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Abstract 

In recent years, Graph Neural Networks (GNNs) have seen notable success in fields such as recommendation systems and 
natural language processing, largely due to the availability of vast amounts of data and powerful computational resources. 
GNNs are primarily designed to work with graph data that involve pairwise relationships. However, in many real-world 
networks, the relationships between entities are complex and go beyond simple pairwise connections, as seen in scientific 
collaboration networks, protein networks, and similar domains. If these complex relationships are directly represented as 
pairwise relationships using graph structures, it can lead to information loss. A hypergraph, as a special kind of graph-structured 
data, can represent higher-order relationships that cannot be fully captured by graphs, thereby addressing the limitations of 
graphs. In light of this, researchers have begun to focus on how to design neural networks on hypergraphs, leading to the 
proposal of hypergraph neural network (HGNN) models for downstream tasks. Therefore, this paper reviews the existing 
hypergraph neural network models. The review is conducted from two perspectives: spectral analysis methods and neural 
network methods on hypergraphs, discussing both unfolded and non-unfolded methods, and further subdividing them based on 
their algorithm characteristics and application scenarios. Subsequently, the design concepts of various algorithms are analyzed 
and compared, and the advantages and disadvantages of each type of algorithm are summarized based on experimental results. 
Finally, potential future research directions in hypergraph learning are discussed. 
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1. Introduction

Traditional deep learning models like Convolutional Neural 
Networks (CNNs) [1] and Recurrent Neural Networks 
(RNNs) [2] have shown exceptional performance in tasks 
involving images, audio, and various other data types. This 
success is largely attributed to their capacity to process 
Euclidean data, taking advantage of translational invariance 
and local connectivity. The core ideas behind CNNs include 
local connections, parameter sharing, pooling, and multi-
layer usage [3]. These techniques not only reduce the 
complexity of the network model and decrease the number of 
weights but also maintain the model's expressive capability. 
RNNs, on the other hand, excel at handling variable-length 
sequential data, allowing them to extract temporal and 
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semantic information from the data. Long Short-Term 
Memory (LSTM) [4] improves upon traditional RNNs 
through a gating mechanism, while the Gated Recurrent Unit 
(GRU) [5], a simplified variant of LSTM, contains only a 
reset gate and update gate, streamlining LSTM architecture. 

Despite the effectiveness of these traditional deep 
learning methods in extracting features from Euclidean data, 
many real-world applications involve non-Euclidean data that 
must be represented using graph structures, such as social 
networks, transportation networks, knowledge graphs, and 
protein networks [6]. As a result, researchers have 
increasingly become interested in extending deep learning 
methods to graph data. 

In recent years, inspired by CNNs and RNNs, 
researchers have innovatively designed deep learning 
methods specifically for handling graph data, collectively 
referred to as Graph Neural Networks (GNNs). Graphs, as an 
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efficient structure for expressing relationships, are widely 
used for modeling pairwise relationships, such as citation 
relationships between papers, social networks, protein 
interactions, and more. However, in many scenarios, besides 
pairwise relationships, there are numerous non-pairwise 
relationships that simple graph structures struggle to express, 
such as community structures in social networks and cluster 
structures in feature relationships. In these scenarios, 
researchers often find it difficult or even impossible to 
distinguish the interactions between samples within different 
structures. Due to their ability to include any number of nodes 
in a single edge, hypergraphs are better suited to represent 
these complex data relationships. Specifically, a hypergraph 
is a graph structure where an edge can contain any number of 
nodes, formally expressed as follows: a hypergraph 𝐻𝐻 =
(𝑋𝑋,𝐸𝐸), where 𝑋𝑋 is a set of elements called nodes, and 𝐸𝐸 is a 
non-empty subset of 𝑋𝑋, referred to as hyperedges or edges. 
Figure 1 illustrates a simple example of a hypergraph. 
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Figure 1. Example of hypergraph 

Researchers have gradually begun to explore areas such 
as higher-order interactions in hypergraphs [7], dynamic 
hypergraphs [8], and indecomposable hypergraphs [9], 
leveraging the powerful learning capabilities and flexibility 
of neural networks. From a methodological perspective, 
spectral analysis methods have traditionally been the 
mainstream in graph learning and hold a significant position 
in hypergraph learning as well. Before the introduction of 
neural networks into hypergraph learning, most studies were 
based on spectral theory. However, with the application of 
neural networks in hypergraph learning, researchers have 
proposed a series of studies that extend traditional pairwise 
graph network learning algorithms to hypergraphs [10–12]. 
Hypergraph learning, as a process that propagates over 
hypergraph structures, was introduced in the work of Zhou et 
al. [10], where they adopted a spectral analysis method based 
on hypergraphs. These methods typically involve rigorous 
mathematical derivations but also face several limitations due 
to this. 

The advent of neural networks has revitalized 
hypergraph learning, making it an increasingly popular 
research area. Applying neural network architectures to 
hypergraph learning has led to notable advancements, with 
methods like Hyperedge-Based Embedding (HEBE) [13] 
standing out. HEBE aims to create representations for entities 
within hypergraphs, influencing subsequent neural network 

approaches. Despite its contributions, HEBE has been 
criticized for poor performance with sparse hypergraphs, as 
highlighted by Tu et al. [9]. This led to the development of 
the Deep Hyper-Network Embedding (DHNE) model. 
However, DHNE’s reliance on multilayer perceptrons to 
model tuple relationships limits its applicability to uniform 
hypergraphs. When applying DHNE to non-uniform 
heterogeneous hypergraphs, the consumption of 
computational resources increases significantly, and the 
model's generalization ability is compromised. To address 
these challenges, Zhang et al. [14] proposed Hyper-SAGNN, 
which introduced a self-attention mechanism aimed at better 
handling the learning and exploration of non-uniform 
heterogeneous hypergraphs. 

However, most of the aforementioned works overlook a 
potential issue when dealing with various characteristics of 
hypergraphs: their decomposability. Hypergraph unfolding is 
a classic method for hypergraph analysis, which expands 
hyperedges into ordinary edges, such as clique expansion [15] 
and star expansion [7]. However, these expanding 
techniques rely on the decomposability of hypergraphs, 
meaning that any subset of a hyperedge can form a new 
hyperedge. For indecomposable hypergraphs, Tu et al. [9] 
proposed the DHNE model and theoretically proved that in 
existing methods, linear similarity measures in standard 
embedding spaces cannot maintain the indecomposability of 
hypergraph networks. Therefore, regarding the 
decomposability characteristics of model algorithms, this 
paper will further review the existing hypergraph learning 
methods. 

