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Abstract 
Liver cancer is a disease with a high incidence and high probability of deterioration, and for the rapid diagnosis of liver 
disease, computed tomography (CT) scans must be used to segment the liver tumors. For the past few years, with the rapid 
development of deep learning, many deep learning methods for liver tumor segmentation using abdominal CT images have 
appeared, and the clinical application of these methods is of important significance for computer-aided diagnosis of liver 
tumors. The U-Net, with its unique U-shape network structure, exhibits excellent performance in medical image 
segmentation field and has been extensively utilized in various medical image segmentation applications. In this paper, we 
summarize the researches of U-Net and its improved networks in CT image segmentation of liver tumors by deep learning 
methods and classify various U-Net-based convolutional neural networks (CNNs) into 2D (two-dimensional), 3D (three-
dimensional), and 2.5D (2.5-dimensional). In this paper, 2D, 3D, and 2.5D convolutional neural networks are summarized. 
In addition, this paper summarizes the advantages and disadvantages as well as the improvement methods of each type of 
network, which provides a useful reference for the studies of deep learning based on liver tumor segmentation field. Finally, 
this paper envisions future research trends for deep learning segmentation methods in the context of liver tumors. 
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1. Introduction

Liver tumors endanger the lives and health of people all 
over the world, with extremely high morbidity and 
mortality rates, making them the second most lethal cancer 
in the world. Currently, human abdominal computed 
tomography (CT) is often used for the diagnosis and 
treatment planning of liver cancer, and the first step of the 
computer-aided diagnostic system is to separate tumors 
from adjacent organs and tissues in CT images [1], i.e., 
liver tumor segmentation. Although this task has attracted 
the attention of many scholars, segmenting tumors from 
liver CT images automatically remains a demanding task, 
mainly due to the varied shapes of liver tumors and the low 
contrast and unclear borders with adjacent organs and 
tissues [2]. As can be seen from Figure 1, the muscle 

around the liver tumor and the small difference in gray 
scale contrast between other organs (e.g., heart, kidneys, 
etc.) and the liver tumor result in blurred edges, posing a 
challenge in segmenting the liver tumor. At the same time, 
the size and location of liver tumors vary between 
individuals, and liver tumors are spread over multiple slices 
of CT images with subtle differences between different 
slices, all of which pose a great challenge to the liver tumor 
segmentation task. 
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Figure 1. Slices of liver tumor 

Deep learning has been developing rapidly in the last 
decade[3-5]. In 2015, Long et al. [6] proposed the FCN 
(Fully Convolutional Network) for image segmentation 
with great success. Due to the fruitful results of deep 
learning in the image area, the application of deep learning 
in medical image segmentation has gradually become a hot 
spot for researchers. In the same year, Ronneberger et al. 
[7] proposed U-Net for biomedical image segmentation, 
which showed excellent performance in the medical image 
segmentation field with its unique architecture of encoder-
decoder, and since then, U-Net and its enhanced networks 
are frequently utilized in various medical image 
segmentation tasks. Liver tumor segmentation using deep 
learning methods can be classified into 2D, 3D, and 2.5D 
approaches, among which the 2D method requires the 
lowest performance of hardware devices during training 
and is the worst among the three methods in terms of 
training results, which is due to the fact that the 2D 
segmentation network does not fully utilize the three-
dimensional information between the CT slices, resulting 
in the prediction of the model trained using the 2D method 
in predicting the results of the liver between consecutive 
slices and the liver tumor continuity. As a result, the model 
trained with the 2D method did not have enough continuity 
of the liver tumor between consecutive slices in the 
prediction results, i.e., it was not smooth enough and had a 
tearing sensation. To fully utilize the three-dimensional 
information from CT slices, in the training process of the 
liver tumor segmentation model, people try to use three-
dimensional convolution kernels for feature extraction. 
Since the 3D convolution kernel can move in 3D space, it 
is able to make better use of the spatial feature information 
from the CT slices, so that the segmentation accuracy of 
the 3D technique is usually better than that of the 2D 
technique, and the degree of smoothing between the slices 
is also better than that of the 2D technique, the smoothness 
between slices is also higher. But the number of parameters 
in the 3D convolution kernel is greatly greater than that of 
the 2D convolution kernel, so when the equipment 
conditions are poor, because of the large number of 
parameters, the 3D method can often lead to memory 
overflow during the training process, and we have to 
preprocess the input CT image for cropping, which may 
lead to a reduction in segmentation accuracy. In order to 
solve the contradiction that 3D methods have a good 

