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Abstract 

A brain tumor is a serious neurological condition caused by the growth of abnormal cells in various regions of the brain, 
leading to a variety of health issues. Although the specific causes of brain tumors are not yet fully understood, known risk 
factors include genetic predisposition, ionizing radiation, viral infections, and exposure to certain chemicals. With the 
advancement of deep learning technology, computer-aided diagnosis systems can offer crucial support for the early diagnosis 
of brain tumors. Brain tumor image classification using deep learning has emerged as a prominent area of research. This 
article begins by summarizing the publicly available datasets frequently utilized in brain tumor classification tasks. It then 
provides an overview of the models commonly applied for diagnosing brain tumors. Following this, the paper reviews the 
advancements made in the field of brain tumor classification research to date. Finally, it highlights the future trends and 
challenges in brain tumor classification. 
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1. Introduction

This Brain tumors result from abnormal cell growth in brain 
tissue or nearby structures, potentially causing increased 
intracranial pressure, neurological issues, and impairments in 
cognitive and motor functions, which can severely affect a 
patient's health and quality of life [1]. Currently, diagnosis 
typically involves using imaging technologies such as 
computed tomography (CT), magnetic resonance imaging 
(MRI), positron emission tomography (PET), and single-
photon emission computed tomography (SPECT) to scan the 
brain. Physicians then combine these results with their 
expertise to assess the tumor's location, size, and condition to 
develop an appropriate treatment plan [2]. However, 
diagnostic accuracy can vary depending on the clinician's 
expertise and the quality of the imaging equipment, raising 
the risk of misdiagnosis. To address this, advanced computer-
aided diagnosis algorithms have been developed to enhance 
diagnostic precision. 

*Corresponding author. Email: wscx@home.hpu.edu.cn 

In recent years, deep learning-based approaches for brain 
tumor diagnosis have yielded impressive results.[3] Unlike 
traditional machine learning techniques that rely on manually 
designed features, deep learning methods utilize neural 
networks to automatically extract high-level features from 
large datasets of brain tumor images [4]. These methods 
employ various optimization algorithms, such as network 
modules that capture both global and local context features 
[5], as well as multi-scale feature fusion techniques [6], to 
refine the extracted features and achieve highly accurate brain 
tumor diagnoses. In computer-aided diagnostic systems that 
utilize deep learning, classification models are particularly 
prominent. Current methods in brain tumor image diagnosis 
include convolutional neural networks (CNN) [7], [8], visual 
transformers (ViT) [9], graph neural networks (GNN) [10], 
and other models. 

In this article, we first conduct a statistical analysis of 
several datasets commonly used in brain tumor classification 
research. Next, we explore several widely used classification 
methods in brain tumor research, delving into their respective 
strengths and limitations. Lastly, we address the challenges of 
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using deep learning to assist in brain tumor diagnosis and 
outline potential future research directions.  

2. Datasets

2.1. Figshare Brain Tumor Dataset 

Cheng et al. [11] introduced a widely utilized dataset for brain 
tumor classification research, available on Figshare      
(https://figshare.com/articles/dataset/brain_tumor_dataset/15
12427). This dataset comprises 3,064 T1-weighted 
enhancedimages from 233 patients, categorized into three 
types: meningioma, glioma, and pituitary tumor. It includes 
708 meningioma   images, 1,426 glioma images, and 930 
pituitary tumor images, with each sample documenting the 
discrete point coordinate vector of the tumor boundary. 
The images are provided in     three views—axial, coronal, 
and sagittal—and are stored in Matlab (.mat) format. 
Additionally, the dataset   offers a 5-fold cross-validation 
index for model evaluation and validation. 