2. Definition of hypergraph Learning

2.1. Symbol Definition

Table 1.  Description of symbols 
Sign Meaning 

𝐺𝐺 Hypergraph 
𝐺𝐺𝐷𝐷 Directed Hypergraph 
𝐻𝐻𝐺𝐺  Incidence Matrix of the Hypergraph 
𝐻𝐻𝐺𝐺𝐷𝐷 Incidence Matrix of the Directed Hypergraph 
𝐻𝐻𝐺𝐺𝐷𝐷
ℎ𝑒𝑒𝑒𝑒𝑒𝑒 Head Incidence Matrix of the Directed 

Hypergraph 
𝐻𝐻𝐺𝐺𝐷𝐷
𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡 Tail Incidence Matrix of the Directed 

Hypergraph 
𝑋𝑋𝐺𝐺 Feature Matrix of the Vertices 
𝑥𝑥𝑡𝑡 Feature of Vertex 𝑖𝑖 
𝐿𝐿(𝐺𝐺) Line Graph of the Hypergraph 𝐺𝐺 
𝐴𝐴𝐿𝐿(𝐺𝐺) Adjacency Matrix of the Line Graph 𝐿𝐿(𝐺𝐺) of 

𝐺𝐺 
ℒ𝐺𝐺 Laplacian Matrix of 𝐺𝐺 
ℒ𝐺𝐺𝐷𝐷 Laplacian Matrix of 𝐺𝐺𝐷𝐷 
𝐼𝐼 Identity Matrix 
⊙ Hadamard Product 

𝜎𝜎,𝜎𝜎𝑒𝑒𝑡𝑡𝑡𝑡 Activation Function 
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2.2. Hypergraph definition 

Let 𝐺𝐺 = (𝑉𝑉𝐺𝐺 ,𝐸𝐸𝐺𝐺 ,𝑊𝑊𝐺𝐺) represent a hypergraph, where 𝑉𝑉𝐺𝐺 is the 
vertex set, and 𝐸𝐸𝐺𝐺  is the hyperedge set. 𝐺𝐺 contains |𝑉𝑉𝐺𝐺| = 𝑁𝑁𝐺𝐺  
vertices and |𝐸𝐸𝐺𝐺| = 𝑀𝑀𝐺𝐺 hyperedges. If 𝑣𝑣𝐺𝐺𝑡𝑡  is a vertex, then a 
hyperedge 𝑒𝑒𝐺𝐺𝑡𝑡 = �𝑣𝑣𝐺𝐺

𝑚𝑚𝑒𝑒 , … , 𝑣𝑣𝐺𝐺
𝑛𝑛𝑒𝑒� , where 1 ≤ 𝑚𝑚𝑒𝑒 ≤ 𝑁𝑁𝐺𝐺 , 1 ≤

𝑛𝑛𝑒𝑒 ≤ 𝑁𝑁𝐺𝐺 . 𝑊𝑊𝐺𝐺 represents the weight matrix of the hyperedges. 
Typically, a hypergraph is represented by the incidence 

matrix 𝐻𝐻𝐺𝐺 ∈ ℝ(𝑁𝑁𝐺𝐺,𝑀𝑀𝐺𝐺), defined as: 

 ℎ𝑡𝑡,𝑗𝑗 = ℎ�𝑣𝑣𝐺𝐺𝑡𝑡 , 𝑒𝑒𝐺𝐺
𝑗𝑗� = �

1, 𝑖𝑖𝑖𝑖𝑣𝑣𝐺𝐺𝑡𝑡 ∈ 𝑒𝑒𝐺𝐺
𝑗𝑗

0, 𝑖𝑖𝑖𝑖𝑣𝑣𝐺𝐺𝑡𝑡 ∉ 𝑒𝑒𝐺𝐺
𝑗𝑗 (1) 

where ℎ𝑡𝑡,𝑗𝑗 is an element of 𝐻𝐻𝐺𝐺 , 𝑖𝑖 = 1,2, … ,𝑁𝑁𝐺𝐺 , and 𝑗𝑗 =
1,2, … ,𝑀𝑀𝐺𝐺. 

If 𝑣𝑣𝐺𝐺𝑡𝑡 ∈ 𝑉𝑉𝐺𝐺, the degree of the vertex, denoted by 𝑑𝑑�𝑣𝑣𝐺𝐺𝑡𝑡 �, is 
defined as the number of hyperedges containing 𝑣𝑣𝐺𝐺

𝑗𝑗: 

𝑑𝑑�𝑣𝑣𝐺𝐺𝑡𝑡 � = ∑ ℎ�𝑣𝑣𝐺𝐺𝑡𝑡 , 𝑒𝑒𝐺𝐺�𝑒𝑒𝐺𝐺∈𝐸𝐸𝐺𝐺 𝑊𝑊𝐺𝐺(𝑒𝑒𝐺𝐺) (2) 

If 𝑒𝑒𝐺𝐺
𝑗𝑗 ∈ 𝐸𝐸𝐺𝐺 , the degree of the hyperedge, denoted by 

𝑑𝑑�𝑒𝑒𝐺𝐺
𝑗𝑗�, is defined as the number of vertices contained in the 

hyperedge 𝑒𝑒𝐺𝐺
𝑗𝑗 : 

𝑑𝑑�𝑒𝑒𝐺𝐺
𝑗𝑗� = ∑ ℎ�𝑣𝑣𝐺𝐺𝑡𝑡 , 𝑒𝑒𝐺𝐺

𝑗𝑗�𝑣𝑣𝐺𝐺
𝑖𝑖 ∈𝑉𝑉𝐺𝐺

(3) 

𝐷𝐷𝑉𝑉𝐺𝐺  and 𝐷𝐷𝐸𝐸𝐺𝐺 represent the degree matrices of the vertices 
and hyperedges, respectively. 

In fact, a graph is essentially a specific type of hypergraph. 
When a hypergraph has hyperedges that each connect only 
two vertices, it simplifies into a standard graph. For instance, 
Figure 2(a) illustrates a standard graph where every edge 
links two vertices, while Figure 2(b) depicts a hypergraph 
with hyperedges connecting three or four vertices. If the 
hyperedges in Figure 2(b) were reduced to connect only two 
vertices each, the hypergraph would revert to a graph, as 
shown in Figures 2(c) and (d). 

