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Abstract 

INTRODUCTION: Accurate tumor segmentation is a prerequisite for reliable diagnosis and treatment of brain cancer. 
Gliomas, a highly prevalent and life-threatening type of brain tumor, pose a challenge for segmentation due to the intricate 
nature of brain structures and unpredictable appearances on brain MRI images. 
OBJECTIVES: Current methods for brain tumor segmentation mostly rely on deep convolutional neural networks, which 
suffer from significant loss of feature information during encoding and decoding and the inability to capture tumor contours 
in detail. 
METHODS: To address these challenges, this study rethinks the network architecture for MRI brain tumor segmentation. It 
proposes ARM-Net: an improved method for MRI brain tumor segmentation based on attention mechanisms and residual 
modules. Firstly, inverted external attention and dilated gated attention are employed in the last two layers of the encoder to 
enable the network to interact with both lesion areas and global information, facilitating better interaction among the four 
modalities. Secondly, different numbers of Res-Paths are added in the encoder's first two layers and the decoder's last two 
layers to effectively mitigate the semantic gap issues caused by traditional skip connections. 
RESULTS: Experiments on the BraTS 2019 dataset demonstrate that ARM-Net outperforms other similar models in terms 
of segmentation performance. 
CONCLUSION: The experiment showed that the ARM-Net model could segment the contour structure of the tumor better 
than other methods. 
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1. Introduction

The brain, one of the most critical and sensitive parts of the 
human body, requires precise and timely diagnosis and 
treatment of brain diseases to ensure patient survival. Among 
these diseases, the highest incidence and mortality are 
attributed to gliomas, which arise from cellular abnormalities 
in the brain and are classified into high-grade gliomas (HGG) 
and low-grade gliomas (LGG)[1]. HGG exhibits greater 
invasiveness and growth rates, resulting in a high mortality 
rate among patients, whereas LGG can be benign or 

malignant, with slower growth rates and a higher likelihood 
of patient recovery, though they may progress to malignancy 
later on[2]. Accurate segmentation of brain tumors and 
surrounding tissues, such as edema, enhancing tumors, non-
enhancing tumors, and necrotic areas, is crucial for 
diagnosing patient conditions and devising subsequent 
treatment plans[3]. 

Magnetic Resonance Imaging (MRI) is a non-invasive 
imaging technique that distinctly visualizes soft tissue 
abnormalities, thereby being extensively utilized in clinical 
diagnosis and monitoring tumor progression[4]. MRI 
employs specific sequences tailored to the tissue 
characteristics to differentiate various tumors. According to 
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the imaging technique used, it can be categorized into four 
modalities: T1-weighted (T1), contrast-enhanced T1-
weighted (T1ce), T2-weighted (T2), and Fluid Attenuated 
Inversion Recovery (FLAIR)[5]. Each modality emphasizes 
different aspects of the images, and the integration of multiple 
modalities can achieve complementary features. For instance, 
T1-weighted images are employed to distinguish healthy 
brain tissue, T1ce images facilitate the delineation of tumor 
boundaries, T2-weighted images are effective in detecting 
edema surrounding the tumor, and FLAIR images can 
differentiate edematous regions from cerebrospinal fluid. 

Accurately segmenting lesion areas from multi-modal 
MRI brain tumors is crucial for clinical diagnosis and 
postoperative treatment of patients[6]. Due to the uncertainty 
of tumor location, size, and shape, as well as the issues of 
fuzzy boundaries and low imaging contrast between different 
tumor categories, distinguishing tumor areas from normal 
tissue is challenging, rendering MRI brain tumor 
segmentation a daunting task[7]. Previously, most brain 
tumor segmentation was manually conducted by physicians, 
leading to inter-rater variability and substantial time 
consumption, especially when dealing with large datasets. 
Hence, an automated segmentation approach is needed to 
assist physicians in MRI brain tumor segmentation. 

