paper proposes a self-distillation convolutional graph 
attention network (SDC-GAT). It uses a distillation network 
to learn the spatial position information of the electrode 
channels through a 3D feature matrix. Graph attention neural 
networks are used to obtain neural connections between 
different brain regions. The multi-head self-attention 
mechanism is used to adaptively adjust the adjacency matrix 
in the network, and the intrinsic relationship between EEG 
signals in different brain regions and different brain regions 
was fully utilized. Finally, the extracted high-level abstract 

features are fused and classified into the classification 
module. 

The main contributions of this paper are as follows: 

(i) The proposed SDC-GAT model can make full use of the 
intrinsic relationship between EEG signals in different 
brain regions and brain regions. Specifically, it can not 
only capture the global features of the brain through the 
connected edges on the undirected graph, so as to obtain 
the discriminant signals of different receptor domains of 
the EEG signal in the global learner, but also use the 
convolutional network based on distillation to extract the 
local features of each channel of the EEG signal. 

(ii) In the graph attention neural network, the multi-head 
self-attention mechanism was used to adaptively adjust 
the adjacency matrix in the network, and the attention 
mechanism was used to parameterize the weights 
between nodes, which can improve the performance of 
emotion recognition. 

(iii) Experiments were carried out on the DEAP dataset, and 
the experimental results show the superiority and 
rationality of the SDC-GAT model. 

2. Related work 

2.1. Emotion recognition model 

Arousal and valence are the two main indicators of affective 
state, and two-dimensional affective models can be built 
based on these two dimensions. In this paper, the arousal-
valence model proposed by Russell [18] is adopted, with 
arousal as the abscissa and valence as the ordinate. Arousal 
changes from inactive (e.g., uninterested, calm) to active 
(e.g., excited, alert), measuring activation of the sympathetic 
nervous system. Valence ranges from negative (e.g., nervous, 
sad) to positive (e.g., happy), measuring subjective attitudes. 
In the arousal dimension, if the score is less than 5, the 
definition label is low arousal, and if the score is higher than 
5 or equal to 5, the definition is high arousal. Similarly, the 
labels on the valence dimension can be defined as low 
potency and high potency, respectively. 

2.2. Emotional feature extraction 

The time-domain features mainly capture the temporal 
statistics of EEG signals, and the common time-domain 
features include Hjorth features [19], higher-order crossover 
features [20], and event-related potentials [21]. In addition, 
statistical features such as mean, power, median, standard 
deviation, skewness, relative band energy, kurtosis, etc., are 
also used for emotion recognition. 

2.3. Knowledge distillation 

As one of the most widely used techniques in deep learning, 
the methods, applications, and principles of knowledge 
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distillation have attracted more and more attention [22-24]. 
The idea of using larger models to guide the training of 
smaller models was first proposed by Bucilua et al. for the 
compression of ensemble models [25]. Hinton et al. then 
extended this idea to neural networks, proposing the concept 
of "distillation" for the first time [26]. Then, based on the 
feature diagram [27], attention [28], solution process flow 
[29] and figure [30], an effective distillation method was 
proposed to transfer the knowledge of the teacher model to 
the student model. In addition to the compression and 
acceleration of neural networks, knowledge distillation has 
applications in other contexts. BAN [31] improves the 
accuracy of multiple student models by sequentially training 
them. Bagherinezhad et al. used knowledge distillation to 
refine the quality of labels and achieved significant accuracy 
improvements in classification [32]. Liu et al. [33] applied 
knowledge distillation to visual tasks such as object detection, 
segmentation, and depth prediction. Gupta et al. [34] 
proposed cross-modal knowledge distillation, which guides 
neural networks to train on unlabeled depth prediction and 
optical flow images. In addition, knowledge distillation is 
also used for neural network architecture search [35], semi-
supervised learning, and distributed neural network training. 
Knowledge distillation can greatly reduce the number of 
parameters, thereby reducing the demand for resources such 
as CPU, memory, and energy consumption. 