(a) Graph (b) Hypergraph (c) Hypergraph (where each edge 
has only two vertices)

(d) Hypergraph Degenerates
into a Graph

Figure 2. Graph and hypergraph 

3. Hypergraph Learning Methods

Due to the more complex and higher-dimensional structure of 
hypergraphs, traditional graph algorithms are challenging to 
apply directly to hypergraph problems. With the 
advancement of hypergraph research and applications, 
several typical hypergraph-solving algorithms have emerged, 

such as spectral analysis, neural networks, and other methods. 
These can be further categorized into expansion-based 
methods and non-expansion-based methods, depending on 
their modeling approach. 

3.1. Spectral Analysis Methods 

Spectral analysis on hypergraphs is a traditional mainstream 
method in the field of hypergraph learning, involving matrix 
analysis based on spectral theory. These methods typically 
solve the optimal solution of the objective function through 
rigorous mathematical derivations, with the underlying 
theoretical foundations playing a crucial role in guiding 
algorithm model design. In recent years, the widely studied 
Graph Convolutional Networks (GCNs) [16,17] have gradually 
evolved from spectral theory combined with deep learning. 
This section focuses on spectral analysis methods on 
hypergraphs. 

3.1.1 Expansion-Based Spectral Analysis Methods 
Expansion-based spectral analysis methods generally 
simplify hypergraph learning problems by converting 
hypergraphs into traditional pairwise graph networks and 
then solving them through the spectral properties of the 
Laplacian matrix. These methods are often used in the study 
of homogeneous hypergraphs. 

Star Expansion (SE) and Clique Expansion (CE) are two 
classic hypergraph expansion methods and have been widely 
applied in the design of many hypergraph algorithms. The 
earliest standard star expansion and clique expansion were 
proposed based on spectral theory [15,7]. 

The definition of the Star Expansion algorithm is as 
follows: For a hypergraph 𝐺𝐺(𝑉𝑉,𝐸𝐸) , the Star Expansion 
establishes a corresponding graph 𝐺𝐺∗(𝑉𝑉∗,𝐸𝐸∗). In the graph 
𝐺𝐺∗(𝑉𝑉∗,𝐸𝐸∗) , a new node 𝑒𝑒 ∈ 𝐸𝐸  is introduced for each 
hyperedge in the hypergraph 𝐺𝐺(𝑉𝑉,𝐸𝐸), resulting in 𝑉𝑉∗ = 𝑉𝑉 ∪
𝐸𝐸 . Subsequently, each new node 𝑒𝑒  is connected to all the 
nodes in its corresponding hyperedge, i.e., 𝐸𝐸∗ = {(𝑢𝑢, 𝑒𝑒):𝑢𝑢 ∈
𝑒𝑒, 𝑒𝑒 ∈ 𝐸𝐸}. It is important to note that each hyperedge in the 
set 𝐸𝐸 corresponds to a star structure in the graph 𝐺𝐺∗(𝑉𝑉∗,𝐸𝐸∗), 
making 𝐺𝐺∗  a pairwise graph network. The Star Expansion 
redistributes the weight of each hyperedge to the 
corresponding edges in the pairwise graph as follows: 

𝑤𝑤∗(𝑢𝑢, 𝑒𝑒) = 𝑤𝑤(𝑒𝑒)
𝛿𝛿(𝑒𝑒)

(4) 

where 𝛿𝛿(𝑒𝑒) is the number of nodes in the hyperedge 𝑒𝑒. After 
obtaining the expanded pairwise relationship graph 𝐺𝐺∗, the 
normalized Laplacian matrix 𝐿𝐿∗  of 𝐺𝐺∗  can be defined as 
follows [7]: 

𝐿𝐿∗ = � 𝐼𝐼 −𝐴𝐴
−𝐴𝐴𝑇𝑇 𝐼𝐼 � (5) 

Where 𝐴𝐴 is a |𝑉𝑉| × |𝐸𝐸| matrix: 

𝐴𝐴𝑢𝑢𝑒𝑒 = ℎ(𝑢𝑢,𝑒𝑒)𝑤𝑤∗(𝑢𝑢,𝑒𝑒)
�𝑒𝑒∗(𝑢𝑢)�𝑒𝑒∗(𝑒𝑒)

(6)
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Where 𝑑𝑑∗(𝑢𝑢) and 𝑑𝑑∗(𝑒𝑒) represent the sum of the weights of 
all connecting edges for node 𝑢𝑢  and the newly added 
hyperedge node 𝑒𝑒  in 𝐺𝐺∗ . Formally, for 𝑢𝑢 ∈ 𝑉𝑉 , 𝑑𝑑∗(𝑢𝑢) =
∑ ℎ(𝑢𝑢, 𝑒𝑒)𝑤𝑤∗(𝑢𝑢, 𝑒𝑒)𝑒𝑒∈𝐸𝐸 , and for 𝑒𝑒 ∈ 𝐸𝐸 , 𝑑𝑑∗(𝑒𝑒) =
∑ ℎ(𝑢𝑢, 𝑒𝑒)𝑤𝑤∗(𝑢𝑢, 𝑒𝑒)𝑢𝑢∈𝑉𝑉 . The schematic diagram of the Star 
Expansion is shown in Figure 3(a). 
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Figure 3. Start expansion and Clique expansion 

The clique expansion algorithm constructs a graph 
𝐺𝐺𝑐𝑐(𝑉𝑉𝑐𝑐,𝐸𝐸𝑐𝑐)  from the original hypergraph G(V, E) . Each 
hyperedge 𝑒𝑒 = (𝑢𝑢1, … ,𝑢𝑢𝛿𝛿(𝑒𝑒)) ∈ 𝐸𝐸 in the original hypergraph 
is replaced in 𝐺𝐺𝑐𝑐  by a fully connected structure formed by 
connecting every pair of nodes within the hyperedge, 
resulting in 𝐸𝐸𝑐𝑐 = {(𝑢𝑢,𝑣𝑣):𝑢𝑢, 𝑣𝑣 ∈ 𝑒𝑒, 𝑒𝑒 ∈ 𝐸𝐸}. It's important to 
note that each hyperedge forms a clique structure in 𝐺𝐺𝑐𝑐. The 
weight 𝑤𝑤𝑐𝑐(u, v) of an edge formed by nodes 𝑢𝑢 and 𝑣𝑣 in 𝐺𝐺𝑐𝑐 
needs to minimize the difference between 𝑤𝑤𝑐𝑐(u, v) and the 
weight of the original hyperedge e that contains both u and v, 
which is expressed as 𝑤𝑤𝑐𝑐(u, v) =
𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛 ∑ (𝑤𝑤𝑐𝑐(u, v) − 𝑤𝑤(𝑒𝑒))2e∈E;u,v∈e . Thus, after the clique 
expansion, the weight of each edge in 𝐺𝐺𝑐𝑐  is related to the 
weight 𝑤𝑤(𝑢𝑢) of the original hyperedge 𝑒𝑒, specifically: 

