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Abstract

Semantic segmentation is a key research topic in the field of computer vision, aiming to assign each pixel to
the corresponding category based on the semantic information in the image. This technology has significant
application value in fields such as virtual reality and autonomous driving. With the rapid development of deep
learning, particularly with the advent of FCN, image semantic segmentation has made substantial progress.
Fully supervised learning, which trains deep learning models using labeled data, has demonstrated excellent
performance in semantic segmentation tasks. This paper provides a comprehensive discussion and analysis
of fully supervised semantic segmentation algorithms for 2D data in deep learning. First, it introduces the
concept of semantic segmentation, its development, and its application scenarios. Next, it systematically
reviews and categorizes current real-time semantic segmentation algorithms, analyzing the characteristics and
limitations of each. Additionally, this paper presents a complete evaluation framework for real-time semantic
segmentation, including relevant datasets and evaluation metrics. Based on this foundation, it identifies
several challenges currently facing the field and suggests potential directions for future research. Through
this summary and analysis, the paper aims to provide valuable insights for researchers conducting studies on
image semantic segmentation.
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1. Introduction
The research on computer vision and all related tech-
nologies has made great progress. Image classification,
object detection, and semantic segmentation are cur-
rently three prominent research directions in the field.
As a pixel-level perception task in computer vision,
semantic segmentation aims to assign each pixel in
an input image to its corresponding category label.
Compared with target detection and image classi-
fication, semantic segmentation provides more fine-
grained information and plays an important role in
practical applications. In particular, it plays a vital
role in diverse fields such as medical image process-
ing, robot vision, remote sensing image classification,
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augmented reality, image compression and transmis-
sion, autonomous driving vision, and intelligent video
analysis. Its applications are essential for advancing
these domains. Fully supervised semantic segmentation
methods rely on large amounts of labeled data and learn
the pixel-level classification task through deep neural
networks.

The development of semantic segmentation can
be traced back to traditional image processing and
pattern recognition methods, which relied on hand-
designed feature extraction and segmentation algo-
rithms. These encompass a diverse array of region-
based and boundary-based algorithms, including the
OTSU method for optimal thresholding [1], watershed
for image segmentation based on gradient magnitude
[2], region growing for pixel aggregation based on
similarity [3], active contours for boundary detection
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Figure 1. Diagram of FCN network structure

through energy minimization [4], graph cutting for
optimizing segmentation boundaries [5], conditional
random fields for contextual pixel labeling [6] and
Markov random fields for modeling spatial dependen-
cies in image data [7]. However, these traditional meth-
ods exhibit significant limitations when dealing with
complex scenes and large-scale data. The advent of
deep learning has greatly enhanced the capabilities of
semantic segmentation algorithms, driving significant
progress in their associated applications. In particular,
the introduction of FCN [8] marked a breakthrough in
semantic segmentation, enabling end-to-end segmen-
tation models and ushering in a new era for semantic
segmentation research. The architecture of the FCN is
illustrated in Figure 1.

Inspired by FCN, CNN [9] is gradually becoming
a new paradigm for image segmentation algorithms.
Researchers have developed various improved models
to further enhance the performance of semantic seg-
mentation. For example, U-Net [10] achieves remark-
able performance in medical image segmentation by
merging high-resolution details features with low-
resolution semantic information through its encoder-
decoder architecture enhanced with Skip Connections.
SegNet [11] achieves a more accurate upsampling of
semantic information in the decoding stage by intro-
ducing Max-Pooling Indices. To capture richer con-
textual information, a variety of methods have been
proposed to enhance the model’s ability to utilize multi-
scale features. Since semantic segmentation requires the
restoration of detailed information lost during down-
sampling, multi-scale features, and contextual infor-
mation are crucial for achieving high segmentation
accuracy. As a result, numerous segmentation mod-
els have introduced diverse approaches to effectively
capture and utilize rich contextual information. For
example, the spatial pyramid pooling (ASPP) module in
the DeepLab family [12–15] efficiently fuses multi-scale
contextual information through parallel null convolu-
tion operations. The Pyramid Pooling Module (PPM) of
PSPNet [16] enhances the global semantic information
of a scene by combining global and local features.
Feature Pyramid Network (FPN) [17] fuses features
of different resolutions layer by layer in a bottom-up
feature pyramid structure, thus improving the fine-
grained segmentation of target boundaries.