3. EEG emotion recognition based on 
SDC-GAT model 

3.1. SDC-GAT Emotion Recognition 
Framework 

In order to take advantage of the local dependency of EEG 
signal channels and the global spatial domain information, an 
SDC-GAT emotion recognition framework was proposed, as 
shown in Figure 1. The framework includes EEG signal 
feature processing and construction, neural network for high-
level abstract feature extraction, and sentiment classification. 
Specifically, six time-domain features were extracted from 32 
EEG signals, and then two-dimensional feature matrices and 
three-dimensional feature matrices were constructed 
according to the extracted time-domain features. A matrix of 
2D features is fed into the GAT module to extract high-level 
abstract features that contain intrinsic connections between 
EEG channels located in different brain regions. The 
Convolutional Distillation Module is used to receive a 3D 
feature matrix and generate high-level abstract features that 
represent the spatial position of the electrodes. Finally, the 
classifier module is used to fuse two high-level abstract 
features and judge the emotional state. 
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Figure 1. SDC-GAT Emotion Recognition Framework 

Figure 1 shows the details of the self-distillation proposed 
on a convolutional neural network model. On the basis of 
self-distillation without changing the structure of the 
backbone layer, multiple early exit branches are added after 
the middle layer of the convolutional neural network. Each 
early exit branch consists of an attention module and a 
shallow classifier. In the training phase, all classifiers are 
trained using the self-distillation method proposed in this 
paper, which uses the deep classifier as the teacher model 
and the shallow classifier as the student model. During 

inference, all additional interest modules and shallow 
classifiers are discarded, so the deployed model has no 
additional parameters or computational loss. As shown in 
Figure 1, the backbone convolutional neural network acts 
as a deep classifier. According to the structure of the 
construction, it is divided into five parts, and three student 
models are constructed by adding an attention module and 
a shallow classifier in turn to the first three parts. 
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3.2. SDC-GAT implementation principle 

Ref. [36] shows the floor plan of the international 10/20 
system and its mapping matrix. The performance of 
emotion recognition can be improved by using the global 
information and spatial features of EEG channels, and a 
feature matrix can be constructed according to the position 
of the electrodes on the brain. The time-domain features 
extracted from different EEG channels are placed into the 
corresponding positions in the matrix according to their 
relative position coordinates. In order to maintain the 
integrity of the spatial information, 0 is used to represent 
the unused channels, and the mapped 2D matrix is shown 
in Figure 2. For each sample, a 9×9×1 matrix is constructed 
according to the mapping rules of Ref. [36]. The two-
dimensional feature maps of the six features are 
superimposed to obtain a three-dimensional feature matrix 
of 9×9×6. This matrix not only contains the unique 
characteristics of each channel of the EEG, but also 
preserves the interaction and correlation information 
between the channels. 
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Figure 2. Mapped two-dimensional matrices 

The first part of the convolutional layer is univariate 
convolution, which consists of 1×1 convolution kernels to 
form convolutional 1, with the purpose of extracting 
features from each EEG signal channel. The second part is 
a multi-scale convolutional layer, which uses 3×3, 5×5, 
7×7 convolution kernels to form convolution 2, and uses 
three different convolution kernels to convolute the feature 
map. The convolutions are then merged in the same 
dimension. Subsequently, the conventional convolution 
operation is performed by convolution 3 to extract the 
spatial position information of adjacent electrodes in the 
EEG signal related to the affective state, and to explore the 
correlation between different brain regions. In the self-
distillation convolutional neural network, the self-
distillation technique shown in Figure 1 is used. The SD-
CNN model adopts the following ideas to construct a self-
distillation framework: firstly, the target convolutional 
neural network is divided into three shallow layers 
according to its depth and original structure. Secondly, a 
classifier is set after each shallow segment, which consists 
of an attention module and a shallow classifier. These two 
layers are only used for training and can be removed in 

inference. In the training phase, all the shallow sections 
with the corresponding classifiers are trained as student 
models by distilling the deepest sections, which are 
conceptually considered teacher models. 