The advancement of deep learning has brought about new 
opportunities for classification, segmentation, detection, and 
recognition tasks. With the evolution of convolutional neural 
networks, the Fully Convolutional Network (FCN)[8] and 
UNet[9] have emerged as the most commonly used and 
reliable methods in medical image segmentation. Building 
upon these models, numerous scholars have devised various 
segmentation models based on the encoder-decoder 
architecture to address the effectiveness of semantic 
segmentation and the diverse requirements of different 
segmentation targets. Zhou et al. [10] proposed the UNet 2+ 
network, an extension of UNet, which utilizes ensembles of 
UNet at different depths to determine the optimal network. 
Additionally, it employs deep supervision to share encoders, 
facilitating collaborative learning. Despite achieving 
satisfactory results, UNet 2+ fails to adequately explore 
global feature information, leaving significant room for 
improvement. Addressing this limitation, Huang et al.[11] 
introduced UNet 3+, which incorporates full-scale skip 
connections and deep supervision strategies. This model 
effectively combines low-level details and high-level 
semantic information from different-sized receptive fields 
and aggregates feature maps across various levels through 
deep supervision, thereby enhancing segmentation accuracy 
across tasks. 

Significant progress has been achieved in MRI brain tumor 
segmentation based on deep learning. Jiang et al.[12] 
proposed a cascaded segmentation approach, where the 
cascaded model segments brain tumor structures from coarse 
to fine, enabling end-to-end network training. Myronenko et 
al.[13] introduced an asymmetric network based on an 
encoder-decoder structure. Initially, large-scale encoders 
capture image features, followed by small-scale decoders 
reconstructing segmentation masks for precise lesion area 
delineation. Allah et al.[14] presented an Edge-UNet model 

merging boundary-related MRI data with brain MRI data, 
accurately extracting lesion features during encoding and 
combining raw MRI data of different sizes with contextual 
information during decoding, notably enhancing tumor 
segmentation performance. Cao et al.[15] proposed an 
MBANet convolutional neural network with a three-
dimensional multi-branch attention mechanism. The model 
employs optimized "shuffle" units to form BU modules, 
segmenting inputs along channels and performing group 
convolution operations, followed by a novel multi-branch 3D 
attention module SA extracting relevant information in the 
encoder. Zhu et al.[16] introduced a multimodal MRI brain 
tumor segmentation method integrating deep semantic and 
edge information fusion, comprising semantic segmentation, 
edge detection, and feature fusion modules. Swin former is 
utilized in the semantic segmentation module to extract 
feature information, alongside a designed edge detection 
module and edge spatial attention module for fusing extracted 
semantic and edge features effectively across different stages. 

While the aforementioned methods have shown promising 
results on brain tumor datasets, they also encounter certain 
limitations. These include subpar segmentation performance 
due to a pursuit of lightweight models or overly simplistic 
architectures that fail to achieve precise lesion delineation in 
the presence of varying levels of complexity across cases. 
Addressing these issues, this paper proposes a novel network 
architecture, termed ARM-Net, by refining attention 
mechanisms and residual modules atop an encoder-decoder 
framework. The specific research contributions of this study 
are outlined as follows:  
(i) In this study, inverted external attention modules (IEA) 

and dilated gated attention modules (DGA) are applied 
in the last two layers of the encoder. The coordinated 
utilization of these two attention mechanisms 
effectively exploits global and local features of feature 
maps, learns to describe lesion characteristics from the 
dataset, integrates information from different scales, 
and efficiently delineates the contours of different 
tumor categories while reducing computational 
overhead.

(ii) Different numbers of Res-Path modules are sequentially 
introduced in the encoder's first two layers and the 
decoder's last two layers to address the semantic gap 
between shallow encoders and deep decoders in 
traditional skip connections, facilitating more efficient 
fusion of low-level and high-level information.

(iii) ARM-Net, a novel MRI brain tumor segmentation 
approach, is proposed in this paper, improving attention 
mechanisms and residual modules. Unlike other 
methods, this model precisely segments MRI brain 
tumors by enhancing attention mechanisms and residual 
modules.

(iv) Experimental validation conducted on the 2019 Brain 
Tumor Segmentation (BraTS) Challenge dataset 
demonstrates that ARM-Net outperforms previous 
improvements in U-shaped network segmentation, 
resulting in enhanced performance.
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2. Method

This section describes the proposed approaches in detail, 
including an inverted External attention module (IEA) and an 
inflation-gated attention module (DGA), as well as a residual 
module (Res-Path) to mitigate the semantic gap. 