segmentation effect but high requirements on hardware 
resources, the compromise 2.5D method was later adopted. 
The 2D method relies completely on the intra-slice 
information and therefore cannot fully utilize the spatial 
information, and the idea of 2.5D is to use a few 
neighboring slices of the slice that are input to the network 
model as the segmentation network's input feature. 
Compared to 3D method, 2.5D has a smaller number of 
parameters but utilizes less spatial information than the 3D 
method. This paper classifies deep learning-based liver 
tumor segmentation methods into three groups: 2D, 3D, 
and 2.5D convolutional neural networks are based on the 
different dimensions of the segmentation data, at the same 
time the advantages and disadvantages of each type of 
network are summarized in detail. Finally, the future 
development direction is discussed. Figure 2 illustrates the 
process of liver tumor segmentation based on deep learning 
methods. 

 

Figure 2. Segmentation flowchart for a deep 
learning approach 

2. Datasets and evaluation indicators 

2.1. Datasets 

In order to advance medical image segmentation 
techniques and to provide an objective comparison of 
emerging liver tumor segmentation methods, in addition to 
the LiTS2017 [8] dataset published by MICCAI, 
commonly used datasets include 3DIRCADb (for 
comparing algorithms for 3D image reconstruction), 
ATLAS2023 [9], MICCAI 2015, Codala [10], TCGA-
LIHC (The Cancer Genome Atlas Liver Hepatocellular 
Carcinoma) [11], and Midas, as well as several in-house 
datasets used by researchers. 

The LiTS2017 dataset is the official dataset provided 
by the competition for the liver and liver tumor 
segmentation, jointly organized by two organizations, 
MICCAI and ISBI. The LiTS2017 dataset contains a total 
of 201 human CT scans. Out of these 201 CT images, 131 
have manual annotation provided by the official, and the 
other 70 only have raw CT scans and are not manually 
annotated. The reason for this is that these 70 were used as 
a performance test dataset for the competition. The number 
of tumors per case ranged [0 ~ 75], with tumor sizes 
ranging from 38 cubic millimeters to 349 cubic 
millimeters. The data came from many institutions with 
different equipment, so these data vary somewhat in 
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imaging quality. The resolution of these slice samples 
ranged from 0.55 millimeters to 1.0 millimeters, the 
distance between slices ranged [0.45 millimeters ~ 6.0 
millimeters], and the number of slices ranged [42 ~ 1026]. 

The 3DIRCADb dataset consists of the 3DIRCADb-
01 dataset and the 3DIRCADb-02 dataset. The 
3DIRCADb-02 dataset does not contain liver tumors, and 
75% of the cases in the 3DIRCADb-01 dataset have liver 
tumors, with the number of tumors is between 1 and 46. 
And the image resolution was 512 × 512 pixels, the sizes 
were [16.3 ~ 24.9 cm, 12.0 ~ 18.6 cm, 11.0 ~ 20.2 cm], and 
the voxel sizes were [0.56 ~ 0.87 cubic millimeters, 0.56 ~ 
0.87 cubic millimeters, 1.6 ~ 4.0 cubic millimeters]. 

The ATLAS2023 dataset consists of T1 CE-MRI liver 
scans from 90 patients with unresectable hepatocellular 
carcinoma, as well as 90 liver and liver tumor segmentation 
masks, divide into training and test datasets, with 60 and 
30 patients in the training datasets and test datasets 
respectively. And the CE-MRI of the ATLAS2013 dataset 
comprises 3D images of the chest and abdomen in 44 to 
136 transverse slices, covering the whole liver and tumor. 
The pixel pitch of each slice of 0.68 × 0.68 square 
millimeters to 1.41 × 1.41 square millimeters and a slice 
thickness of 2 millimeters to 4 millimeters. The ground 
truth of these CT images was created by an experienced 
MRI radiologist who manually outlined the liver and tumor 
contours on selected CE-MRI transverse slices. 