 

 

Figure 3. Pay attention to the structure of modules 
and shallow classifiers 

Figure 3 shows the structure of the attention module and 
the shallow classifier. The attention module in Figure 3 
consists of a downsampled convolutional layer and an 
upsampled bilinear interpolation layer. The attention mask 
learned by these two layers is used to enhance the original 
features through dot product operation. The shallow 
classifier consists of several pairs of depth layers and point-
oriented layers in order to downsample features with fewer 
parameters and computations. N in Figure 3 is determined 
by the depth of the shallow classifier. 
When the input 3D sparse matrix passes through the self-
distillation convolution network, convolution operation, 
self-distillation and batch normalization operations are 
performed first. Then, the nonlinear interaction between 
the feature channels is learned by activating the layer, and 
the specific self-distillation process is as follows. 
N samples 𝑋𝑋 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁 , in a given M class，we denote the 
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distillation has multiple classifiers across the network) are 
represented as �𝜃𝜃𝑖𝑖/𝐶𝐶�𝑖𝑖=1

𝐶𝐶
, where C is the number of 

classifiers in the convolutional neural network. 
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Here z is the output after the layer is fully connected, 𝑞𝑞𝑖𝑖𝑐𝑐 ∈
𝑅𝑅𝑀𝑀  is the i-class probability of the classifier 𝜃𝜃𝑐𝑐/𝐶𝐶 .T is 
usually set to 1 to indicate the distillation temperature.  
To improve the performance of the student model, two 
types of losses are introduced during training: 
lossCE：Cross-entropy loss from the label to the deepest 
classifier, and cross-entropy loss for all shallow classifiers. 
It is used to train the dataset with labels and a softmax layer 
for each classifier. In this way, the hidden knowledge in the 
dataset is ingested directly from the label into all 
classifiers. 
In self-distillation, there are two sources of supervision 
𝜃𝜃𝑖𝑖/𝐶𝐶  for each classifier except for the deepest classifier. 
Balance them with hyperparameter 𝛼𝛼. 

),()1( yqpyCrossEntroloss i
CE ⋅−= α   (2) 

The first source is the cross-entropy loss calculated with 𝑞𝑞𝑖𝑖 
and Y labels. Note that  𝑞𝑞𝑖𝑖 represents the output of the 
Softmax layer of the classifier 𝜃𝜃𝑖𝑖/𝐶𝐶. 
lossKL：Teacher-led KL (Kullback-Leibler) divergence 
loss. The KL divergence is calculated using the softmax 
output between students and teachers and introduced into 
the softmax layer of each shallow classifier. By introducing 
KL divergence, the self-distillation framework influences 
the deepest teacher network to each shallow classifier.  
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾𝐾𝐾 = 𝛼𝛼 ∙ 𝐾𝐾𝐾𝐾(𝑞𝑞𝑖𝑖, 𝑞𝑞𝐶𝐶)  (3) 
The goal is to approximate the shallow classifier to the deep 
classifier, which indicates the supervision of distillation. 
𝑞𝑞𝐶𝐶represents the output of the softmax layer of the deepest 
classifier. 
In summary, the loss function of the 3D feature matrix 
through the SD-CNN neural network is composed of the 
loss function of each classifier, which can be written as: 
𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾𝐾𝐾   (4) 
The output of the final EEG signal through the self-
distillation convolutional network layer is represented as 
𝑍𝑍𝑆𝑆. 
The 2D feature matrix of 32×6 is input into the GAT layer. 
In this model, two layers of GAT are used to process the 
spatial information of EEG signals. Specifically, the 
electrode channels of the EEG signals are used as the nodes 
of the graph, the connections between the electrodes are 
used as the edges of the corresponding graph, and the 
weights of all edges (representing the functional 
relationship between the electrodes) constitute the 
adjacency matrix of the graph. Once constructed, GAT can 
learn the intrinsic relationships between different EEG 
electrodes. The flow of GAT processing EEG signal 
features is shown in Figure 1. After data collection, 
preprocessing and feature extraction, the correlation matrix 
is used to calculate the spatial correlation, and the index 
size indicates the closeness of the relationship between 