In recent years, the emergence of self-attention mech-
anisms and Transformer [18] architectures provide new
solutions for semantic segmentation tasks. For instance,
Vision Transformer (ViT) [19] splits an image into fixed-
size patches and employs Multi-Head Self-Attention
(MHSA) to effectively model global features. SETR [20]
applies the Transformer for the first time to seman-
tic segmentation tasks. SegFormer [21], a pioneering
semantic segmentation framework, achieves high effi-
ciency and advanced performance by merging a hier-
archical Transformer encoder with a streamlined mul-
tilayer perceptron (MLP) decoder. It advanced perfor-
mance with both local and global feature representa-
tion capabilities. MCTformer+ [22] achieves accurate
category-specific target localization through multi-class
Token and contrasting class Token modules, which
substantially improves the performance of weakly
supervised semantic segmentation. These Transformer-
based models achieved significant performance gains
on multiple semantic segmentation datasets, exhibiting
stronger global feature modeling capabilities compared
to traditional CNNs.

Although these approaches bring significant segmen-
tation accuracy improvements, they are also accompa-
nied by higher computational costs, especially in the
self-attention mechanism and Transformer networks.
The self-attentive mechanism is able to effectively cap-
ture long-range contexts by virtue of its global mod-
eling capability, but its computational complexity is
square to the image resolution, significantly increas-
ing the inference latency. This delay is unacceptable
for application scenarios that require real-time perfor-
mance. Some heavy semantic segmentation networks
may incur second-level latency, which can pose signifi-
cant limitations in real-world deployments. To address
these challenges, real-time semantic segmentation net-
works have emerged. These networks typically refer to
models capable of performing inference at a rate of
30 frames per second or higher on a specified device.
They meet the minimum frame rate requirement for
perceiving smooth video flow by the human eye. How-
ever, to achieve this on resource-constrained mobile
and edge devices, the model needs to accommodate
both rich spatial detail information and multi-scale
contextual information. On the one hand, preserving
high-resolution underlying feature maps is crucial for
obtaining spatial detail information, but this can signif-
icantly increase the computational cost. On the other
hand, the capture and fusion of multi-scale contexts
requires the design of complex modules, which can
similarly increase the inference latency. Therefore, A
key challenge in real-time segmentation is balancing
computational efficiency with the retention of rich spa-
tial information while effectively capturing multi-scale
context, making this a crucial area of research.
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Figure 2. Illustration of single branch semantic segmentation
network structure

2. Real-time Semantic Segmentation Methods
With the continuous progress of deep learning tech-
nology, real-time semantic segmentation has become an
essential research focus in the field of computer vision,
attracting increasing attention from researchers. This
chapter systematically organizes and summarizes the
current real-time semantic segmentation algorithms,
offering an in-depth analysis from two key perspec-
tives: network structure and fundamental framework.
By examining these aspects, the chapter aims to provide
insights into the development trends and challenges in
real-time segmentation. Furthermore, Table 1 presents
a comprehensive comparison of the performance of
several widely used real-time semantic segmentation
networks on the Cityscapes dataset.

2.1. Network structure
Single branch network. Single-branch real-time semantic
segmentation network accomplishes feature extraction
and semantic segmentation tasks through a unified
network structure. Due to its simplicity and low
computational cost, it is widely applied in scenarios
demanding high real-time performance. As illustrated
in Figure 2, a single-branch network typically follows
an Encoder-Decoder (ED) architecture. The encoder
progressively downsamples the image to extract
semantic features. The decoder utilizes an upsampling
method to recover the spatial resolution and generate
segmentation results consistent with the original image
size.