The MICCAI 2015 dataset consists of 3631 slices 
segmented with corresponding labeling data. The voxels 
are [512 × 512 × 85 ~ 512 × 512 × 198] pixels. The 
CodaLab dataset comprises 131 contrast-enhanced images, 
each with a resolution of 512 × 512 pixels, and the voxel 
size interval of each CT image ranges from 0.64 to 0.84 
millimeters. The TCGA-LIHC dataset consists of 1,688 
patient cases. The data in MIDAS involves metastatic cysts 
and tumors of varying sizes, all at a resolution of 512 × 512 
pixels. The TCGA-LIHC dataset contains 1,688 patient 
cases, and the data in MIDAS involve metastatic cysts and 
tumors of varying sizes, all at a resolution of 512 × 512 
pixels. 

In addition, a large number of researchers have used 
in-house datasets to validate segmentation performance. 
Drozdzal et al. [12] used a dataset containing 135 
abdominal enhanced CTs; each image was segmented with 
the corresponding labeled data. 58 of these images had the 
corresponding labeling of the tumor portion. The images 
had an image resolution of 512 x 512 pixels, with the size 
of each pixel ranging between [0.53, 1.25 mm]. The gray 
value of each pixel is within [3000, 13500], and the slice 
thickness is between [0.5, 5.01 mm]. Sheba [13] obtained 
medical data from 2009–2014 containing 182 portal 
staging 2D CT scans, of which 53 images of cysts, 64 
images of migrating tumors, and 65 images of 
hemangiomas. All slices were 512 × 512 pixels in size, 
with each pixel size ranging from [0.71 millimeters, 1.17 
millimeters] and slice thicknesses ranging from [1.25 
millimeters, 5 millimeters]. The dataset used by Roth et al. 
[14] consisted of 331 CT contrast-enhanced images with an 
image resolution size of 512 × 512 pixels. The number of 

CT images in the test dataset ranged [ 460 ~ 1177]. The CT 
images in the training dataset consisted of 263 ~ 1061 
slices. The dataset used by Sun et al. [15] was labeled by 
two radiologists from the First Hospital of Jilin University 
after acquiring multiphase CT images on a GE high-speed 
CT machine. 

2.2. Evaluation indicators 

In liver tumor segmentation tasks, we typically use the 
following evaluation metrics to assess model performance: 
DICE [16], VOE, Jaccard [17], ASSD, RMSD, MSSD, 
RVD and Accuracy. Table 1 summarizes the common 
evaluation metrics listed above. Information on each metric 
includes the metric name, effect, range of values, frequency 
of use, and units. 

Table 1. Evaluation indicators 

Indicator 
name Effect 

Range 
of 

values 
Unit 

DICE Duplication rate between results 
and labels [0,1] % 

Jaccard Similarities and differences 
between results and labels [0,1] % 

VOE 
The degree of overlap between the 

segmentation results and the ground 
truth, indicating the error rate 

[0,1] % 

RVD Difference in volume between 
segmentation results and labels 

(-∞, 
+∞) % 

ASSD 
Mean surface distance between the 
result and the symmetrical position 

between the labels 
(0, +∞) mm 

MSSD 
Maximum surface distance between 

the result and the symmetrical 
position of the labeling tag 

(0, +∞) mm 

RMSD 
The root mean square of the surface 
distance between the segmentation 
result and the symmetric position 

   