2.1. ARM-Net network architecture 

The proposed ARM-Net consists of an encoder, bottleneck 
layer, decoder, and skip connections. The encoder comprises 
four layers, with the first two layers employing two 3×3 
convolutions for feature extraction, while the latter two layers 
integrate inverted external attention modules and dilated 
gated attention modules. The inverted external attention 
maximizes the utilization of multi-stage and multi-scale 
information, characterizing not only the overall dataset but 
also enhancing inter-modality relationships within samples. 
Meanwhile, the dilated gated attention simultaneously 
captures global and local information, where the global 
context aids in understanding the relationship between overall 
lesion structures and backgrounds for more precise lesion 
localization, while the local context facilitates capturing edge 
and corner details of lesion regions for more comprehensive 
predictions. The synergistic use of these attention modules 
extracts feature information from regions of interest. The 
bottleneck layer comprises traditional dual convolution 
modules, as this stage's feature extraction contains abundant 
target information, and the attention-based output requires 
traditional dual convolutions to narrow down the target area, 
eliminating redundant information. Subsequently, skip 
connections are employed, with different numbers of Res-
Path modules introduced in the first two layers to address the 
semantic gap between deep encoders and shallow decoders, 
alleviating information disparity and preserving more 
detailed information during feature map restoration for 
effective fusion of features. Additionally, Res-Path modules 
are not inserted between the last two layers of skip 
connections, as the latter two layers of the encoder utilize IEA 
and DGA modules, whose combined attention mechanisms 
effectively mitigate information disparity between the 
encoder and decoder. The overall architecture of ARM-Net is 
depicted in Figure 1. 

Figure 1. ARM-Net architecture diagram 

2.2. Invert the external attention block 

In the context of medical image segmentation, due to the 
inconsistent size, shape, and location of lesion areas, it is 
necessary to employ multi-scale attention to capture feature 
information from different locations. To address this, an IEA 
module is proposed in this paper, which utilizes external 
attention to extract useful feature information and 
significantly enhances feature interactions among different 
modalities. As depicted in Figure 2, the IEA module utilizes 
two memory units to represent feature information among the 
four modalities. Each memory unit consists of a 1×1 
convolution with shared parameters, with the channel number 
set to 128. The feature maps undergo feature extraction 
through two consecutive memory units followed by 
convolution operators. This process maps the feature maps to 
a high-dimensional space to comprehensively describe the 
overall feature information among different modalities. The 
output features after convolution operators become C×HW in 
dimensionality, which are then reshaped to the same size as 
the input features. Subsequently, they are multiplied 
pointwise with the input features before reshaping, ensuring 
that detailed information is not lost. Finally, feature mapping 
is performed with the original input to enhance texture, edges, 
and other detail information. 

Figure 2. IEA module

2.3. Dilated gated attention block 

After passing through the IEA module, numerous 
irrelevant pieces of information are filtered out, leaving 
behind feature information distributed across 
different locations. Subsequently, multi-scale 
attention is required to extract lesion features from 
various sizes of receptive fields. To this end, the present 
study employs the DGA module[17], which can 
simultaneously capture local and global information. 
From a local perspective, it extracts edge and corner 
details of lesion features, while from a global 
perspective, it comprehends the relationship between 
the overall lesion structure and background, 
enabling more accurate localization of lesion areas 
and more complete predictions. 
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Figure 3. DGA module

As depicted in Figure 3, DGA is comprised of Separable 
Dilated Convolution (SDC) units and Gated Attention (GA) 
units. Specifically, the SDC divides the input feature map 
along the channel dimension into four parts, each of which 
undergoes depth-wise separable convolutions with varying 
dilation rates to acquire global and local feature information. 
Subsequently, the outputs are merged along the channel 
dimension to restore the size of the input feature map, 
followed by convolutional operations to facilitate interaction 
between local and global information. The output of the SDC 
units serves as input features to the GA unit, which focuses 
on the regions of interest to further extract lesion features. In 
the context of GA, the input feature map initially undergoes 
depth-wise separable convolutions to suppress irrelevant 
feature information generated by the SDC units and enhance 
crucial lesion features. Subsequently, residual mapping is 
employed along with other parallel modules to facilitate 
feature interaction and obtain the output features. The 
computational formula for the DGA module is as follows: 