𝑤𝑤𝑐𝑐(𝑢𝑢,𝑣𝑣) = 𝜇𝜇 ∑ 𝑤𝑤(𝑒𝑒) = 𝜇𝜇∑ ℎ(𝑢𝑢, 𝑒𝑒)ℎ(𝑣𝑣, 𝑒𝑒)𝑤𝑤(𝑒𝑒)𝑒𝑒𝑒𝑒∈𝐸𝐸;𝑢𝑢,𝑣𝑣∈𝑒𝑒 (7) 

where 𝜇𝜇 is a fixed scalar. Similarly, after obtaining the 
graph 𝐺𝐺𝑐𝑐, the normalized Laplacian matrix 𝐿𝐿𝑐𝑐 for the clique 
expansion is defined as follows [15]: 

𝐿𝐿𝑐𝑐 = 𝐼𝐼 − 𝐷𝐷𝑐𝑐
−1/2𝐻𝐻𝑊𝑊𝐻𝐻𝑇𝑇𝐷𝐷𝑐𝑐

−1/2 (8) 

where 𝐷𝐷𝑐𝑐  is the degree matrix of 𝐺𝐺𝑐𝑐, 𝐻𝐻 is the incidence 
matrix of the original hypergraph, and 𝑊𝑊 is the weight matrix 
formed by 𝑤𝑤𝑐𝑐. A schematic diagram is shown in Figure 3(b). 

The difference between the two expansion methods lies 
in the following: in the clique expansion, nodes within the 
same hyperedge are directly connected, clearly reflecting the 
similarity between nodes; whereas in the star expansion, 
nodes within the same hyperedge are indirectly connected 
through the hyperedge node, exhibiting implicit similarity. 
The commonality between both methods is that they convert 
the hypergraph into a pairwise graph. In a 𝑘𝑘 -uniform 

hypergraph, the eigenvectors of the pairwise graph 
𝐺𝐺𝑒𝑒𝑒𝑒∗ (𝑉𝑉∗,𝐸𝐸∗)  obtained by scaling the weights of the star-
expanded graph by (𝛿𝛿(𝑒𝑒) − 1)𝛿𝛿(𝑒𝑒) times are consistent with 
those of the normalized clique-expanded graph 𝐺𝐺𝑐𝑐. Although 
the structure of the pairwise graphs obtained through star 
expansion and clique expansion differs significantly in 
uniform hypergraphs, the results of the Laplacian matrix 
eigen-decomposition of the two expanded graphs are 
mathematically similar. However, in non-uniform 
hypergraphs, clique expansion and star expansion differ in 
that clique expansion assigns more weight to larger 
hyperedges, leading to differences in the eigen-
decomposition results [7]. 

3.1.2 Non-Expansive Spectral Analysis Methods 
Unlike expansion-based methods, non-expansive spectral 
analysis methods directly model the hypergraph, constructing 
the Laplacian matrix directly on the hypergraph. This 
modeling process ensures the completeness of the hypergraph 
information. 

Carletti et al. [18] demonstrated in their study on random 
walks on hypergraphs (RWH) that there are significant 
differences between their proposed method, which directly 
models random walks on hypergraphs, and the traditional 
random walk algorithms used on the projection graph (i.e., 
the pairwise graph obtained after clique expansion). Through 
algorithmic derivation on constructed graph data, Carletti et 
al. [18] concluded that their hypergraph random walk 
algorithm is more sensitive to higher-order structures 
compared to traditional methods. This study indirectly 
suggests that algorithms designed based on expanded graphs 
and non-expansive methods directly designed on hypergraphs 
may perform differently. 

Bolla [19] proposed one of the early non-expansive 
matrix decomposition methods, known as the Laplacian 
method. Bolla [19] aimed to find a k-partition of nodes on a 
connected hypergraph, minimizing the number of edges in the 
corresponding cut set. To this end, he defined a hypergraph 
Laplacian matrix 𝐿𝐿𝑜𝑜  for an unweighted hypergraph as 
follows: 

𝐿𝐿𝑜𝑜 = 𝐷𝐷𝑣𝑣 − 𝐻𝐻𝐷𝐷𝑒𝑒−1𝐻𝐻𝑇𝑇  (9) 

where 𝐷𝐷𝑣𝑣  is the diagonal matrix of node degrees, 𝐷𝐷𝑒𝑒  is the 
diagonal matrix of hyperedge degrees, and 𝐻𝐻 is the incidence 
matrix of the hypergraph. The eigenvectors of 𝐿𝐿𝑜𝑜 define the 
optimal Euclidean distance embedding for hypergraph nodes. 
Bolla [19] demonstrated that the matrix decomposition 
method based on 𝐿𝐿𝑜𝑜 can effectively solve the minimum cut 
problem for hypergraphs. 

Subsequently, Zhou et al. [10] extended traditional 
matrix decomposition methods on undirected graphs to 
hypergraphs, proposing the definition of the N-cut algorithm 
on hypergraphs, further advancing the development of non-
expansive matrix decomposition methods on hypergraphs. 
They formalized the expression for hypergraph partitioning. 
As an NP-complete problem, Zhou et al. [10] relaxed it into 
a real-valued optimization problem and then introduced 
spectral theory. Analogous to the Laplacian matrix of 
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traditional graphs, they defined the hypergraph Laplacian 
matrix Δ as: 

Δ = I − 𝐷𝐷𝑣𝑣
−1/2𝐻𝐻𝑊𝑊𝐷𝐷𝑒𝑒−1𝐻𝐻𝑇𝑇𝐷𝐷𝑣𝑣

−1/2 (10) 

Where I is the identity matrix, 𝐷𝐷𝑣𝑣  is the node degree 
matrix, 𝐻𝐻 is the incidence matrix of the hypergraph, 𝑊𝑊 is the 
hyperedge weight matrix, and 𝐷𝐷𝑒𝑒  is the hyperedge degree 
matrix. 