(0, +∞) mm 

Accuracy 
Correctly predicted positive 

instances account for the sample of 
all positive instances predicted 

[0,1] % 

3. 2D Network Segmentation Methods 

The segmentation image data of the 2D CNN is a single 2D 
slice of the abdominal CT image, and the 2D network’s 
segmentation results are obtained by the 2D convolution 
operation in the network. Finally, all the 2D network’s 
segmentation results are superimposed to get the final 
results. The 2D network is characterized by low model 
complexity, fast operation speed, and superior 
segmentation performance, but its segmentation accuracy 
is limited by the discontinuity between image label layers. 
A typical representative of 2D networks is U-Net for 
biomedical image segmentation, proposed by Ronneberger 
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et al. [7] in 2015, which is improved and extended on the 
basis of FCN. U-Net contains contraction paths for 
capturing contextual information and symmetric expansion 
paths for precise localization. With data augmentation, the 
U-Net network will achieve more accurate segmentation 
with fewer training images. The structure of the U-Net 
network for liver tumor segmentation is shown in Figure 
3. 

 

Figure 3. CT image segmentation method for liver 
tumor based on the U-Net network 

The U-Net network is based on FCN expansion and 
modification, it is a classical fully convolutional network, 
this network splices the results of downsampling into the 
upsampling, which better preserves the position 
information of the original image, in the liver and its 
tumors segmentation task, the size, dimensions, and 
position of liver tumors puts high requirements on the 
training of the model, and U-Net solves this problem very 
well, therefore U-Net model is one of the most successful 
models in the task of medical image segmentation, many 
researchers have improved on this network, which has 
significantly facilitated medical image segmentation 
research [18]. The most common way is to use classical 
convolutional neural network backbones with pre-training 
parameters, such as VGG [19], ResNet [20], DenseNet, 
GhostNet [21], etc., instead of an encoder that implements 
migration learning [22]. 

Considering the problem of low resolution feature 
information duplication, the skip connection of U-Net was 
improved by Seo et al. [23], who proposed the mU-Net, 
combining high-level features related to the target to 
improve liver tumor segmentation. This network 
introduces residual paths with back-convolution and 
activation operations to the skip connection of the U-Net 
network to obtain high-level global feature information for 
small target input data and high-level features with high-
resolution edge information for large target input data. In 
the case of small target inputs, the features in the skip 
connection and the residual path will not be fused, and the 
model can extract the global features better than U-Net. In 
order to efficiently transfer feature information from 
different layers, Wang et al. [24] proposed AFD⁃UNet, 
which is an adaptive fully dense neural network that 
connects different layers of the U-Net shared encoder and 
the corresponding decoder structure by adding horizontal 

connection paths. This network can efficiently and 
adaptively utilize shallow and deep features, taking full 
advantage of the output results of each layer, and then 
automate learning. Tran et al. [25] found that most of the 
models based on U-Net ignored the output features of the 
convolutional units in the nodes, so they used it as a skip 
connection to provide more features for the decoder node 
and the next convolutional node, which improved liver 
tumor segmentation performance. Steven [26] and Xiao 
[27] et al. were inspired by residual structure and dense 
connection and replaced the coding and decoding units of 
U-Net with residual structures and dense connection 
modules to improve network feature extraction. Ghofrani 
et al. [28] extended U-Net by combining the advantages of 
ConvLSTM, Dense Convolution, and Residual Block, 
replacing the traditional convolution module with a 
recursive and residual approach in the encoding phase, 
adding dense connections in the fifth layer of the maximal 
receptive field, and improving the skip connections using 
ConvLSTM. Zhao et al. [29] improved the U-Net model by 
using the same padding after each convolution operation 
without changing the image scale or truncating the edges 
of the image. To alleviate the problem of the unknown 
depth of the optimal network, Zhou et al. [30] proposed 
UNet++, which is based on the traditional five-layer 
architecture of U-Net and integrates U-Net at different 
depths. UNet++ is able to collaboratively learn the optimal 
depth for the network at hand by using different depths of 
U-Net networks. Meanwhile, UNet++ redesigns the skip 
connection to interconnect multiple feature layers at the 
same scale two by two, and the sub-network of the decoder 
can fuse feature information at different semantic scales, 
thus realizing highly flexible feature fusion. Based on 
UNet++, Gao et al. [31] proposed a liver tumor 
segmentation method that is a nested U-Net's adaptive 
feature extraction method, which further improves gradient 
propagation and feature retention by combining UNet++ 
with extended dense short connections within 
convolutional blocks. 