To improve real-time performance, ENet [23], one of
the earliest semantic segmentation networks designed
for real-time applications, achieves a substantial
increase in inference speed by incorporating techniques
such as factorized convolution and a reduced network
depth. Its network structure is similar to SegNet, but its
performance is optimized by early downsampling and
a lightweight decoder. ERFNet [24] is further optimized
on the basis of ENet and proposes Factorized Residual
Modules, which reduce the number of parameters while
maintaining good feature representation. Compared to
ENet, ERFNet has significantly improved segmentation
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Figure 3. Illustration of the structure of Two-branch semantic
segmentation network

accuracy in complex scenes. Its residual connection
design ensures the stability of the gradient, which helps
to train the deep model and performs well in the
edge detail segmentation task. In contrast, SCTNet [25]
combines Transformer with traditional single-branch
CNN structure. The Transformer branch is introduced
in the training phase to capture long-range contextual
information while the lightweight single-branch CNN
is retained in the inference phase, resulting in efficient
real-time inference.

Although the single-scale lightweight decoder sig-
nificantly improves inference speed, its low-resolution
single-scale feature input struggles to recover image
details. This results in limited accuracy advantages for
this type of real-time segmentation network.

Two-branch network. As a pixel-level dense prediction
task, semantic segmentation necessitates capturing
both global contextual information and detailed local
spatial features at the same time. Two-branch networks
provide an effective solution for this purpose. Such
networks usually consist of two branches, one focusing
on extracting high-resolution spatial information and
preserving the detailed features of the image. The other
emphasizes learning from low-resolution data to extract
high-level semantic features. To effectively integrate the
features of the two branches, a specific fusion strategy
is usually employed. As shown in Fig. 3, the two-branch
real-time semantic segmentation network is broadly
categorized into a decoupled bilateral network and a
feature-sharing bilateral network.
1) Decoupled two-branch network. The decoupled

two-branch network captures this spatial and con-
textual information separately through independent
branches and performs feature fusion at the end of
the network, as shown in Figure 3(a). BiSeNet [26]
proposed this network structure for the first time. Its
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Table 1. Performance comparison of different real-time semantic segmentation networks on the Cityscapes dataset. "-" indicates that
no data is provided.

Type Method Resolution Params (M) FPS Val mIoU (%) Test mIoU (%)

Single Branch network
ENet 1024 × 512 0.4 76.9 - 58.3

ERFNet 640 × 360 - - 71.3 70.33
SCTNet 1024 × 512 4.6 160.3 72.8 -

Two-branch network

BiSeNet 1536 × 768 49.0 65.5 74.8 74.7
BiSeNet V2 1024 × 512 - 47.3 75.8 75.3

STDC 1536 × 768 22.2 97.0 77.0 76.8
Fast-SCNN 2048 × 1024 1.1 123.5 68.6 68.0

DDRNet 2048 × 1024 20.1 37.1 79.5 79.4
RTFormer 2048 × 1024 16.8 39.1 79.3 -
SeaFormer 1024 × 512 - - 77.7 77.5

Single Branch network

ICNet 2048 × 1024 26.5 30.3 - 69.5
ESPNet 1024 × 512 0.4 113 - 60.3
DFANet 1024 × 1024 7.8 100.0 - 71.3
PIDNet 2048 × 1024 36.9 31.1 80.9 80.6

proposed spatial path uses a shallower network struc-
ture to maintain high-resolution information and cap-
ture the underlying detail information. The contextual
path branch extracts high-level semantic information
through a deep structure. To effectively integrate fea-
tures from both branches, BiSeNet designs an FFM
module, which realizes efficient feature fusion with
low computational overhead. Based on the framework
of BiSeNet, BiSeNet V2 [27] was optimized in various
aspects. The introduction of global average pooling in
the context path enhances the network’s sensory field
and semantic information extraction ability. In addi-
tion, BiSeNet V2 is designed with a Bilateral Guided
Aggregation Layer to realize the bidirectional fusion of
the features of the two branches. To solve the problem
of large computation of spatial path branching and lack
of underlying supervision, the STDC network proposed
by Fan et al [28] constructs a multi-scale feature map
by adjusting the depth and number of convolutional
kernels. The detail recovery ability of spatial path
branching is enhanced by adding a detailed header,
which greatly reduces the computation amount.