EEG signal channels to complete the construction of the 
input map. 
First, the correlation matrix of node feature 𝐻𝐻 = {

ℎ1
→ ,

ℎ2
→ ,

… ,
ℎ𝑁𝑁
��}，

ℎ𝑖𝑖
→∈ 𝑅𝑅𝐹𝐹，time t is input into the GAT network. N 

is the number of electrode channels, and F is the number of 
features of each node. The attention mechanism of a node 
determines the weight of the features of adjacent nodes 
during feature update. Here, the dimension of the input 
features is transformed according to a learnable weight 
matrix 𝑊𝑊 ∈ 𝑅𝑅𝐹𝐹′×𝐹𝐹 , where 𝐹𝐹′ represents the dimension of 
the output node.   
Firstly, the weight matrix is initialized during the model 
training process, and it is assumed that each electrode 
channel has an intrinsic relationship with the remaining 31 
electrode channels. W is initialized as a diagonal matrix 
with a major diagonal of 0 and other values of 1. The 
optimal weight matrix is obtained through iterative 
training. Then, the degree of influence of nodes i and j is 
calculated by 

ℎ𝑖𝑖
→ and 

ℎ𝑗𝑗
→. 

𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑊𝑊
ℎ𝑖𝑖
→,𝑊𝑊

ℎ𝑗𝑗
→)    (5) 

Among them, the feedforward neural network a(∙) 
represents the self-attention mechanism, which can stitch 
together the result vectors to complete the feature mapping. 
𝑒𝑒𝑖𝑖𝑖𝑖 indicates the importance of the features of node j to i, 
the proposed model only calculates the first-order 
neighbors of each node. 
Then, the attention coefficients of all nodes of node i are 
calculated, and the normalization of the attention weights 
is completed by using softmax to obtain the final attention 
coefficients. As shown in equation (6). 

𝑎𝑎𝑖𝑖𝑖𝑖 =
exp (𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐾𝐾𝐿𝐿(

𝑎𝑎
→𝑇𝑇�𝑊𝑊

ℎ𝑖𝑖
��||𝑊𝑊

ℎ𝑗𝑗
���))

∑ exp (𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐾𝐾𝐿𝐿(
𝑎𝑎
→𝑇𝑇�𝑊𝑊

ℎ𝑖𝑖
��||𝑊𝑊

ℎ𝑘𝑘
���))𝑘𝑘∈𝑁𝑁𝑖𝑖

 (6) 

Where, || is a connection operator. 
𝐾𝐾𝑒𝑒𝑎𝑎𝐿𝐿𝐿𝐿𝑅𝑅𝑒𝑒𝐾𝐾𝐿𝐿(∙)  as a nonlinear activation function, can 
enhance the generalization ability of the model. Finally, the 
multi-head attention mechanism is used to learn the 
attention weights of node features to enhance the learning 
ability of the model. After being processed by the GAT 
attention layer, the features of node i can be expressed as 
equation (7). 