2.2. BraTS Challenge Dataset 

The BraTS dataset(http://braintumorsegmentation.org/) is a 
comprehensive multimodal brain tumor dataset originating 
from the BraTS challenge, which has been held annually 
since 2012. Over time, the dataset has grown significantly, 
reaching 8,160 MRI scans from 2,040 patients by 2021. 
Although BraTS2022 and BraTS2023 have been released, 
they only include additional test data. Each patient’s dataset 
comprises MRI images in four modalities: T1, T1Gd, T2, and 
T2-FLAIR. Of these, 1,251 cases are annotated and used as 
the training set, 219 cases form the validation set, and 570 
cases constitute the test set. The images were collected from 
various medical facilities, employing diverse clinical 
protocols and scanning equipment. Annotations in BraTS21 
focus on three regions: enhancing tumor (ET), peritumoral 
edema or invasive tissue (ED), and necrotic tumor core 
(NCR). While primarily designed for brain tumor 
segmentation, the BraTS dataset’s scale and credibility have 
also made it a favored resource for evaluating brain tumor 
classification methods [12], [13]. 

2.3. Kaggle Brain Tumor Dataset 

KBTD (Kaggle Brain Tumor Dataset)[14] is a competition 
dataset from the Kaggle platform(https://www.kaggle.com/  
datasets/masoudnickparvar/brain-tumor-mri-dataset), 
containing 3264 samples, covering four types of brain MR 
scan images: glioma, meningioma, pituitary tumor, and 
normal    brain images. These brain tumor images come from 
different patients, including a combination of three types: T1, 
T2, andFLAIR. The image sizes in the dataset vary, with the 
largest image size being 1375×1446 and the smallest image 
size being 175×167. Due to the difference in image size,        
preprocessing is required when using this dataset, which 
poses a considerable challenge to the brain tumor 
classification  task. 

3. Research progress in brain tumor
diagnosis

3.1. Convolutional Neural Networks 

3.1.1. Brief Introduction of Convolutional Neural 
Network 
Convolutional Neural Networks (CNNs) are deep learning 
models specifically designed for processing grid-like data, 
such as images. They are widely applied in fields like image 
recognition [15] and natural language processing [16]. 
A typical CNN structure includes convolutional layers, 
pooling     layers, and fully connected layers. These networks 
perform   hierarchical feature extraction and nonlinear 
transformations, enabling the automatic learning of 
meaningful features from raw input [17]. Convolutional 
layers utilize small filters that traverse the input to capture 
local features while maintaining spatial relationships. Pooling 
layers reduce dimensionality    through downsampling, which 
improves the model's generalization capabilities by lowering 
the number of parameters. Fully connected layers integrate 
the extracted features to generate the final classification 
result. As depicted in Figure 1, a CNN designed for brain 
tumor image analysis starts with an input layer, followed by 
convolutional and pooling layers, a fully connected layer, and 
a SoftMax output layer.

Input
 Image

Convolutional
Layer

Pool
Layer

Full Connected
Layer

Glioma

Meningioma

Pituitary

Figure 1. Classic CNN framework diagram 
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3.1.2. Convolutional Neural Networks for Brain 
Tumor Diagnosis 
CNNs for brain tumor diagnosis are often used to classify 2D 
brain tumor images. These 2D images are often 2D slices 
based on sagittal, cross-sectional, and coronal scans of 3D 
brain tumor images. By collecting a large number of 2D brain 
tumor slices, CNNs can capture complete tumor descriptions 
and achieve high-precision diagnosis. 

