Improvements in Brain Tumor Segmentation Methods Based on Convolutional Neural Networks
DOI:
https://doi.org/10.4108/eetel.6080Keywords:
Brain tumor images, Image segmentation, Deep learning, Convolutional neural network, Network architectureAbstract
Convolutional Neural Networks (CNNs) have emerged as a prominent research area in deep learning in recent years. U-Net, an essential model within CNNs, has gradually become a research focus in the field of medical image segmentation due to its remarkable segmentation performance. This paper presents a comprehensive overview of brain tumor segmentation methods based on CNNs. Firstly, it introduces common medical image datasets in the field of brain tumor segmentation. Secondly, it offers detailed reviews on the common improvements to 2D U-Net, 3D U-Net, and improvements based on other CNNs for brain tumor segmentation. Finally, it discusses the future development directions of CNNs for brain tumor segmentation.
References
[1] J.F. ME, R.L. Siegel, M. Isabelle Soerjomataram, D. Ahmedin Jemal. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. 2024.
[2] Z. Liu, L. Tong, L. Chen, Z. Jiang, F. Zhou, Q. Zhang, et al. Deep learning based brain tumor segmentation: a survey. Complex & intelligent systems. 2023;9(1):1001-26.
[3] O. Ronneberger, P. Fischer, T. Brox, editors. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18; 2015: Springer.
[4] S. Pereira, A. Pinto, V. Alves, C.A. Silva. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans Med Imaging. 2016;35(5):1240-51.
[5] H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, editors. Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. Medical Image Understanding and Analysis: 21st Annual Conference, MIUA 2017, Edinburgh, UK, July 11–13, 2017, Proceedings 21; 2017: Springer.
[6] V. Iglovikov, A. Shvets. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv preprint arXiv:180105746. 2018.
[7] Z. Zhou, M.M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, editors. Unet++: A nested u-net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4; 2018: Springer.
[8] J. Zhang, X. Lv, H. Zhang, B. Liu. AResU-Net: Attention residual U-Net for brain tumor segmentation. Symmetry. 2020;12(5):721.
[9] Z. Huang, Y. Zhao, Y. Liu, G. Song. GCAUNet: A group cross-channel attention residual UNet for slice based brain tumor segmentation. Biomedical Signal Processing and Control. 2021;70:102958.
[10] N. Sheng, D. Liu, J. Zhang, C. Che, J. Zhang. Second-order ResU-Net for automatic MRI brain tumor segmentation. Math Biosci Eng. 2021;18(5):4943-60.
[11] Z. Ullah, M. Usman, M. Jeon, J. Gwak. Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation. Information sciences. 2022;608:1541-56.
[12] M.U. Rehman, S. Cho, J. Kim, K.T. Chong. BrainSeg-Net: Brain Tumor MR Image Segmentation via Enhanced Encoder-Decoder Network. Diagnostics (Basel). 2021;11(2):169.
[13] H. Sun, S. Yang, L. Chen, P. Liao, X. Liu, Y. Liu, et al. Brain tumor image segmentation based on improved FPN. BMC Med Imaging. 2023;23(1):172.
[14] A. Ali, Y. Wang, X. Shi. Segmentation and identification of brain tumour in MRI images using PG-OneShot learning CNN model. Multimedia Tools and Applications. 2024:1-22.
[15] Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, editors. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19; 2016: Springer.
[16] F. Milletari, N. Navab, S.-A. Ahmadi, editors. V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 fourth international conference on 3D vision (3DV); 2016: Ieee.
[17] O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:180403999. 2018.
[18] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, K.H. Maier-Hein, editors. No new-net. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4; 2019: Springer.
[19] H. Xu, H. Xie, Y. Liu, C. Cheng, C. Niu, Y. Zhang, editors. Deep cascaded attention network for multi-task brain tumor segmentation. Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22; 2019: Springer.
[20] T. Ruba, R. Tamilselvi, M.P. Beham. Brain tumor segmentation in multimodal MRI images using novel LSIS operator and deep learning. Journal of Ambient Intelligence and Humanized Computing. 2022;14(10):13163-77.
[21] I. Gammoudi, R. Ghozi, M.A. Mahjoub. An Innovative Approach to Multimodal Brain Tumor Segmentation: The Residual Convolution Gated Neural Network and 3D UNet Integration. Traitement du Signal. 2024;41(1).
[22] J. Sun, W. Chen, S. Peng, B. Liu. DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation. J Med Syst. 2019;43(7):221.