According to standard linear algebra theory, the solution 
to the hypergraph minimum cut problem corresponds to the 
eigenvector associated with the smallest non-zero eigenvalue 
of the Laplacian matrix Δ , and thus, the minimum cut 
problem for hypergraphs can be solved through matrix 
decomposition methods. By left- and right-multiplying 
Bolla's [19] Laplacian matrix by 𝐷𝐷𝑣𝑣

−1/2, and comparing it 
with Zhou et al.'s [10] Laplacian matrix, it is not difficult to 
see that Zhou et al. [10] essentially extended Bolla's [19] 
method from unweighted hypergraphs to weighted 
hypergraphs, without changing the matrix's essence, but 
adding a step of matrix normalization. However, this 
extension made Zhou et al.'s [10] Laplacian matrix more 
broadly applicable, further extending the related theory to 
fields such as hypergraph embedding, clustering, and 
propagation inference. Subsequently, Zhou et al.'s [10] work 
became a classic algorithm, widely adopted by many 
researchers. 

Huang et al. [20], when addressing the problem of image 
segmentation, used over-segmented image blocks as vertices 
to construct a hypergraph and then applied the N-cut 
algorithm proposed by Zhou et al. [10] to segment the 
hypergraph, thereby solving the problem of over-
segmentation in images. Similarly, Purkait et al. [21] utilized 
the N-cut algorithm to cluster and segment the hypergraph 
after obtaining a clustered hypergraph while designing a 
large-scale hyperedge clustering algorithm. Y. Huang et al. 
[22] combined the propagation inference theory proposed by
Zhou et al. [10] with a probability matrix on the hypergraph
and proposed a probability-based non-expansive hypergraph
ranking matrix decomposition algorithm. Ma et al. [23],
based on Zhou et al.'s [10] standard hypergraph Laplacian
operator, further proposed its nonlinear extension—
Hypergraph 𝑝𝑝 -Laplacian regularization (HpLapR), to
preserve the geometric probability distribution of the data.

In addition, there is also a class of hypergraph algorithms 
based on random walks in spectral analysis methods. J. 
Huang et al. [24] proposed the Hyper2vec algorithm, based 
on a biased random walk strategy on hypergraphs. In 
Hyper2vec, the probability transition formula for a node is as 
follows: 

𝜌𝜌2′ (𝑥𝑥|𝑣𝑣 ⋅ 𝑈𝑈) =
𝛼𝛼(𝑒𝑒|𝑣𝑣,𝑈𝑈)⋅𝛽𝛽(𝑒𝑒)� 𝑤𝑤(e)ℎ(𝑣𝑣,e)

d(𝑣𝑣)
ℎ(𝑥𝑥,𝑒𝑒)
𝛿𝛿(e)𝑒𝑒∈𝐸𝐸

𝑍𝑍
(11) 

where ℎ(𝑣𝑣, e)  and ℎ(𝑥𝑥, 𝑒𝑒)  are elements of the hypergraph 
incidence matrix 𝐻𝐻 , 𝑤𝑤(e) is the hyperedge weight, d(𝑣𝑣) is 
the degree of node 𝑣𝑣, 𝛿𝛿(e) is the degree of hyperedge e, and 
𝛼𝛼(𝑥𝑥|𝑣𝑣,𝑈𝑈) and 𝛽𝛽(𝑥𝑥) are piecewise functions that guide the 

random walk process. The matrix expression of the above 
formula is 𝑃𝑃 = 𝐴𝐴𝐴𝐴𝐷𝐷𝑣𝑣−1𝐻𝐻𝑊𝑊𝐷𝐷𝑒𝑒−1𝐻𝐻𝑇𝑇/𝑍𝑍 . It can be seen that 
matrix PPP is essentially the random walk form of the 
hypergraph Laplacian matrix proposed by Zhou et al. [10], 
multiplied by a guiding function. Hyper2vec adds a guiding 
function to the Laplacian operator proposed by Zhou et al. 
[10], allowing the method to adapt to different network 
structures and better preserve the network’s structure and 
inherent properties.

Recently, Carletti et al. [18] proposed a hypergraph 
random walk algorithm driven by a generalized Laplacian 
operator. This algorithm draws inspiration from the property 
in microscopic physical models where multiple neighboring 
objects within the same hyperedge are more likely to 
exchange. The Laplacian operator constructed by this method 
is equivalent to the hypergraph Laplacian operator proposed 
by Zhou et al. [10], with the hyperedge weight allocation 
function being 𝑤𝑤𝛼𝛼 = 𝐶𝐶𝛼𝛼𝛼𝛼(𝐶𝐶𝛼𝛼𝛼𝛼 − 1) . In other words, the 
random walk algorithm proposed by Carletti et al. [18] is 
essentially a special case of the work by Zhou et al. [10]. 
Compared to traditional random walks on pairwise graphs, 
this method is more sensitive to higher-order hyperedges; that 
is, when the scale of the hyperedge changes, the change in 
node importance within the hyperedge calculated by this 
method is greater than that of traditional methods. 

3.2. Neural Network Methods 

In recent years, with the deepening of neural network 
research, researchers have introduced neural network 
methods into various fields, including hypergraph learning. 
The advantage of spectral analysis methods lies in their strong 
mathematical interpretability, but this also leads to a lack of 
flexibility, making them applicable to a relatively limited 
range of hypergraph scenarios. Additionally, many spectral 
analysis methods face challenges when applied directly to 
large-scale hypergraph mining due to their inherent 
characteristics. Neural network algorithms have effectively 
addressed these limitations. This section will explore how 
neural network approaches are applied to hypergraphs. 