Another popular way to improve the U-Net network 
is to introduce attention mechanism between the encoder 
and decoder [32] to focus on the region of interest. For the 
first time, Oktay et al. [33] proposed Attention U-Net by 
combining the attention mechanism with U-Net and 
applying it to the task of pancreas segmentation. Attention 
U-Net has been demonstrated on multiple datasets to 
improve U-Net’s performance. Li et al. [34] added the 
attention structure to UNet++ and redesigned the dense 
hopping connection, which uses the attention to enable the 
extraction of features at different layers in combination 
with the relevance of the task. Attention UNet++ speeds up 
the prediction of the network but also causes moderate 
performance degradation and shows good performance in 
liver tumor segmentation tasks. Wang et al. [35] found that 
U-Net could not fully exploit the useful feature information 
of the channel and could not make full use of the contextual 
feature information. So, they proposed an improved U-Net 
network with residual concatenation, channel attentional 
block, and hybrid extended attentional convolutional layers 
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that can accurately and efficiently perform different 
medical image segmentation tasks and perform well in 
liver tumor segmentation. Pang et al. [36] found that 
arbitrary superposition of feature maps makes CNNs 
mimic human cognition and visual attention in specific 
visual tasks very inconsistent. To alleviate the problem of 
CNNs lacking a reasonable feature selection mechanism, 
they developed a new efficient network, TANet, based on 
the U-Net architecture for liver tumor segmentation by 
embedding adaptive features in the tumor attention layer 
through multifunctional modules. Li et al. [37] proposed 
ANU-Net, which is a nested segmentation model attention 
mechanism, which employs a deeply supervised encoder-
decoder structure, redesigned the dense skip connections, 
and introduced an attention mechanism to the nested 
convolutional blocks, to fuse features extracted from 
different layers with task-relevant decisions. 

The multi-network liver tumor segmentation method 
is a medical image segmentation method with relatively 
excellent segmentation performance, the essence of which 
is to utilize multiple network architectures to achieve liver 
tumor CT image segmentation task. According to whether 
the multiple network architectures are taken in serial or 
parallel mode in the liver tumor segmentation method, they 
can be further classified into cascaded U-Net and dual-path 
U-Net. This method combines multiple underlying 
networks to increase feature extraction capability. Higher 
segmentation accuracy is obtained while maintaining lower 
computational costs and memory consumption. Gruber et 
al. [38] used two successively improved U-Nets; the first 
model was used to perform liver segmentation, and then the 
results of liver segmentation were fed into the second 
network for tumor segmentation. They used a hybrid loss 
function to combine the results of the two networks to 
further improve segmentation accuracy. Li et al. [39] 
proposed a network consisting of 2 parallel U-Nets, where 
one parallel branch is a coding U-Net and the other parallel 
branch is a segmentation U-Net, and trained the coding U-
Net first to obtain the labeled features that contain the 
segmentation information (shape and position) of the 
encoding. This information is then used to train the 
segmentation U-Net. The goal is to preserve the 
segmentation features of the liver and liver tumor. To 
accurately segment liver tumors, Christ et al. [40] proposed 
cascaded U-Net+3D CRF to increase the segmentation 
accuracy of U-Net using 3D conditional random fields. 

In addition to using the improved U-Net, researchers 
have found that combining the U-Net-based model with 
some nonparametric methods can further increase 
segmentation accuracy, and some of the commonly used 
nonparametric methods include level-set algorithms and 
graph-cutting algorithms. Alirr et al. [41] first used two U-
Nets to segment livers and tumors of interest in the liver 
area, and then further refined the segmentation results 
using a local level set approach. Similarly, Zhang et al. [42] 
first used a U-Net based on 2D slices to coarsely position 
the liver, then refined the liver segmentation results using 
a 3D block-based FCN with coarsely localized tumors, and 
then further refined the tumor segmentation results using a 