[23] D.-K. Ngo, M.-T. Tran, S.-H. Kim, H.-J. Yang, G.-S. Lee. Multi-task learning for small brain tumor segmentation from MRI. Applied Sciences. 2020;10(21):7790.
[24] Y. Zhang, Y. Han, J. Zhang. MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation. Math Biosci Eng. 2023;20(12):20510-27.
[25] Z. Li, X. Wu, X. Yang. A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net. Applied Sciences. 2023;13(16):9282.
[26] T. Magadza, S. Viriri. Brain tumor segmentation using partial depthwise separable convolutions. IEEE Access. 2022;10:124206-16.
[27] G. Zhang, J. Zhou, G. He, H. Zhu. Deep fusion of multi-modal features for brain tumor image segmentation. Heliyon. 2023;9(8):e19266.
[28] X. Guan, G. Yang, J. Ye, W. Yang, X. Xu, W. Jiang, et al. 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Med Imaging. 2022;22(1):6.
[29] P. Li, W. Wu, L. Liu, F.M. Serry, J. Wang, H. Han. Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++. Biomedical Signal Processing and Control. 2022;78:103979.
[30] P. Vafaeikia, M.W. Wagner, C. Hawkins, U. Tabori, B.B. Ertl-Wagner, F. Khalvati, editors. Improving the segmentation of pediatric low-grade gliomas through multitask learning. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); 2022: IEEE.
[31] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40(4):834-48.
[32] A. Myronenko, editor 3D MRI brain tumor segmentation using autoencoder regularization. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4; 2019: Springer.
[33] Y. Liu, F. Mu, Y. Shi, X. Chen. Sf-net: A multi-task model for brain tumor segmentation in multimodal mri via image fusion. IEEE Signal Processing Letters. 2022;29:1799-803.
[34] S. Alqazzaz, X. Sun, X. Yang, L. Nokes. Automated brain tumor segmentation on multi-modal MR image using SegNet. Computational visual media. 2019;5:209-19.
[35] S. Ma, J. Tang, F. Guo. Multi-Task Deep Supervision on Attention R2U-Net for Brain Tumor Segmentation. Front Oncol. 2021;11:704850.
[36] S.P. Jakhar, A. Nandal, A. Dhaka, A. Alhudhaif, K. Polat. Brain tumor detection with multi-scale fractal feature network and fractal residual learning. Applied Soft Computing. 2024;153:111284.
[37] Z. Yu, X. Li, J. Li, W. Chen, Z. Tang, D. Geng. HSA-net with a novel CAD pipeline boosts both clinical brain tumor MR image classification and segmentation. Computers in Biology and Medicine. 2024;170:108039.
[38] A. Rehman, M. Usman, A. Shahid, S. Latif, J. Qadir. Selective Deeply Supervised Multi-Scale Attention Network for Brain Tumor Segmentation. Sensors (Basel). 2023;23(4):2346.
[39] X. Hu, W. Luo, J. Hu, S. Guo, W. Huang, M.R. Scott, et al. Brain SegNet: 3D local refinement network for brain lesion segmentation. BMC Med Imaging. 2020;20(1):17.
[40] H. Liu, Z. Ni, D. Nie, D. Shen, J. Wang, Z. Tang. Multimodal Brain Tumor Segmentation Boosted by Monomodal Normal Brain Images. IEEE Trans Image Process. 2024;33:1199-210.
[41] P. Zheng, X. Zhu, W. Guo. Brain tumour segmentation based on an improved U-Net. BMC Med Imaging. 2022;22(1):199.
[42] Y. Qi, W. Zhang, X. Wang, X. You, S. Hu, J. Chen. Efficient knowledge distillation for brain tumor segmentation. Applied Sciences. 2022;12(23):11980.
[43] W. Wu, D. Li, J. Du, X. Gao, W. Gu, F. Zhao, et al. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm. Comput Math Methods Med. 2020;2020:6789306.
[44] C. Chen, X. Liu, M. Ding, J. Zheng, J. Li, editors. 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22; 2019: Springer.
[45] J. Lee, D. Shin, S.H. Oh, H. Kim. Method to Minimize the Errors of AI: Quantifying and Exploiting Uncertainty of Deep Learning in Brain Tumor Segmentation. Sensors (Basel). 2022;22(6):2406.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Yuzhuo Li, Lihong Zhang, Yingbo Liang, Chongxin Xu, Tong Liu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.
Funding data
-
National Natural Science Foundation of China
Grant numbers 62276092