2) Feature-sharing two-branch network. These
networks reduce computational redundancy by sharing
feature maps at an early stage and dividing them
into spatial and contextual branches at a later
stage, whose structure is schematically shown in
Figure 3(b). Fast-SCNN [29] adopts this design by
fusing the early convolution of these spatial and
contextual branches into a single branch for learning
downsampling. It is then deeply divided into contextual
and spatial branches and fuses dual-branch features to
reduce computational redundancy. DDRNet proposed
by Pan et al [30] further explores the feature-
sharing structure by using a shallow layer to share
a single branch and dividing it into dual branches

at the deeper layer. DDRNet boosts the sensory
field and improves the segmentation accuracy with
the Bilateral Fusion Module and Deep Aggregation
Pooled Pyramid Module while maintaining a low
inference latency. RTFormer [31] improves DDRNet
by replacing the dyadic branch with the RTFormer
module. RTFormer is also a dual-resolution module
where the low-resolution branch uses a linear self-
attention mechanism and the high-resolution branch
uses cross-resolution attention. Its attention module is
similar to external attention but optimized for GPU
operations, and reduces inference latency by moving
the head-splitting operation to the activation function
to preserve the full large matrix. On the other hand,
SeaFormer [32] proposes a hybrid Transformer-CNN
two-branch real-time semantic segmentation network
architecture. Its overall structure adopts a feature-
sharing dual-branching framework similar to DDRNet
but uses a one-sided fusion module to fuse only the
context branch features into the spatial branch. By
combining the advantages of Transformer and CNN,
SeaFormer perfectly balances speed and accuracy on
mobile.

By modeling the two-way decoupling of images, the
two-branch network can efficiently capture the spatial
details and long-range contextual information required
for semantic segmentation and improve segmentation
efficiency. However, its extra branches and inter-branch
interactions also bring extra computational cost and
inference delay.

Multi-branch network. Multi-branch network is an effi-
cient architecture designed for real-time semantic seg-
mentation, which extracts different types of features
through multiple branches to segment multi-scale and
complex scenes accurately. The core idea behind this
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design is to leverage the distinct structural charac-
teristics of each branch, effectively integrate multi-
resolution features, and achieve an optimal trade-off
between computational efficiency and segmentation
accuracy. ICNet [33] designs a unique multi-branch
network architecture by adopting the characteristics
of low-resolution images that are faster in inference
and high-resolution images that have higher predic-
tion accuracy. ICNet employs a cascaded feature fusion
unit to integrate multi-resolution features, progres-
sively refining the prediction details and enhancing
segmentation quality.

Building on this, ESPNet [34] introduces an efficient
spatial pyramid (ESP) structure. It first applies the
1 × 1 convolution to downscale the feature map
dimensions and then expands the sensory field
by null convolution to capture broader contextual
information. In addition, ESPNet solves the grid effect
problem of null convolution by layer-by-layer image
fusion technique and improves the network operation
efficiency by using channel splicing on the basis of
multiple resolution image inputs. DFANet [35] adopts
the structure of additional subnetworks to refine the
high-level features by fusing the multiscale features.
Unlike ICNet and ESPNet, DFANet re-inputs the
multiscale features output from the subnetwork into
the subnetwork for processing. To avoid the lack of
spatial details in large sensory fields and small-scale
features leading to accuracy degradation, DFANet uses
high-resolution feature refinement layer by layer in the
decoder stage. Large-scale features with rich details
are eventually recovered, which leads to a notable
improvement in segmentation accuracy, particularly in
complex scenes.

PIDNet [36] constructs a three-branch network
from the PID control algorithm. It improves the
ICNet branching structure and expands the DDRNet
branching structure, and its structure is shown in
Figure 4. At the initial stage of network processing,
a single-branch convolutional network downsamples
the input image to 1/8 of its original resolution.
Then three branches are used to parse the details (I
branch), context (P branch), and boundary information
(D branch) respectively. PIDNet uses the Boundary-
Attention-Guided and Pixel-Attention-Guided fusion
modules to fuse the feature information of the three
branches. For supervised training, besides using ground
truth labels for overall supervision, boundary labels are
also used to supervise the P and D branches to improve
its feature extraction ability. By achieving an optimal
trade-off between inference speed and accuracy, PIDNet
stands out as a representative multi-branch network.

Although multi-branch networks have obvious
advantages in terms of accuracy, their complex
architectural design also brings high computational
overhead and inference delay. How to improve

computational efficiency while maintaining
segmentation accuracy remains a key research focus
for the development of multi-branch networks in the
future.