novel level-set approach. To gain more advanced semantic 
feature information and reduce information loss, Liu et al. 
[10] proposed an improved model by increasing the depth 
of the U-Net, not replicating the activation features after 
convolution, and only replicating the pooling layer features 
when performing skip connections. Based on this improved 
model, combined with the graph-cut algorithm, they 
proposed a GIU-Net with better segmentation 
performance. In the graph-cut algorithm, based on the 
sequence context information and the output probability 
distribution graph of the improved U-Net, the graph-cut 
energy function is constructed. In summary, it can be seen 
that these methods are often based on the improved U-
shaped network to gain preliminary segmentation results of 
liver tumors and then use nonparametric methods to obtain 
final fine segmentation results. 

These improved 2D models show better performance 
in liver tumor segmentation tasks, and they also facilitate 
the design of data enhancement methods while maintaining 
lower memory requirements. However, due to the use of 
2D convolutional kernels, they cannot capture spatial 
feature information along the z-axis, which may degrade 
the performance of volumetric segmentation. 

4. 3D Network Segmentation Methods 

Since medical images are spatially 3-dimensional, 2-
dimensional neural networks cannot learn the spatial 
feature information of the 3-dimensional CT images in 
feature extraction. In contrast, the input feature of the 3-
dimensional CNN is the whole volumetric CT image, and 
the whole segmentation result can be obtained at one time 
after the 3-dimensional convolutional operation in the 
network. The 3-dimensional CNN can sufficiently utilize 
the spatial information of the volumetric CT image and 
thus effectively solve the inter-layer discontinuity problem 
of the segmentation result of the 2-dimensional neural 
network. 

A typical representative of 3D networks is V⁃Net for 
3-dimensional medical image segmentation proposed by 
Milletari et al. [43] in 2016, which is different from U-Net 
in that V-Net is a 3D method and a new objective function 
based on Dice coefficients is used in V⁃Net to overcome 
the case of severe imbalance between foreground and 
background voxels, and its segmentation accuracy is much 
improved compared with that of U-Net with a great 
improvement. V-Net can predict the segmentation result of 
the whole volume image at one time after end-to-end 
training and is popularly used in medical image 
segmentation task with superior segmentation 
performance. After V-Net, researchers have proposed 
some improved networks based on V-Net. Since V-Net is 
a 3D method, its large number of parameters requires high 
hardware. In order to solve this issue, Lei et al. [44] 
designed a residual bottleneck module IRB (inverted 
residual bottleneck) instead of the ordinary convolutional 
block to construct the encoder and decoder, and the IRB 
block adopts deep convolution and point convolution 
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operations to decrease the voxels’ number, while features 
can be fully extracted by decoupling cross-channel 
correction and spatial correlation. Accordingly, they 
proposed a lightweight LV⁃Net that uses 3D depth 
supervision in the training phase to improve the final loss 
function, thus better distinguishing between foreground 
and background regions and drastically reducing the 
number of voxels in the V-Net. Zhang et al. [45] proposed 
an improved V-Net with the combined use of region-based 
and the loss functions based on distance , which solves the 
problem of model performance degradation due to the high 
imbalance in the foreground and background voxels’ 
numbers by training the model with the region-based loss 
function and three loss functions based on distance in the 
V-Net separately. 