3.2.1 Expansive Neural Network Methods 
Drawing inspiration from graph convolutional networks, 
Feng et al. [25] introduced a hypergraph neural network 
framework (HGNN). This framework integrates the 
hypergraph Laplacian matrix Δ = I − θ, as proposed by Zhou 
et al. [10], into conventional graph convolutional neural 
networks. On this basis, they defined the graph convolution 
on hypergraphs as 𝑎𝑎 ∗ 𝑥𝑥 = Φ𝑎𝑎(Λ)Φ𝑇𝑇𝑥𝑥 . To accelerate the 
computation, Feng et al. [25] followed the approach of 
Defferrard et al. [17], using a second-order Chebyshev 
inequality to approximate the solution of 𝑎𝑎 ∗ 𝑥𝑥 , ultimately 
expressing the graph convolution calculation on the 
hypergraph as follows: 

𝑌𝑌 = 𝐷𝐷𝑣𝑣
−1/2𝐻𝐻𝑊𝑊𝐷𝐷𝑒𝑒−1𝐻𝐻𝑇𝑇𝐷𝐷𝑣𝑣

−1/2𝑋𝑋𝑋𝑋 (12)
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where 𝑋𝑋 ∈ ℝ𝑛𝑛×𝐶𝐶1  represents the node feature matrix, 𝑛𝑛 is the 
number of nodes, 𝐶𝐶1 is the dimension of the node features, 
𝑊𝑊 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑎𝑎(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) denotes the hyperedge weights, 𝑋𝑋 ∈
ℝ𝐶𝐶1×𝐶𝐶2  represents the learning parameter, and 𝑌𝑌 ∈ ℝ𝑛𝑛×𝐶𝐶2  is 
the output vector of the layer, utilized for classification. The 
design of the model's overall convolutional layer is illustrated 
in Figure 4. 
Inspired by the HGNN model, S. Ji et al. [26] proposed the 
DHCF (Dual-Channel Collaborative Filtering) algorithm. 
This algorithm extracts structural information of users and 
items through a defined JHConv structure, then uses a shared 
weight matrix to associate the two extracted representation 
matrices, ultimately obtaining the representation matrices for 
both items and users. The JHConv structure is defined as 
follows: 

𝑋𝑋(𝑡𝑡+1) = 𝜎𝜎(𝐷𝐷𝑣𝑣
−12𝐻𝐻𝐷𝐷𝑒𝑒−1𝐻𝐻𝑇𝑇𝐷𝐷𝑣𝑣

−12𝑋𝑋(𝑡𝑡)𝑋𝑋(𝑡𝑡) + 𝑋𝑋(𝑡𝑡)) (13) 

Where 𝜎𝜎 is the activation function, 𝑋𝑋(𝑡𝑡)  is the node feature 
matrix at layer 𝑙𝑙, 𝑋𝑋(𝑡𝑡) is the learnable weight matrix, 𝐷𝐷𝑣𝑣  is the 

node degree matrix, 𝐻𝐻  is the incidence matrix of the 
hypergraph, and 𝐷𝐷𝑒𝑒  is the hyperedge degree matrix. 

The calculation process of the JHConv structure 
incorporates the representation results from the previous layer 
𝑋𝑋(𝑡𝑡), which accelerates the model's convergence speed. This 
dual-channel structure, while implementing collaborative 
filtering, preserves the distinct characteristics of both user and 
item representations. However, because the model constructs 
relationships between different entities solely through shared 
weights, the connections between different entities rely 
entirely on the quality of the data. Therefore, it may face 
challenges when handling noisy data. 

Yi et al.[27]  extended HGNN by integrating it with 
RNNs to develop the HGC-RNN model. This approach first 
employs a graph convolutional network to extract features 
from time slices of a temporal hypergraph, which are then fed 
into an RNN for time-series prediction. Compared to other 
GNN-based structured time-series models, HGC-RNN has 
fewer parameters and shows improved robustness in complex 
networks. However, it is limited to unweighted temporal 
hypergraphs. 

Figure 4. Illustration of the hyperedge convolutional layer [25] 

Yadati et al. [28] pointed out that the HGNN model 
might introduce excessive noise during the information 
fusion process, which could have a negative impact in 
some hypergraph-based semi-supervised learning 
scenarios. To address this, Yadati et al. [28], inspired by 
the sampling-based expansion ideas from BTR [29] and 
Mediator [30], proposed the HyperGCN, FastHyperGCN, 
and 1-HyperGCN models. These models filter the binary 
edges generated from the expanded hypergraph through a 
sampling process, thereby reducing potential data noise to 
some extent. However, this approach risks missing 
valuable information. Although sampling the network 
structure simplifies each training iteration, it might 
necessitate more iterations to achieve the desired results. 

Figure 5. Supergraph Laplacian and Mediate-
augmented Supergraph Laplacian [28] 

3.2.2 Non-Expansion Neural Network Methods 
Tu et al. [9] pointed out that in some hypergraphs, the 
subsets of a node set within a hyperedge cannot form 
independent hyperedges; such hyperedges are called non-
decomposable hyperedges. In this case, certain expansion 
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methods are no longer applicable, leading to the proposal 
of the DHNE model, which is specifically designed for 
non-decomposable hyperedges. Tu et al. [9] defined first-
order similarity in a hypergraph, which refers to the 
proximity similarity between nodes within the same 
hyperedge, and second-order similarity, which refers to the 
similarity between nodes with similar neighborhood 
structures. To preserve the second-order similarity of the 
hypergraph, they adopted an autoencoder structure to 
reconstruct the Laplacian matrix 𝐴𝐴 = 𝐻𝐻𝐻𝐻𝑇𝑇 − 𝐷𝐷𝑣𝑣, which 
contains information about the neighborhood structure. 
The reconstructed node feature vectors are then used as 
inputs to calculate the first-order similarity of the 
hypergraph. The calculation formula is as follows: 

𝐿𝐿𝑡𝑡𝑗𝑗𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑒𝑒
2 ∗ 𝑋𝑋𝑡𝑡𝑒𝑒 + 𝑤𝑤𝑏𝑏2 ∗ 𝑋𝑋𝑗𝑗𝑏𝑏 + 𝑤𝑤𝐶𝐶2 ∗ 𝑋𝑋𝑖𝑖𝐶𝐶 + 𝑏𝑏2)

𝑆𝑆𝑡𝑡𝑗𝑗𝑖𝑖 = 𝑆𝑆�𝑋𝑋𝑡𝑡𝑒𝑒,𝑋𝑋𝑗𝑗𝑏𝑏 ,𝑋𝑋𝑖𝑖𝐶𝐶� = 𝜎𝜎�𝑤𝑤3 ∗ 𝐿𝐿𝑡𝑡jk + 𝑏𝑏3�
�    (14) 

In the DHNE model, 𝑋𝑋𝑡𝑡𝑒𝑒,𝑋𝑋𝑗𝑗𝑏𝑏 ,𝑋𝑋𝑖𝑖𝐶𝐶  represent the 
reconstructed feature vectors, and 𝜎𝜎  is the sigmoid 
function. The matrix A  used in the DHNE model to 
preserve second-order similarity is actually Bolla's 
Laplacian matrix [22] mentioned earlier. Although DHNE 
is designed for heterogeneous hypergraphs and can retain 
first-order and second-order information of nodes, its 
model structure imposes strict requirements on the number 
of input tuples, making it applicable only to uniform 
hypergraphs and difficult to extend to arbitrary 
hypergraphs. 