2.2. Foundation framework
In deep learning, real-time semantic segmentation
methods can be broadly classified into three types based
on their foundational architectures: CNN-based frame-
works, Transformer-based frameworks, and hybrid
frameworks that integrate both CNNs and Transform-
ers. The algorithms included in these three frameworks
are shown in Figure 5. With the long-term development
of the CNN framework in image processing, real-time
semantic segmentation methods based on CNN have
been widely researched and applied. The CNN frame-
work is still the mainstream choice for real-time seman-
tic segmentation tasks due to its linear complexity in
image resolution and good optimization of hardware
acceleration. CNN frameworks are structurally diverse
and can realize single-branching, two-branching, multi-
branching, and other network architectures. These dif-
ferent architectures can be adapted to meet different
real-time and accuracy requirements by adjusting the
network depth, branch design, and module configura-
tion. On the other hand, Transformer-based frameworks
have attracted significant interest due to their capability
to model long-range dependencies and capture global
context, both essential for semantic segmentation. At
the heart of the Transformer architecture is the self-
attention mechanism, which can be formulated as:

Attention(Q,K, V ) = softmax(
QKT√
dk

)V (1)

Where Q,K , and V denote the query, key, and value
matrices, respectively, while dk represents the dimen-
sionality of the keys. This mechanism enables the
model to dynamically assess the importance of dif-
ferent regions in the input image. However, the self-
attention operation has a quadratic complexity of O(n2)
concerning the number of input tokens n. This will
lead to significant computational overhead, especially
for high-resolution images. This limitation has spurred
research into efficient variants of Transformers, such
as sparse attention mechanisms and hierarchical struc-
tures, to make them more suitable for real-time applica-
tions. Nevertheless, some Transformer-based real-time
semantic segmentation methods, such as SegFormer
and AFFormer [37], have made breakthroughs in recent
years. By lightweighting the Transformer module and
adopting a single-branch network architecture, these
methods greatly reduce the inference latency and
can effectively maintain real-time segmentation accu-
racy while ensuring real-time performance. Therefore,
although there are relatively few real-time semantic
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segmentation methods based on Transformer, with the
development of the technology, its application potential
is still huge, especially when dealing with complex
scenes with long-distance dependencies.

Real-time semantic segmentation methods based
on CNN-Transformer hybrid frameworks aim to
fully utilize the respective advantages of CNN and
Transformer to achieve more efficient and accurate
semantic segmentation. Such approaches typically use
the Transformer module in the deeper layers of the
network to capture global contextual information and
reserve the CNN in the shallow or middle layers to
extract local features. For example, Topformer [38]
is a representative method based on this framework.
It achieves a balance between speed and accuracy
by embedding the Transformer in the deeper layers
to capture long-range dependencies. Meanwhile, the
CNN remains in the shallow layers to preserve local
details. Another common design follows a two-branch
structure. Here, the CNN extracts spatial features,
while the Transformer models long-range context.
RTFormer and SeaFormer exemplify this design, which,
by combining the Transformer as a context branch

with the spatial branch of the CNN, achieves efficient
processing of semantic segmentation tasks.

The CNN-Transformer hybrid framework can signifi-
cantly improve real-time semantic segmentation perfor-
mance by integrating the local modeling capability of
CNN and the advantage of the Transformer in capturing
long-range contextual information. More importantly,
this framework avoids the problem of high inference
latency that the Transformer may incur when pro-
cessing high-resolution images, thus ensuring the effi-
ciency of real-time inference. Therefore, the algorithm
based on the hybrid CNN-Transformer framework is
not only able to achieve high segmentation accuracy
in most complex scenarios but also meets the real-time
requirements, showing great potential and advantages
in practical applications.