Numerous studies have demonstrated that deep learning 
approaches for diagnosing brain tumors frequently 
outperform traditional machine learning techniques. Saeedi et 
al. [18] conducted a comparison between various 
conventional machine learning algorithms, including KNN, 
SVM, logistic regression, random forest, and others, against 
deep learning models. In their study, the KNN algorithm 
reached an accuracy of 86% on the KBDT dataset, marking 
its top performance among the traditional methods, yet it fell 
short compared to the 96.47% accuracy attained by the 
convolutional neural network. However, when the existing 
CNN model is combined with a relatively mature classifier, 
the model prediction effect will be improved [19]. To this end, 
Sejuti et al. [20] proposed a 19-layer CNN-SVM model, 
which is a combination of a classic CNN network and a 
machine-learning SVM.This model comprises a 2D 
convolutional layer, a pooling layer, and a fully connected 
layer. What sets this study apart is its use of SVM to refine 
the features extracted by the model, thereby enhancing the 
CNN's accuracy. Likewise, Srinivas et al. [21] introduced a 
CNN-KNN hybrid framework, utilizing CNN for feature 
extraction and KNN for making predictions, achieving an 
accuracy of 96.25% on the BraTS2017 test dataset. 

The above two studies both adopted the classic CNN 
network architecture. However, they are both shallow neural 
networks and their capabilities are relatively limited when 
dealing with complex feature extraction and high-precision 
classification tasks. Deeper neural networks have significant 
advantages when handling complex tasks. Srinivas et al. [22] 
used the pre-trained GoogLeNet [23] to extract features from 
brain MRI images. This is a deeper network and then used the 
KNN algorithm to classify the extracted features. Ultimately, 
the 5-fold cross-validation technique was applied, resulting in 
an average accuracy of 98% on the Figshare dataset. This also 
underscores the efficacy of combining transfer learning 
approaches with deep neural networks. 

Unlike the single-branch structure used in the above 
literature, Al-Zoghby et al. [24] proposed a convolutional 
network with two backbone branches, one branch using the 
VGG-16 network and the other branch using a custom CNN 
network. The features obtained from the two branches were 
subsequently combined for classification. Masoudi et al. [25] 
used ResNet50 as the backbone network to extract features, 
and used a two-branch structure at the end of the network, 
using channel attention and multi-head attention to fuse 
features. Unfortunately, this multi-branch network model 
often has a large number of parameters and requires a lot of 
time to train. 

To mitigate the issue of extended training time, Isunuri et 
al. [26] used deep separable convolution to construct a 

network, effectively reducing the number of convolution 
parameters by performing deep convolution on each channel 
independently. At the same time, they proposed a neural 
network with only 7 layers to classify brain tumor images and 
used the Nadam optimizer [27] to speed up the convergence 
of the diagnosis model. 

The aforementioned analysis highlights that employing 
convolutional neural network techniques for brain tumor 
diagnosis possesses the following traits: (1) The integration 
of deep learning with machine learning typically yields 
superior results compared to using one in isolation. (2) The 
abundance of detailed brain information contained within 
numerous MRI images facilitates the development of more 
complex network architectures, enabling highly accurate 
recognition and diagnostic capabilities. (3) Using transfer 
learning models as initialization or feature extractors can 
greatly accelerate the convergence of the model and improve 
the effectiveness of network terminal training and learning 
[28], [29]. 

However, the CNN method also has the following 
problems that need to be solved: (1) Although the model 
accuracy can be improved to a certain extent by building a 
deeper neural network, the cost is generally much greater than 
the benefits obtained. (2) Due to the complexity of brain 
tumor MRI neuroimaging, the use of transfer learning to 
initialize the network model can reduce the difficulty of 
model training, but in the actual application of brain tumor 
classification diagnosis, the real target type discrimination 
results are not stable. (3) Although deep separable 
convolution can greatly reduce model parameters and 
increase model training speed, this may sacrifice the model's 
diagnostic results. Therefore, researchers must find a 
reasonable balance between reducing model complexity and 
maintaining diagnostic accuracy. 