ℎ𝑖𝑖
′→= 𝜎𝜎(1

𝐾𝐾
∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖∈𝑁𝑁𝑖𝑖
𝐾𝐾
𝐿𝐿=1 𝑊𝑊𝐿𝐿

ℎ𝑗𝑗
→)  (7) 

The aggregation process of the multi-head attention 
mechanism on the node is shown in equation (6). The 
above is a complete graph convolution process, and the 
EEG signal features will be output after multi-layer graph 
convolution. Furthermore, the transportation is fused and 
classified with the fully connected layer and the extracted 
high-level abstract spatial features, and 𝑍𝑍𝐺𝐺  is obtained by 
batch normalization before full connection. The K in 
Equation (7) denotes K independent attention mechanisms. 
In the experiment, K is 2.  
Finally, feature fusion is performed. The deep features 
extracted from the self-distillation convolutional network 
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and the graph neural network are flattened and spliced, as 
shown in equation (8). 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑍𝑍𝑆𝑆,𝑍𝑍𝐺𝐺) = 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝑎𝑎𝑂𝑂(𝑓𝑓𝑙𝑙𝑎𝑎𝑂𝑂𝑂𝑂𝑒𝑒𝐶𝐶(𝑍𝑍𝑆𝑆), 𝑓𝑓𝑙𝑙𝑎𝑎𝑂𝑂𝑂𝑂𝑒𝑒𝐶𝐶(𝑍𝑍𝐺𝐺))
  (8) 
Finally, the emotional state is output using the softmax 
function.  

4. Experiments and analysis of results 

4.1. Dataset and Feature Extraction 

The experiment selects the DEAP data set for sentiment 
analysis. In the DEAP data set, 32 subjects (including 16 
males and 16 females, aged 19 to 37, mean 26.9 years old) 
recorded peripheral physiological and EEG signals while 
watching 40 music videos as stimuli. The EEG signals 
recorded in each video were 60 seconds long. And each 
video was chosen to stimulate a relevant emotional state. 
Six time-domain features of the 32-channel EEG signals of 
the samples were extracted, including mean, median, peak, 
average of the first absolute value of the difference, average 
of the second absolute value of the difference, and 
approximate entropy. Approximate entropy is a nonlinear 
dynamic characteristic, which is used to quantify the 
regularity and unpredictability of time series fluctuations. 
And it also represents the complexity of the time series. 
Therefore, the approximate entropy function can be used to 
reflect the complexity of EEG signals. 

4.2. Data preprocessing 

SDC-GAT was validated on the DEAP dataset. There are 
1280 (32×40) EEG signals in the dataset, and deep learning 
needs a large amount of data to get better results, so the 
time segmentation method is used to increase the number 
of samples. Firstly, remove the first 3 sec baseline in each 
segment of EEG signal. Then, each EEG signal is divided 
into 10 fragments without overlap, each fragment contains 
6 s of EEG signal, and each fragment again constitutes a 
sample and inherits the original label. Finally, the number 
of samples obtained is 12800, and the time-domain features 
are extracted from the EEG signals of multiple channels in 
the sample to form the input of the network. SDC-GAT 
contains two different neural networks, so the 
corresponding feature matrices are constructed for 
different network models. Each sample is mapped into a 
3D feature matrix of 9×9×6 according to the position of the 
electrode on the scalp, and the sample of this shape is used 
as the input of the SDC-GAT network. Each sample is 
constructed into a 32×6 two-dimensional matrix and used 
as input to the GAT network. 

4.3. Experimental setup 

All experiments were implemented on GPU devices using 
the PyTorch framework. For the 12,800 samples extracted, 

the experimental results were verified by the ten-fold cross-
validation technique. In training, the order of the samples 
was shuffled and then divided into 10 subsets. Eight of 
these subsets were selected as the training set and the 
remaining 2 subsets were used as the validation set, and this 
was done 10 times until all subsets were tested. To avoid 
overfitting the model, a dropout function is added to each 
fully connected layer. In the self-distillation network, the 
recommended value for the hyperparameter α is 0.5 and the 
distillation temperature is set to 1. In addition, the batch 
size is 64, the learning rate of the network is defined as 
0.001, the maximum number of learning iterations is 400, 
and the network is optimized using the Adam optimizer. 
The accuracy and F1 score were used as evaluation 
indicators.  