3. Evaluation system for semantic segmentation
3.1. Relevant 2D datasets
Data sets are a prerequisite for algorithmic research,
and some research institutions, large companies, and
competition programs around the world have open-
sourced quite a number of large-scale data sets, which
have greatly promoted the development of related
fields. The research on image semantic segmentation
mainly focuses on 2D images, and the more commonly
used 2D datasets are as follows:

Cityscapes [39]: a large-scale urban streetscape
semantic understanding dataset with 5000 finely
annotated images and 20000 roughly annotated images.
Among them, 2975 of the fine annotated images
are used for training, 500 for validation, and 1525
for testing. All images have a resolution of 2048 ×
1024 pixels and cover 30 different classes, 19 of
which are used for semantic segmentation. Real-time
semantic segmentation methods usually use only finely
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annotated images, and only a few methods use coarse
data for further enhancement of network performance.
It covers a variety of complex urban street scenes with
high image resolution, high annotation quality, and a
wide range of spatial and temporal spans, making it
one of the most commonly used datasets in the field
of real-time segmentation. The dataset is available at
https://www.cityscapes-dataset.com.

CamVid [40, 41]: a densely labeled autopilot dataset
containing 701 images of vehicle driving viewpoints
from a 10-minute driving shot sequence in Cambridge,
UK. It includes 367 training images, 101 validation
images, and 233 test images. The resolutions are
all 960 × 720 pixels and contain 32 categories, 11
of which are used for semantic segmentation. This
dataset is weakly spatio-temporally diverse and small,
and networks for CamVid often require Cityscapes
pre-training. The dataset can be downloaded at
mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid.

ADE20K [42, 43]: one of the most comprehen-
sive datasets available for scene parsing and seman-
tic segmentation, containing 22210 images. Among
them, 20,210 images are used for training and 2,000
for validation. Its images are of different sizes and
cover a variety of scenes, including indoor, outdoor,
nature, and urban, etc. These images are annotated
at the pixel level and cover 150 categories of objects,
including common object categories as well as some
rare categories. The problem of having rich seman-
tic categories and long-tailed distributions is a chal-
lenge for lightweight real-time semantic segmenta-
tion networks. The dataset is hosted on the website
https://groups.csail.mit.edu/vision/datasets/ADE20K.

COCOStuff-10K [44]: COCOStuff-10K is obtained by
extending the large-scale scene understanding dataset
COCO with numerous “stuff” categories. It is a set of
10,000 complex images with artificial dense labeling
in COCOStuff, of which 9,000 are used for training
and 1,000 for testing. It contains about 182 categories,
including 91 thing categories and 91 stuff categories,
but 11 of the thing categories are not labeled, so
only 171 categories are used. This is also a chal-
lenging dataset for real-time semantic segmentation
because it has more complex categories and more vari-
able scenarios. The datasets can be downloaded at
https://github.com/eulersantana/cocostuff.

PASCAL VOC 2012 [45]: this dataset is one
of the important benchmark datasets in computer
vision and is widely used for image classification,
target detection, and semantic segmentation tasks.
It contains 20 different semantic categories and 1
background category with 5717 training images, and
5823 validation images Each image is labeled at
a fine pixel level to ensure high-quality semantic
segmentation labels. The dataset is available at
host.robots.ox.ac.uk/pascal/VOC/voc2012.

3.2. Evaluation indicators
Mean Intersection over Union (mIoU) is a widely
metric for evaluating semantic segmentation. IoU
measures the degree of overlap between predicted and
ground truth masks by calculating the ratio of their
intersection and the merge of two sets of pixels. MIoU
is the average of the IoUs across all classes in the
dataset, and it is a measure of the overall accuracy of
the segmentation model. The calculation formula is as
follows:

IoUi =
T Pi

T Pi + FPi + FNi
(2)

mIoU =
1
C

c∑
i=1

IoUi (3)

Where T Pi denotes the number of pixels correctly
classified as class i. FPi represents the pixels mistakenly
predicted as class i. FNi refers to the pixels belonging to
class i but not correctly predicted. C is the total number
of classes.
Frames per second (FPS) is the number of image

frames per second that a network model can process,
the size of which is affected by the performance of
a specific device. Real-time segmentation requires the
network’s FPS to be greater than or equal to 30
frames/s. FPS is a visual measure of the network’s
inference speed and throughput when comparing
across devices.
Inference Latency is the inverse of FPS, indicating

the time required by the network model to process one
frame of an image. It is usually used more in semantic
segmentation models on mobile. GPU devices have
more arithmetic power and are accelerated with Tensor-
RT for faster inference. Many real-time segmentation
networks have an FPS of well over 30 frames per second
on GPUs, and it is not intuitive to compare latency
at this point. While the mobile end CPU arithmetic
resources are limited, the delay is large and the FPS is
small, using the delay can be more intuitive to compare
the inference speed of the network.
Number of parameters refers to the total number

of parameters that need to be trained and learned in
the model training process. The number of parameters
is usually used to measure the size of the model. On
edge devices with limited resources, the number of
parameters is a key factor to consider.