3.2. Transformer 

3.2.1. Brief Introduction of Transformer 
The Transformer [30], an encoder-decoder architecture 
grounded in self-attention mechanisms, was initially 
introduced to address sequence-to-sequence (seq2seq) tasks 
within natural language processing [31]. When compared to 
traditional recurrent neural networks (RNNs) and long short-
term memory networks (LSTMs), the Transformer offers 
distinct advantages. Transformer has significant advantages 
in handling long dependencies and parallel computing. The 
original Transformer cannot perform computer vision tasks. 
In 2020, the Google group proposed ViT [9]. This research 
first proved that Transformer has great potential in the field 
of computer vision. The ViT framework is shown in Figure 
2. In the Transformer-based brain tumor diagnosis task, the
input image first needs to be segmented into a series of non-
overlapping patches, then position coding information is
added to these patches to retain spatial information, and a
class token is added to the starting position of the patch
sequence. Finally, this special token is input into the
Transformer encoder together with all other patches for
subsequent classification tasks.

 A Review of Deep Learning Methods for Brain Tumor Detection 

EAI Endorsed Transactions 
on e-Learning | 

| Volume 11 | 2025 |



4 

Class
Token

Linear Projection

Transformer Encoder

Position 
Embedding

Patching

Glioma

Meningioma

Pituitary

MLP

Figure 2. ViT for brain tumor classification framework

3.2.2. Transformer for Brain Tumor Diagnosis 
While convolution operations excel at capturing local 
features, they are less effective at extracting global features 
and maintaining long-distance dependencies, a limitation that 
the Transformer addresses. Tummala et al. [32] evaluated the 
ViT model’s capability to classify brain tumor images from 
T1W, CE, and MRI scans. Their findings indicated that, at 
high resolutions, the ViT model’s performance can match or 
surpass that of earlier CNNs. 

The effectiveness of the ViT model depends on two key 
factors: (1) It requires a large training dataset to achieve 
optimal performance. With limited data, most Transformer 
variants often underperform compared to the VGG-16 
baseline [33]. (2) The self-attention mechanism in ViT leads 
to quadratic computational complexity relative to the length 
of the image's patch sequence. While the Swin Transformer 
[34] addresses this by reducing attention calculation costs to
linear through moving window-based attention between
layers, the challenge of high-performance Transformers
needing extensive data remains unresolved. To tackle this,
Ferdous et al. [35] introduced a data-efficient image
transformer (LCDEiT) with linear complexity for brain tumor 
diagnosis. This approach utilized a gated pooling CNN as a
teacher model to transfer knowledge to a Transformer-based
student model, reducing reliance on large datasets.

Research shows that Transformers excel at capturing 
global information, whereas CNNs are more adept at 
extracting local features. Combining these models can yield 
superior results. Aloraini et al. [36] proposed enhancing 
CNNs with Transformers by incorporating feature fusion 
modules and intelligent merging modules (IMM) to bridge 

the semantic gap between Transformer and CNN feature 
maps, achieving a 96.75% accuracy on the BraTS2018 
dataset. Similarly, Tabatabaei et al. [37] developed a dual-
branch parallel model that integrates Transformer and CNN 
modules, using a cross-fusion strategy to combine deep 
features for classification, with results surpassing individual 
models. Further, Dutta et al. [38] introduced a generalized 
self-attention module (GSB) to capture feature 
interdependencies across spatial and channel dimensions 
effectively. 

Although the combination of the Transformer and CNN 
can achieve satisfactory performance in brain tumor 
diagnosis tasks, the training and fine-tuning of the 
Transformer requires a lot of time and memory. Wang et al. 
[39] calculated similar tokens in the image based on the
binary soft matching algorithm and merged them, gradually
reducing the token length, and finally reducing the model
calculation time. Gade et al. [40] started from the three self-
attention matrices, merged W_q，W_k and W_v into one,
and reduced the theoretical time complexity to O(N^2/2)by
eliminating the matrix Q and the matrix K. However, due to
the high complexity of Transformer, CNN will still maintain
its leading position for some time with its reasonable number
of parameters [41].