V⁃Net can be regarded as a 3D variant network of the 
U-Net network. Besides, there is another common 3D 
variant network of U-Net proposed by Cicek et al. 
[46],which is named 3D U-Net. Although they are both 3D 
variants of U-Net, the V-Net network is proposed for 
volumetric CT images and introduces residual 
connectivity, while 3D U-Net just replaces all the 2D 
convolution operations in U-Net with 3D convolution 
operations. Based on 3D U-Net, researchers have designed 
some improved networks. Mohagheghi et al. [47] found 
that using a hybrid loss function combining dice loss and 
data-driven loss (DDL) can improve the 3D U-Net’s 
performance by integrating the a priori shape knowledge in 
DDL. In addition, this approach enhances the 
generalization ability and robustness of the hybrid network. 
In order to enable semantic features to adaptively change, 
Jin et al. proposed [48] the RA-UNet model, which 
introduces a stacked attention mechanism module on top of 
the 3D U-Net network and makes full use of the spatial 
feature information of the CT image by applying an 
attentional residual mechanism to perceive the features, 
accurately extracting the liver region and segmenting the 
tumor from the liver. The model is based on the U-shaped 
architecture and captures contextual feature by combining 
low-level and high-level feature maps. Most of these U-
Net-based models just use the pairing information between 
samples and labels without using the information in the 
labels as supervised information; therefore, Song et al. [49] 
proposed a supervised BSU-Net network with bottleneck 
features for liver tumor segmentation task to improve the 
accuracy of the algorithm. The model consists of an 
encoding U-Net without skip connection and a 
segmentation U-Net with skip connection. The encoding 
U-Net is first trained as an auto-encoder to obtain the 
encoding of the ground truth mappings, which is then used 
as additional supervision to train the segmentation U-Net. 
Dou et al. [50] combined a conditional random field for 
conventional segmentation with a 3D segmentation 
approach to take full advantage of the benefits of each 
method. Similar to Dou et al., Lu et al. [51] combined the 
graph segmentation method of traditional segmentation 
with a 3D segmentation method. After them, other scholars 
have successively proposed some improved 3D 

segmentation models around attention injection, 
convolutional improvement, and lightweighting.  

In short, the 3D U⁃Net-based variational network can 
enhance the segmentation performance of liver tumor by 
using a hybrid loss function to better distinguish 
foreground and background and improve the network 
structure to extract more feature information. However, 
using 3D convolution operations requires a lot of memory 
during the calculation process, and training 3D networks 
often requires a lot of time and resources. In addition, the 
learning process of 3D networks often requires a 
sufficiently large dataset to fully converge the network. 

5. 2.5D Network Segmentation Methods 

2D convolutional neural networks are unable to utilize the 
interlayer continuity information of image labels, while 3D 
convolutional neural networks are limited by their large 
computational cost. To solve these problems, we propose a 
class of 2.5D convolutional neural networks. The input 
data for 2.5D networks are multiple adjacent slices of 
volumetric CT images to utilize the interlayer continuity 
information of the image labels. The 2.5D liver tumor 
segmentation structure is shown in Figure 4.  

 

Figure 4. Segmentation method flow using three 
consecutive slices 

The 2.5D networks generally contain 2D and 3D 
convolutional operations to achieve different functions. For 
example, Li et al.[52] proposed H-DenseUNet, a hybrid 
densely connected for liver tumor segmentation task. And 
this model consists of a 2D DenseUNet to obtain intra-slice 
features and a 3D DenseUNet for summarizing volumetric 
contexts. The hybrid feature information fusion layer 
optimizes both intra-slice representations and inter-slice 
features based on an automated context algorithm. In order 
to simultaneously utilize intra-slice semantic feature 
information and inter-slice continuity feature information 
to extract discriminative features, Wang et al. [53] 
proposed a 2.5D segmentation network, and this network 
consists of a multi-branch decoder for learning the features 
of a specific slice and an attention block for slice-centric, 
which is a densely connected dice loss function to 
normalize the intra-slice segmentation results to continuity. 
Zhang et al. [54] utilized a scaling approach to allow the 
segmentation network to focus only on useful localities, 
which reduces the parameters in the segmentation model 
and thus reduces the hardware resource requirements. Ben-
Cohen et al. [55] changed the original FCN to a 2.5D FCN 
and introduced the idea of generative adversarial to 
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improve segmentation results. The Triplanar FCN based on 
FCN was proposed by Wang et al. [56] to take advantage 
of 3D spatial feature information and integrate the results 
in three dimensions. proposed Triplanar FCN by making 
full use of 3D spatial information to segment in each of the 
three dimensions and integrating the results. Ahn et al. [57] 
input three consecutively sliced images into the network as 
three channels and performed the segmentation task in the 
center region of the images. The encoder component is 
based on a modified Xception model that includes down-
sampled layers and null-separable spatial pyramid pooling 
units, and the decoder part is a series of bilinear up-sampled 
layers connected to the encoder's skip connections. In order 
to attain a balance between computational cost and 
segmentation accuracy, and the utilization of 3D context 
information, Zhang et al. [58] designed a new 2.5D 
network that encodes the interlayer information in a 3D 
convolutional context and reconstructs the high-resolution 
result with 2D deconvolution. This structure can achieve 
effective multidimensional feature extraction without 
increasing the computational effort and increase the 
segmentation capability and efficiency of the model.  