4. Problems and directions for future research
1) Labeling Difficulty: In semantic segmentation,
labeling each pixel in an image with an accurate
semantic category is a heavy and time-consuming task.
For example, complex organs and lesion regions in
medical images require specialized knowledge for fine
annotation, while the annotation standards of different
annotators may differ, leading to consistency problems.
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In addition, it is difficult to obtain labeled data that
comprehensively covers various scenes and categories,
which limits the generalization ability of the model.
2) Category imbalance: In actual image data, the

distribution of different semantic categories is usually
uneven. Take the commonly used road scene images
as an example, categories such as roads and buildings
usually occupy most of the area, while categories
like traffic signs and pedestrians are less frequent.
This category imbalance causes the model to be
biased towards learning common categories, leading
to performance degradation when dealing with rare
categories. For example, a model trained on a natural
scene dataset may recognize common categories like
trees better, but recognize rare animals less well.
3) Data Diversity and Complexity: Real-world

image data is highly diverse and complex. Lighting,
changes in scale, and occlusion phenomena all affect the
appearance characteristics of objects. Strong direct light
or low-light environments may lead to loss of detail
information. Scale variations of objects also increase
the difficulty of model recognition, especially in aerial
images, where there are large-scale buildings as well as
small vehicles and pedestrians. In addition, occlusion
and overlap between objects, such as in crowded scenes,
also increase the challenge of model segmentation
accuracy.
4) Segmentation accuracy improvement bottleneck:

Although existing semantic segmentation models have
achieved better segmentation results in some specific
scenes, it is still difficult to achieve ideal accuracy when
dealing with some complex scenes or fine objects. For
example, in medical image analysis, for tiny lesions or
complex structures, the existing models may not be able
to segment the details accurately, especially when the
boundaries of tumor cells or neural tissues are fuzzy
and the contrast is low.
5) Computational resource requirements and effi-

ciency: Deep learning models, especially Transformer-
based semantic segmentation models, demand sub-
stantial computational resources for high-resolution
images. Their computational complexity grows in
square steps with the increase of image resolution,
posing challenges for deployment on resource-limited
devices. In applications that require real-time decision-
making like autonomous driving, slow inference can
hinder rapid decision-making, compromising both effi-
ciency and safety.
6) Generalization ability of the model: The perfor-

mance of the model in different datasets and scenarios
often varies, and the generalization ability needs to be
improved. Even when a model that has been trained
well on a specific dataset is applied to another dataset
or a real-world scenario, performance degradation may
occur. For example, a model trained on an urban street
view dataset may not be able to accurately segment

the target object when processing images in a rural
or industrial environment. Many existing models lack
generalization capabilities to adapt to diverse scenes
and object classes.
7) Multi-modal data fusion challenges: With

the development of technology, more and more
application scenarios require fusion of RGB images,
depth images, LiDAR and other multi-modal data
for semantic segmentation. However, the differences
in the characteristics of different modal data make
data fusion complicated. For example, RGB images
mainly provide color and texture information of objects,
while depth images focus on distance information of
objects. Existing methods are deficient in information
integration, limiting the effectiveness of multimodal
data fusion.
8) Balance between real-time and accuracy: In

application scenarios with high real-time requirements
such as automatic driving and video surveillance, how
to ensure high segmentation accuracy while realizing
fast inference is a current difficulty. Existing models
usually require complex computational processes,
leading to delayed inference, which may affect decision-
making timeliness in rapidly changing environments.
9) Interpretability of models: Deep learning models

have achieved good results in semantic segmentation,
but they are often regarded as “black-box” models
that lack a transparent decision-making process. This
may pose a potential risk in applications that require
high safety and reliability, such as medical diagnosis
and autonomous driving. If a model’s decision-making
process is not interpretable, users may not be able
to fully understand its output, which may affect the
application and trust of the model in clinical and real-
world scenarios.
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