3.3. Graph Neural Networks 

3.3.1. Brief Introduction to Graph Neural Networks 
Graph neural networks (GNNs) utilize graph structures to 
handle data with intricate relationships. As depicted in Figure 
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3, nodes represent entities, and edges signify the relationships 
between these entities. CNN and Transformer can only 
process regular Euclidean data, however, GNN can process 
complex non-Euclidean data by modeling irregular data with 
graphs. GCN [10] is a typical representative of graph neural 
networks. Similar to the convolution process of CNN, GCN 
implements graph convolution through a message-passing 
mechanism, that is, attribute updates and information 
interaction of key nodes. Nowadays, GCN has given rise to 

several variants, including graph attention networks [42] and 
graph residual networks. Among them, graph attention 
networks convolute and assign weights to each adjacent node 
to identify important nodes. Graph residual networks use skip 
connections to solve the problem that graph convolution 
layers with more than 3 layers will introduce noise, resulting 
in poor results. GNN has found widespread application in the 
field of medical imaging [43], [44].

X1

X2

X4

X3

X1

X2

X4

X3

Graph Convulutional Network

Input Layer Output Layer

Hidden Layers

Classification

Classifier Results

Figure 3. The framework of Graph Convolutional Network

3.3.2. Graph Neural Networks for Brain Tumor 
Diagnosis 
Ravinder et al. [45] observed that in MRI images, nearby 
pixels often share similar attributes, whereas distant pixels 
tend to differ significantly. Traditional brain tumor 
classification models, however, struggle to leverage pixel-
related information effectively. To address this, they 
combined CNN and GNN for classification, with CNN 
capturing spatial features and GNN identifying 
dependencies between image regions [46]. Their 
experiments demonstrated that integrating these models 
enhances performance. Similarly, Mishra et al. [47] 
proposed a framework combining a graph attention 
encoder [48] with CNN for brain tumor diagnosis. The 
graph attention encoder improves the visual quality of 
tumor images, which are subsequently classified by CNN. 
To streamline the training process, the Adamax optimizer 
was employed. However, the framework's reliance on 
unsupervised learning demands significant computational 
resources. 

While GNN excels at handling complex data 
relationships compared to CNN, it also has limitations, 
including the over-smoothing issue [49]. As the number of 
GNN layers increases, the node feature vectors become 
overly uniform after deep graph convolution, resulting in a 
sharp performance decline. This significantly hampers 
GCN's ability to represent large-scale graphs [50], 

adversely affecting brain tumor diagnosis. For instance, 
Liu et al. [51] limited the number of GCN layers to two in 
their study on glioma diagnosis to prevent over-smoothing 
and preserve performance. 

To alleviate the over-smoothing problem of GNN, 
researchers have introduced various techniques such as 
DropEdge[52], skip connections, node normalization, and 
dilation aggregation into GNN. For example, Tang et al. 
[53] proposed the MRCG framework by randomly deleting
edges in the graph through the DropEdge method, which
greatly reduced the convergence speed of GNN transition
smoothing. The final experimental results of the proposed
model outperformed all baseline models. Liu et al. [54]
used a node normalization layer to prevent all node
embeddings from converging to the same, thereby
improving the robustness of GNN in dealing with the over-
smoothing problem and alleviating the overfitting problem.

Among the strategies to address the over-smoothing 
problem in GNNs, skip connections are among the simplest 
and most commonly used. These connections involve 
directly adding the original input or the output of a lower 
layer to a higher layer’s output, helping to retain original 
feature information and reduce information loss caused by 
excessive aggregation [55]. Salim et al. [56] proposed an 
aggregator-normalized graph convolutional network that 
leverages graph sampling, skip connections, and identity 
mapping to learn distinctive node representations. Skip 
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connections facilitate the direct transfer of input features to 
subsequent layers, mitigating over-smoothing in GCNs. 
Meanwhile, identity mapping aids in preserving the 
graph’s structural information during feature learning. 