To address the limitation of the DHNE method, which 
is restricted to processing fixed types and sizes of 
heterogeneous hyperedges, R. Zhang et al. [14] proposed 
the Hyper-SAGNN model. They introduced the classic 
self-attention mechanism [31,32] into the model to 
aggregate hypergraph information, constructing pairwise 
attention coefficients between nodes as their dynamic 
features, while also incorporating the nodes' original static 
features to describe them. The final calculation formula is 
as follows: 

𝑜𝑜𝑡𝑡 = 𝑊𝑊𝑜𝑜
𝑇𝑇 ��𝑑𝑑𝚤𝚤���⃗ − 𝑠𝑠𝚤𝚤��⃗ �

°2
� + 𝑏𝑏    (15) 

where 𝑑𝑑𝚤𝚤���⃗  represents the dynamic feature and 𝑠𝑠𝚤𝚤��⃗  
represents the static feature. Since Hyper-SAGNN imposes 
no restrictions on the types and number of nodes in the 
input tuples, it has better generalization capabilities 
compared to DHNE. However, Hyper-SAGNN's 
construction of numerous intermediate features results in 
higher computational complexity for the model. 

Similarly, Bai et al. [33] introduced the attention 
mechanism into hypergraphs, but unlike previous works, 
they combined the attention mechanism with graph 
convolution. Although the convolution computation 
defined by Bai et al. [33] is the same as that proposed by 
Feng et al. [25], they pointed out that the inherent attention 
mechanism within graph convolution is neither learnable 
nor trainable once the incidence matrix 𝐻𝐻  is defined. 

Therefore, Bai et al. [33] re-calculated the incidence matrix 
𝐻𝐻 by introducing an attention mechanism and used it as the 
input for the convolutional neural network. Figure 6 shows 
a schematic diagram of the attention mechanism in the 
model. Under the assumption that nodes and hyperedges 
belong to the same homogeneous domain, the incidence 
relation 𝐻𝐻𝑡𝑡𝑗𝑗 between node 𝑥𝑥𝑡𝑡 and its associated hyperedge 
𝑥𝑥𝑗𝑗 is defined as follows: 

𝐻𝐻𝑡𝑡𝑗𝑗 =
exp (𝜎𝜎(𝑠𝑠𝑡𝑡𝑚𝑚(𝑒𝑒𝑖𝑖𝑃𝑃,𝑒𝑒𝑗𝑗,𝑃𝑃)))

∑ exp ((𝑠𝑠𝑡𝑡𝑚𝑚(𝑒𝑒𝑖𝑖𝑃𝑃,𝑒𝑒𝑘𝑘,𝑃𝑃)))𝑘𝑘𝑘𝑘𝜘𝜘𝑖𝑖
   (16) 

where 𝜎𝜎(⋅) is a nonlinear activation function, 𝑠𝑠𝑖𝑖𝑚𝑚(⋅) 
is a function that computes the similarity between nodes, 
and 𝜘𝜘𝑡𝑡  is the set of hyperedges adjacent to node 𝑖𝑖 . The 
incidence matrix obtained through these calculations, 
influenced by the attention mechanism, can be learned 
during the backpropagation training process in the neural 
network. Therefore, compared to traditional hypergraph 
convolutional neural networks, this model has higher 
flexibility. However, it is important to ensure that the 
similarity between nodes and hyperedges is comparable 
when constructing the attention mechanism. 

Figure 6. Attention Mechanism [33] 

The summary of the above methods reiterates that 
hypergraph structures are ubiquitous in the real world, and 
the study of hypergraph learning methods holds universal 
practical significance. 

4. Applications of Hypergraphs

Although hypergraph neural networks (HGNNs) have a 
relatively short history of development, they have already 
been widely applied in modeling various types of data 
interaction relationships and have achieved significant 
success. This section will detail their practical applications 
in different fields. 

4.1. Recommendation Systems 

As e-commerce continues to expand globally, the number 
of product categories has rapidly increased. 
Recommending the right products to customers has 
become a major challenge for e-commerce platforms, 
leading to the emergence of recommendation systems. As 
one of the most closely related application areas between 
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academia and industry, research on recommendation 
systems has been abundant. 

In response to the complexity of recommendation 
scenarios, many studies have proposed using hypergraphs 
to model multivariate information [34–36]. This approach 
not only ensures the completeness of the information but 
also effectively models higher-order relationships, thereby 
improving information integration. Hypergraph-based 
recommendation algorithms have been proven to be 
effective in scenarios such as music recommendation 
[34,36], text recommendation [35], and movie 
recommendation [26]. 

DHCN [37], SHARE [38], and HGNN [39] are 
hypergraph neural network models based on session-based 
recommendations. DHCN is a dual-channel hypergraph 
convolutional network that combines hypergraphs and line 
graphs, where hypergraph convolution captures higher-
order relationships at the item level, and line graph 
convolution learns relationships at the session level. S2-
DHCN is a variant of DHCN that incorporates self-
supervised learning. SHARE models each session as a 
hypergraph, with items as vertices and hyperedges linking 
all items within a contextual window. It employs a 
hypergraph attention mechanism to assess the significance 
of items to sessions and the influence of sessions on items. 
HGNNA, a recommendation model based on hypergraph 
neural networks and attention mechanisms, first utilizes a 
hypergraph neural network to learn item associations. It 
then applies a self-attention mechanism to aggregate 
session information and a graph attention mechanism to 
reveal the relevance between sessions. 