6. Summary and prospects 

6.1. Summary 

This paper classifies CNNs for liver tumor segmentation 
into three categories based on the input data, which has 
different dimensions: 2D, 3D, and 2.5D convolutional 
neural networks. 2D networks have low model complexity 
and fast operation speed, but their accuracy is limited by 
the discontinuity between image label layers; 3D networks 
can fully utilize the discontinuity between image label 
layers. The 3D network can fully utilize the continuity 
between the layers of image labels, but its model 
complexity is high and the computational cost is large, 
while the 2.5D network can fully utilize the continuity 
between the layers of image labels. A 2.5D network can not 
only utilize the continuity between the layers of image 
labels to improve segmentation but also maintain a lower 
model complexity and faster computational speed. Table 2 
details the characteristics of 2D, 2.5D, and 3D networks. 
The researchers have also proposed solutions to some 
common problems that may exist in different networks. For 
example, the issue of a severe imbalance between 
foreground and background in an image can be solved by 
using a hybrid loss function; more effective features are 
obtained by improving the network’s structure, resulting in 
higher segmentation performance and improving the 
efficiency of the network. 
 
 
 

Table 2. The characteristics of 2D,3D, and 2. 5D 
CNNs 

Type Input 
data Advantages Disadvantages 

2D Single 
Slice 

Low model 
complexity, fast 

computing speed, and 
better segmentation 

results 

Segmentation 
accuracy is limited 
by discontinuities 
between layers of 

image labels 

2.5D 
Multiple 
adjacent 

slices 

Able to utilize the 
interlayer continuity of 

image labels, good 
segmentation effect; 

lower model 
complexity; faster 
computing speed 

Compared to 3D 
networks, which can 

only utilize the 
interlayer continuity 

of image labels 

3D 
Whole 
volume 
image 

Able to utilize the 
interlayer continuity of 

image labels with 
better segmentation 

performance 

High model 
complexity, high 

computational cost, 
and more training 

data required 

6.2. Prospects 

This paper firstly discusses the necessity and superiority of 
deep learning especially U-Net network architecture 
applied to CT image segmentation of liver tumors, then 
classifies different types of convolutional neural networks, 
and finally summarizes the advantages and disadvantages 
of 2D, 3D, and 2.5D networks. In general, the current deep 
learning methods have superior performance, but there are 
some limitations and shortcomings, such as the small 
amount of training data, the imbalance between the number 
of background and foreground voxels in the training 
samples, as well as the inter-layer discontinuity of the 
image labels, the high complexity of the model, and the 
high computational cost in different types of networks. 

The advantages and disadvantages of the existing 
CNNs-based methods applied to CT image segmentation 
of liver tumors are listed below as possible future research 
directions. 

(1) To fully utilize the interlayer continuity 
information of image labels and to solve the issue of 
excessive computational cost in 3D networks, further 
research should be conducted on the improvement methods 
of 2.5D networks. 

(2) For the problem of the high imbalance in the 
number of foreground and background pixels or voxels in 
an image, it should be further investigated the rational use 
of the hybrid loss function to better distinguish the 
foreground from the background. 

(3) In order to extract more effective features to 
improve segmentation performance and reduce redundant 
operations to improve computational efficiency, improved 
methods of network structure, such as path connectivity 
and convolution operations, should be further investigated. 
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(4) New liver CT image segmentation methods based 
on deep learning were investigated, such as using 
segmentation methods to explicitly establish the continuity 
relationship between different parts by a local 
segmentation network based on probabilistic networks. 
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