4. Challenges and Prospects

4.1. Challenges 

Brain tumors are a significant global health concern, 
making early diagnosis and detection crucial. This article 
examines the role of deep learning in brain tumor diagnosis 
and highlights recent advancements in the field. While 
deep learning has become essential for early detection, 
several challenges remain to be addressed: 

(1) Acquiring datasets is a major challenge in medical
image analysis. Medical images require expensive 
specialized equipment like X-rays, CT scanners, and MRIs 
to produce, making it especially difficult to obtain high-
quality data. In addition, medical image data often contains 
a large amount of sensitive patient privacy information, and 
its collection, storage, and use are subject to strict legal and 
regulatory requirements [57]. These factors together 
increase the difficulty of obtaining and sharing high-quality 
medical image data. 

(2) The lack of model interpretability is an urgent
problem that needs to be solved. In the medical field, 
doctors and researchers not only need accurate prediction 
results but also need to understand the basis for the model 
to make a specific diagnosis[58]. Present deep learning 
models, particularly complex neural networks, are 
frequently viewed as "black box" models, whose internal 
operating mechanisms are opaque and difficult to 
understand. This lack of interpretability limits the 
application of models in clinical practice. 

(3) The gap between technology and clinical practice is
an issue that cannot be ignored. Current medical systems 
and operating procedures are often not fully considered 
when they are designed, so there are many challenges in 
the actual deployment of technology [59]. In addition, the 
stability and safety of technology are key considerations in 
clinical applications, and any technical errors may cause 
serious patient safety risks. This means that the application 
of new technologies requires not only advancement but 
also reliability and safety in actual operations. 

4.2. Prospects 

Brain tumor classification methods based on deep learning 
can extract deep features from complex medical imaging 
data and provide doctors with accurate tumor grading and 
type judgment. Detecting brain tumors at an early stage and 
correctly classifying them through fast and cost-effective 
diagnostic technology can potentially save many lives. 
Looking ahead, brain tumor classification methods based 
on deep learning will be further developed in the following 
directions: 

(1) Classification algorithms based on 3D brain tumor
scan images have great potential. Future brain tumor 
classification methods will rely more on three-dimensional 
(3D) imaging data rather than traditional two-dimensional 
images. Three-dimensional scans, such as MRI and CT 
scans, provide more comprehensive tumor morphology and 
spatial information, enabling the model to more accurately 
identify the boundaries and size of the tumor, thereby 
improving the accuracy of classification [60]. However, the 
computational complexity of processing 3D data is high, 
and more efficient algorithms and computing frameworks 
need to be developed to achieve real-time and accurate 
clinical applications. 

(2) Expand the training dataset through data
augmentation and synthesis. Given the challenges in 
acquiring high-quality medical imaging data, data scarcity 
remains a significant bottleneck for training deep learning 
models. Utilizing techniques like generative adversarial 
networks (GANs) can help generate realistic synthetic 
images, expand the dataset, and enhance the model's 
generalization capability [61]. Additionally, data 
augmentation methods, including random rotation, scaling, 
and cropping, can boost data diversity and minimize the 
risk of overfitting. Moving forward, effectively generating 
synthetic data that aligns with the distribution of real data 
and ensuring its quality will be crucial for optimizing data-
driven medical models. 

(3) Multimodal learning and cross-domain knowledge
transfer: Brain tumor diagnosis typically involves 
integrating various types of medical images and data, such 
as MRI [62], CT [63], and pathology reports. Multimodal 
learning can combine features from different sources to 
offer a more complete tumor representation, thus 
enhancing classification accuracy and robustness. 
Moreover, cross-domain knowledge transfer can aid in 
addressing data scarcity by leveraging existing knowledge 
from related fields or similar tasks, such as using imaging 
data from other tumor types or scan data from other body 
regions to boost the performance of brain tumor 
classification models [64]. Looking ahead, the integration 
of multimodal and cross-domain learning is expected to 
substantially improve the effectiveness and clinical utility 
of brain tumor classification methods. 
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