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 = 𝐶𝐶ℎ𝑢𝑢𝑢𝑢𝑘𝑘4(𝑋𝑋)          (1) 
𝑥𝑥1′ , 𝑥𝑥2′ , 𝑥𝑥3′ , 𝑥𝑥4′ = 𝑊𝑊1(𝑥𝑥1),𝑊𝑊2(𝑥𝑥2),𝑊𝑊5(𝑥𝑥3),𝑊𝑊7(𝑥𝑥4) (2)
𝑇𝑇 = 𝑊𝑊（𝐶𝐶𝐶𝐶𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥1′ , 𝑥𝑥2′ , 𝑥𝑥3′ , 𝑥𝑥4′ ))          (3)
𝐴𝐴tt = 𝜎𝜎(𝐷𝐷𝑊𝑊(𝑇𝑇))               (4)
𝑌𝑌 = 𝐷𝐷𝑊𝑊(𝐷𝐷𝑊𝑊(𝑇𝑇) ⊗𝐴𝐴𝐶𝐶𝐶𝐶) + 𝑊𝑊(𝑇𝑇)           (5) 

Here, 𝐶𝐶ℎ𝑢𝑢𝑢𝑢𝑘𝑘4  denotes the input feature map 𝑋𝑋 ∈ 𝑅𝑅𝐶𝐶×𝐻𝐻×𝑊𝑊 
divided into four parts along the channel dimension, where 
𝑊𝑊𝑖𝑖  represents the depth-wise separable convolution with 
dilation rate i. Concat indicates concatenation operation, W 
represents regular convolution operation, σ denotes the 
sigmoid activation function, DW represents depth-wise 
separable convolution, and ⊗  signifies element-wise 
multiplication. The output feature map 𝑌𝑌 ∈ 𝑅𝑅𝐶𝐶×𝐻𝐻×𝑊𝑊. 

2.4. Semantic gap between encoder and 
decoder 

The skip connections in the UNet network effectively 
propagate spatial information lost during pooling in the 
encoder to every layer of the decoder. While traditional skip 
connections preserve some spatial information, directly 
concatenating shallow encoders with deep decoders 
introduces a semantic gap issue to some extent. For instance, 
the skip connection of the first layer involves connecting the 
encoder before pooling with the decoder after transposed 

convolution. Since the encoder at this point is the network's 
initial layer, it extracts lower-level information. In contrast, 
the connected decoder is the network's final layer, extracting 
higher-level feature information. Consequently, there is a 
mismatch of information between the two, and fusing these 
significantly different features can lead to unnecessary 
impacts on semantic segmentation tasks. 

To mitigate the semantic gap between the lower-level 
semantic information extracted by shallow encoders and the 
higher-level semantic information extracted by deep 
decoders, this study integrates Res-Path[18] with four 
residual modules between the first-layer skip connections, as 
illustrated in Figure 4. The convolution layers in this module 
employ 3×3 convolutions, while the residual connections 
utilize 1×1 convolutions. Additionally, three residual 
modules are incorporated into the second-layer skip 
connections, which exhibit significant information disparity. 
This integration aims to further process the feature 
information extracted during the encoder stage before 
channel concatenation with the corresponding decoder layer. 
Moreover, the residual structure employed in Res-Path 
simplifies feature learning. Res-Path is not used in the third 
and fourth layers of the skip connection in this paper, because 
the third and fourth layers of the encoder use the IEA and 
DGA modules, respectively, and the combination of the two 
attention mechanisms can effectively reduce the semantic gap 
with the same layer decoder.  

Figure 4. res-path module 

3. Experiment and result

3.1. Data sets and preprocessing methods 

The experimental setup of this study employs the BraTs 2019 
dataset, comprising both training and testing sets. However, 
the testing set lacks labels, thus only the training set is 
utilized. The training set comprises a total of 335 3D MRI 
images, consisting of 259 HGG and 76 LGG images. In this 
paper, the training set is divided according to 8:2, where each 
sample contains four modes T1, T1CE, T2, and FLAIR, and 
the sample size is 240 × 240 × 155. 

The BraTs 2019 dataset comprises four tissue labels: (1) 
necrotic core and non-enhancing tumor on T2-weighted 
images, (2) peritumoral edema, (3) background, and (4) 
enhancing tumor (ET) on T1CE images. To evaluate the 
results, a combination of labels 4 and 1 was used as the tumor 
core (TC), and a combination of labels 1, 2, and 4 was used 
as the entire tumor (WT). 