Table 2. Datasets of Session-Based 
Recommendation 

Dataset Number of 
Training 
Sessions 

Number of 
Test 
Sessions 

Number 
of 
Products 

Average 
Length 
of 
Sessions 

YooChoos
e1/4 

5917745 55898 29618 5.71 

Diginetica 719470 60858 43097 5.12 

Table 3.  Results of Different Models for Session-
Based Recommendation（MRR@K） 

model Dataset 
YooChoose1/4 Diginetica 

STAMP 30.00 14.32 
SR-GNN 31.89 17.59 
HGNNA 30.81 17.59 
SHARE 32.11 18.05 
DHCN 36.72 30.58 
S2-DHCN 40.13 30.94 

Short-Term Attention/Memory Priority (STAMP) 
[40] and Session-based Recommendation with Graph
Neural Networks (SR-GNN) [41] are two advanced
baseline models that enhance session-based
recommendations by introducing attention mechanisms
and GNNs, respectively. Table 2 records the commonly
used datasets for session-based recommendation,
YooChoose, and Diginetica. As shown in Table 3,
hypergraph neural network models SHARE, DHCN, and
S2-DHCN outperform SR-GNN in terms of the mean
reciprocal ranking (MRR@K) on YooChoose1/4, with
improvements of 0.22%, 4.83%, and 8.24%, respectively.
On Diginetica, the MRR@K values improved by 0.46%,
12.99%, and 13.35%, respectively. HGNNA also
outperformed STAMP, further proving the significant
effectiveness of hypergraph neural network models in this
task.

4.2. Clustering 

Network clustering involves partitioning network vertices 
into several clusters, with the goal of making vertices 
within the same cluster closely connected while having 
weaker connections between different clusters. This 
clustering structure is widespread in fields such as 
bioinformatics, computer science, physics, and sociology, 
and it holds significant importance. 

In fact, hypergraph partitioning can also achieve 
clustering objectives, so in many studies, hypergraph 
partitioning algorithms are classified as clustering 
algorithms. Research on custom edge weight functions is 
also an important method in hypergraph clustering. 
Additionally, projecting hypergraph structure information 
and node attribute information into vector space through 
hypergraph representation methods, and then clustering 
based on spatial distance, is also an effective approach for 
hypergraph clustering. This method preserves graph 
structure characteristics while also considering node 
attribute information. 

4.3. Node Classification 

In addition to hypergraph partitioning and clustering 
analysis, node classification is another important research 
direction in hypergraph learning. The node classification 
task is based on the assumption that similar nodes have 
similar labels. Most algorithms achieve classification by 
generalizing the data analysis of labeled nodes to unlabeled 
nodes, which is also applicable in hypergraphs. 

Label propagation algorithms are a class of classic 
semi-supervised graph node classification methods. Zhou 
et al. [10] were the first to propose this method on 
hypergraphs, aiming to minimize the label differences 
between vertices sharing the same hyperedge. Unlike 
traditional label propagation, recent studies have proposed 
models that map hypergraph structure information into 
vector space before performing node classification, hoping 
to uncover higher-order structural information to improve 
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classification effectiveness. However, the main drawback 
of these methods is that they only use the initial hypergraph 
structure, neglecting the impact of vector space mapping 
on hypergraph structure. Therefore, some dynamic 
hypergraph models have been proposed that optimize 
graph structure during training to achieve better 
classification results. 

4.4. Visual Tasks 

Hypergraph learning algorithms are also widely applied in 
visual tasks. In computer vision, hypergraphs are used to 
describe relationships between visual features, such as 
visual classification [42], image retrieval [22], and video 
object segmentation [20]. Additionally, hypergraphs are 
used in 3D model classification for label propagation [43] 
and in social media for multimodal data processing [44]. 
The application of hypergraph learning algorithms in visual 
tasks is relatively flexible, with the algorithms needing to 
be designed based on the specific characteristics of the task 
objectives. The main reason for introducing hypergraph 
structures is that they can effectively express complex 
relationships between objects and uncover higher-order 
relationships. 

4.5. Biological Networks 

In biological networks, nodes often represent entities like 
proteins, metabolites, or genes, while edges denote 
functional relationships or interactions, such as "binding," 
"catalyzing," or "converting." Traditional graphs, which 
link only two nodes per edge, fall short in representing 
processes involving multiple participants. Hypergraphs, by 
contrast, provide a more suitable framework for capturing 
these complex interactions. 

Tsuyuzaki et al. [45] proposed a sensor to address the 
problem of previous data analysis methods focusing only 
on one-to-one interactions between two cell types, using it 
to extract representative hypergraphs of interaction 
relationships and discover new cell interaction patterns. 
Similarly, Yu et al. [46] proposed HCIS based on the intra-
class scatter matrix, analyzing the interaction relationships 
of higher-order biological modules. These methods not 
only overcome the limitations of traditional binary 
interaction analysis but also provide new perspectives for 
understanding complex cellular networks. 

5. Prospects

In this paper, we systematically reviewed the concepts, 
definitions, methods, and applications of hypergraph 
learning in different fields. First, we introduced the 
definition of hypergraphs and their related symbols, 
clarifying the unique advantages of hypergraphs in 
handling higher-order relationships, making them an 
important tool for modeling complex data structures. We 
then explored the main current methods of hypergraph 

learning, particularly spectral analysis methods and neural 
network methods. By categorizing and comparing 
expansion-based and non-expansion-based methods, we 
revealed their applicability and limitations in different 
application scenarios. On the application level, we 
discussed in detail the widespread use of hypergraphs in 
recommendation systems, clustering, node classification, 
visual tasks, and biological networks, demonstrating the 
strong capability and flexibility of hypergraphs in handling 
complex and high-dimensional data. 

Although hypergraphs have demonstrated powerful 
modeling capabilities across various domains and have 
significantly improved the performance of many 
application tasks, there are still many challenges to address. 
For instance, in areas such as large-scale data processing, 
optimization of hypergraph structure construction, and the 
integration of heterogeneous data, the effectiveness and 
scalability of hypergraph models need further 
enhancement. Moreover, improving the interpretability and 
explainability of these models is crucial for better 
understanding their decision-making mechanisms. 
Therefore, future research should focus on addressing these 
core issues, exploring more efficient algorithms, 
optimizing hypergraph structure construction methods, and 
advancing theoretical analysis and application expansion to 
fully unleash the potential of hypergraph neural networks 
across a broader range of fields. 
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