4.4. SDC-GAT model performance analysis 

The emotion recognition model in the experiment consists 
of a convolutional self-distillation framework and a graph 
attention network. Among them, the convolutional self-
distillation framework can be divided into three parts: the 
backbone, the attention module and the shallow classifier. 
The main part contains five convolutional layers, the first 
four layers use two convolution kernels of 1×1, 3×3, 5×5, 
and 7×7 respectively, and the fifth layer uses 1×1, 3×3 
convolution kernels. In order to better learn EEG features 
and improve the fitting ability of the network, an activation 
function is added after the output of all convolutional 
layers. The specific structure of the attention module and 
the shallow classifier is shown in Figure 3. Figure 4 shows 
the training results of the proposed network on the dataset, 
which includes two dimensions: arousal and valence. The 
binary sentiment recognition results of the proposed 
network are shown in Figure 4. 

 

Figure 4. The result of binary classification of 
sentiment recognition 

The SDC-GAT model achieved an accuracy of 0.8845 and 
an F1 score of 0.8976 in the arousal dimension. At the same 
time, in the valence dimension, the recognition accuracy 
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and F1 score were 0.8789 and 0.8809, respectively. The 
recognition results in Figure 4 demonstrate the 
effectiveness of the proposed model.  

4.5. Comparison the ensemble model with 
the monolithic model 

In order to prove that the ensemble model can effectively 
fuse the local and global information of EEG signals, the 
independent self-distillation convolution network and 
graph attention network are verified in experiments. In 
addition, a variety of CNN networks, graph convolutional 
neural networks (GCNs) and hybrid networks composed of 
these networks are constructed. Experiments were 
performed using processed EEG data and cross-validation 
with ten-fold cross-validation, and the experimental setup 
was the same as that of the SDC-GAT model. The CNN 
constructed in this subsection focuses on extracting the 
spatial information of EEG channels, including AlexNet 
and VGGNet. GCN is a natural generalization of CNN on 
graph structure. It is widely used in network analysis, 
traffic prediction, computer vision and other fields because 
it is suitable for extracting the structural features of graphs 
and has reliable performance in mining effective 
topological information and extracting key complex 
features from data. A graph convolutional network based 
on spectral domain is constructed in SDC-GAT, which 
consists of two convolutional layers. The parameter 
settings of the self-distilled convolutional network and the 
graph attention network are consistent with those in the 
integrated network, and the high-level abstract features 
extracted by the network are flattened and input into the 
fully connected layer for classification. The sample of 
subjects is consistent with the ensemble model and cross-
validated using a 10-fold. 
 
 
 
 
 
 
 
 

 

Figure 5. Comparison of the recognition results of 
multiple ensemble models and a single model 

The EEG emotion recognition results of a single model and 
its ensemble model are shown in Figure 5. The results show 
that the performance of the integrated network is better 
than that of the single network, because each network in 
the integrated network can extract different information. In 
the arousal dimension, the Accuracy and F1 scores of SDC-
GAT increased by 21.34% and 20.70% compared with 
GAT, and increased by 17.64% and 18.51% compared with 
SD-CNN, respectively. In terms of valence, the Accuracy 
and F1 scores of SDC-GAT increased by 22.56% and 
19.88% compared with GAT, and increased by 15.65% and 
14.54% compared with SD-CNN, respectively. This proves 
that each network in the ensemble model can extract 
different information, and the local information of the 
electrode channel and the global information of the EEG 
signal. VGG Net is the highest classification accuracy in a 
single network, with classification accuracy of 0.7334 and 
0.7411 in the wake-up and valence dimensions, 
respectively. The SDC-GAT classification accuracy is the 
highest in the ensemble model, with classification accuracy 
of 0.8845 and 0.8789 in the wakefulness and titer 
dimensions, respectively. According to the classification 
results, GAT has a better ability to capture emotional 
information than GCN in EEG emotion recognition, and 
when combined with other models, it shows better emotion 
recognition performance.  