Due to the large memory footprint, extended training 
cycles, and higher hardware demands associated with 3D 
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data, this study preprocesses the data into 2D images. 
Initially, the 3D data is sliced along the axial axis, resulting 
in 155 slices per sample, each sized at 240 × 240 × 1. 
Subsequently, blank slices devoid of lesion regions are 
discarded, followed by cropping the remaining slices to a size 
of 160 × 160 × 155. 

3.2. Loss function 

The overall performance of segmentation models depends not 
only on the network architecture but also on the choice of loss 
functions. Given the issue of class imbalance in brain tumor 
segmentation, conventional loss functions used in 
segmentation may not be suitable for training brain tumor 
models. Hence, this study employs the Generalized Dice Loss 
(GDL)[19] and the multi-class cross-entropy loss 
function[20], which adaptively weigh different classes to 
balance them and expedite convergence. The formulas for 
calculating these two loss functions are as follows: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝑃𝑃) + 𝜆𝜆 × 𝐿𝐿𝐶𝐶𝐶𝐶(𝐺𝐺,𝑃𝑃)               (6) 
The parameter λ is set to 1.25. The formula for computing the 
GDL is as follows: 

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝑃𝑃) = 1 − 2
∑ (𝑊𝑊𝑗𝑗×∑ (𝑔𝑔𝑖𝑖𝑗𝑗×𝑝𝑝𝑖𝑖𝑗𝑗))𝑁𝑁

𝑖𝑖=1 +𝛽𝛽𝐶𝐶
𝑗𝑗=1

∑ (𝑊𝑊𝑗𝑗×∑ (𝑔𝑔𝑖𝑖𝑗𝑗+𝑝𝑝𝑖𝑖𝑗𝑗))𝑁𝑁
𝑖𝑖=1 +𝛽𝛽𝐶𝐶

𝑗𝑗=1
   (7) 

In the formula, β represents the regularization constant, and 
𝑊𝑊𝑗𝑗 denotes the adaptive weight for the j-th class. The formula 
for calculating the multi-class cross-entropy loss function is 
as follows:  

𝐿𝐿𝐶𝐶𝐶𝐶(𝐺𝐺,𝑃𝑃) = − 1
𝑁𝑁
∑ ∑ (𝑔𝑔𝑖𝑖𝑗𝑗 × 𝐿𝐿𝐶𝐶𝑔𝑔(𝑝𝑝𝑖𝑖𝑗𝑗))𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1           (8)

3.3. Evaluation index 

This study employs the Dice similarity coefficient (DSC)[21] 
and the Hausdorff distance (HD)[22] to evaluate the 
segmentation results. The calculation formulas are as follows: 

𝐷𝐷𝐷𝐷𝐶𝐶 = 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁

 (9)
𝐻𝐻𝐷𝐷(𝑋𝑋,𝑌𝑌) = 𝑚𝑚𝐶𝐶𝑥𝑥�𝑠𝑠𝑢𝑢𝑝𝑝𝑥𝑥∈𝑋𝑋 𝐷𝐷 (𝑥𝑥,𝑌𝑌), 𝑠𝑠𝑢𝑢𝑝𝑝𝑦𝑦∈𝑌𝑌 𝐷𝐷 (𝑋𝑋, 𝑦𝑦)�  (10)

Where DSC is used to compute the similarity between the 
segmentation result and the ground truth label, where TP 
represents true positives, TN represents true negatives, FP 
represents false positives, and FN represents false negatives. 
HD is used to measure the distance between two subsets in 
space, and D is the Euclidean distance between point 𝑥𝑥 ∈ 𝑋𝑋 
and subset Y.  

3.4. Ablation experiment 

This study conducts ablation experiments on the BraTs 2019 
dataset to validate the efficacy of the proposed method. To 
assess the performance of the proposed modules, IEA, DGA, 
and Res-Path were individually incorporated into the baseline 
model UNet for experimentation. The specific configurations 
were as follows:  
(i) Baseline model UNet: adopts a U-shaped structure

consisting of an encoder and a decoder.

(ii) UNet+IEA+DGA: IEA and DGA modules are
sequentially added after the last two layers of the
encoder in the baseline model UNet.

(iii) UNet+Res-Path: Different numbers of Res-Path
modules are added to the first two layers of the skip
connections in the baseline model UNet.

(iv) ARM-Net: IEA and DGA modules are sequentially
added after the last two layers of the encoder in the
baseline model UNet, and Res-Path modules with
varying numbers of residuals are added to the first two
layers of the skip connections.

The performance evaluation of this experiment on the 
BraTs 2019 dataset utilized the DSC and HD evaluation 
metrics, as shown in Table 1. Results from the ablation study 
indicate performance improvements when sequentially 
incorporating IEA and DGA modules into the baseline UNet 
model and further enhancements with the addition of Res-
Path modules. Thus, it is evident that the IEA, DGA, and Res-
Path modules contribute to enhancing the segmentation 
performance of MRI brain tumor images.  

Table 1. Ablation experiments on DSC and HD indices 

Method DSC HD 
ET WT TC ET WT TC 

UNet 0.78
0 

0.84
7 

0.85
6 

2.78
0 

2.59
4 

1.63
1 

UNet+IEA+D
GA 

0.79
1 

0.84
2 

0.86
4 

2.75
2 

2.57
7 

1.62
3 

UNet+Res-
Path 

0.78
9 

0.85
0 

0.86
1 

2.74
9 

2.57
1 

1.62
7 

ARM-Net 0.80
1 

0.85
3 

0.87
0 

2.74
1 

2.56
7 

1.61
2 

Bold font is the optimal value 

3.5. Comparison with other methods 

The experiment was conducted on the BraTs 2019 dataset, 
comparing our proposed method, ARM-Net, with models 
such as UNet, DeepResNet, UNet2+, and UNet3+ in terms of 
DSC and HD evaluation metrics. Table 2 presents the 
experimental results.  

Table 2. Compares the performance of different 
methods 

Network DSC HD 
ET WT TC ET WT TC 

UNet[9] 0.78
0 

0.84
7 

0.85
6 

2.78
0 

2.59
4 

1.63
1 

DeepResUNet
[23] 

0.79
7 

0.82
1 

0.86
7 

2.88
1 

2.60
4 

1.60
1 

UNet2+[10] 0.78
4 

0.85
6 

0.84
9 

2.83
3 

2.63
5 

1.66
0 

UNet3+[11] 0.75
7 

0.86
1 

0.81
5 

2.75
4 

2.53
4 

1.65
1 
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Ours ARM-
Net 

0.80
1 

0.85
3 

0.87
0 

2.74
1 

2.56
7 

1.61
2 

Bold font is the optimal value 

Upon observing Table 2, it is evident that the proposed 
method, compared to the baseline model UNet, demonstrates 
improvements in both DSC and HD metrics. When compared 
to other state-of-the-art models, ARM-Net achieves the 
highest scores in the ET and TC regions for the DSC metric, 
with scores of 80.1% and 87.0%, respectively. Additionally, 
there is an improvement in the ET region for the HD metric, 
with an optimal score of 2.741. These results indicate the 
successful segmentation of all tumor subregions by the 
proposed model.  

Figure 5 depicts the segmentation results of ARM-Net 
compared to other state-of-the-art methods. Upon 
comparison, it is observed that the proposed approach 
exhibits strong performance in edge segmentation across 
different categories, enabling precise segmentation of MRI 
brain tumors.  

Figure 5. Visualization of results 

4. Conclusion

This paper introduces a novel MRI brain tumor segmentation 
method, ARM-Net, which is enhanced by residual modules 
and attention mechanisms. Leveraging the strong feature 
extraction capabilities of deep neural networks, based on the 
UNet baseline model, traditional dual convolution modules 
are employed in the first two layers of the encoder to extract 
shallow-level feature information. With attention 
mechanisms adept at focusing on regions of interest and 
disregarding irrelevant areas, inverted external attention 
modules and dilated gate attention modules are utilized in the 
latter two layers of the encoder. This enables the network to 
interact with global information while focusing on local 
details and better-capturing interactions among the four 
modalities. Addressing the semantic gap in feature fusion 
between the shallow encoder and deep decoder, this paper 
introduces Res-Paths with varying residual block quantities 
in the first two layers of skip connections. The output features 
from the encoder layer are convolved through multiple 
residual blocks before being fused with the decoder layer's 
feature information, effectively reducing the semantic gap. 
Finally, comparative experiments are conducted on the 
BraTS 2019 dataset against other state-of-the-art methods, 
verifying that the proposed model outperforms in segmenting 
various subregions of brain tumors.  
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