4.6. Performance analysis of the distillation 
network 

In order to explore the best performance of the distillation 
network, how to rationally use the distillation temperature 
to make the hidden knowledge better volatilize and 
condense, different distillation temperatures were set up for 
experiments. The distillation temperature is the 
hyperparameter T in equation (1). Except for the 
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distillation temperature change, the other parameters of the 
comparison experiment are the same as those of the SDC-

GAT model. Table 1 shows the emotion recognition 
results. 

 
Table 1. Effect of distillation temperature on distillation network performance 

 Recognition results 

Emotion 
dimension 

T=1 T=2 T=3 T=4 T=5 

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score 

Arousal 0.8845 0.8976 0.8789 0.8943 0.8226 0.8344 0.8757 0.8906 0.8257 0.8424 

Valence 0.8789 0.8809 0.8679 0.8776 0.8734 0.8867 0.7992 0.8112 0.8703 0.8842 

The classification results at different distillation 
temperatures are shown in Table 1. As can be seen from 
Table 1, distillation temperature affects the accuracy of 
sentiment classification. With the increase of distillation 
temperature, the classification accuracy generally 
decreased. In the arousal dimension, the classification 
results of T=2 and T=4 are similar, and the classification 
results of T=3 and T=5 are similar. In the valence 
dimension, the classification accuracy is the lowest when 
T=4, and the classification results are similar at other 
distillation temperatures. Distillation requires heating, and 
heating causes an increase in entropy. Increasing the 
temperature coefficient will lead to an increase in the 
information entropy of the output distribution, which will 
affect the results of sentiment classification. In the 
dimensions of arousal and valence, the distillation 
temperature T=1 has the highest classification accuracy 
and the best classification effect. Therefore, in the SDC-
GAT model, the distillation temperature is set to 1. 

4.7. Comparison with existing studies 

In order to further validate the effectiveness of the SDC-
GAT model, the model was compared with existing 
studies. These studies are based on the DAEP dataset. Gu 
et al. [37] proposed a frame-level distillation neural 
network to learn distillation features from the correlation 
of different frames. Joshi et al. [38] proposed a feature 
extractor based on Differential Entropy Linear (LF-DfE). 
Wang et al. [39] proposed a new emotion recognition 
model based on STFFNN, a hybrid spatiotemporal feature 
fusion neural network. Pandey et al. [40] used variational 
mode decomposition (VMD) as a feature extraction 
technique. Xefteris et al. [41] proposed a graph theory 
based on EEG functional connectivity patterns, which 
improved the performance of emotion recognition. Gao et 
al. [42] proposed EEG-GCN. In the dimensions of arousal 
and valence, the recognition accuracy of the binary 
classification task is shown in Figure 6. 

 

 
Figure 6. Comparison of SDC-GAT with existing 

studies 

5. Conclusion 

In this paper, a self-distillation convolutional graph 
attention network (SDC-GAT) EEG emotion recognition 
model is proposed. The model can excavate the sentiment 
information of EEG signals from the three-dimensional 
feature matrix and the two-dimensional feature matrix. The 
distillation convolutional network is used to excavate the 
local emotional features, and the GAT network is used to 
mine the global features. And through the ensemble model, 
the emotional feature fusion is effectively carried out. 
Experimental results show that the SDC-GAT model can 
fuse the extracted local features with the global features. It 
uses the fused high-level abstract features to judge the 
emotional state, thereby improving the accuracy of 
emotion recognition. In addition, the sentiment recognition 
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performance of the model is compared with some existing 
models, which shows its superiority and verifies the 
feasibility and effectiveness of the model. In the next work, 
it is planned to combine EEG and facial video for 
multimodal continuous emotion recognition. The 
convolutional network using spatiotemporal attention 
mechanism is used to classify the sentiment of EEG 
signals. The decision-level fusion algorithm is used to 
iteratively learn and fuse the classification results of the 
two modalities, so as to further improve the performance 
of EEG emotion recognition. 
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