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ABSTRACT
Power consumption control paradigm constitutes an incen-
tive solution for the serious energy issues faced by operators.
In this work, we investigate two mobile users assignment
strategies for energy management in heterogeneous LTE net-
works. Both strategies are based on greedy algorithms which
are of low complexity and allow on-line approaches suitable
for femtocells management issue. Moreover, as the femto-
cells can be switched off and the macrocells have to remain
always on, both strategies aim at selecting the femtocells to
deactivate. That is, the mobile user may be moved from a
femtocell to a macrocell or the other way around. The move
is legitimate if the power consumption is lower and only if
the QoS of the user is not sacrificed. Using simulation and
real network data, we assess the performances of proposed
strategies, in terms of energy consumption and efficiency of
the network, the percentage of served mobile users, the real
allocated capacity and the number of deactivated femtocells.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS

Keywords
Heterogeneous LTE network, energy consumption optimiza-
tion, mobile users assignment strategies

1. INTRODUCTION
With the considerable growth of mobile operator sub-

scribers and the diversity of the offered services, mobile
networks consume more and more energy. Indeed, on the
one hand, the mobile terminals (smart-phones) consume en-
ergy to handle their spaces (user and system) and their net-
work interfaces (receiving/transmitting)[4]. On the other
hand, the base stations of the consume energy for their
treatments, like signals reception/transmission from/to their

mobile users. Current mobile networks have a real need for
power consumption reduction and this for different commer-
cial and ecological reasons. These include a fear of depletion
of material resources, global warming, political issues and
security of supply problem, and the cost of energy that the
combination of these phenomena may increase. Thus net-
work operators are faced with serious energy issues. They
must find a compromise between, on the one hand, the QoS
that must be offered to their final users, and on the other
hand, the cost that allows providing them with more capac-
ity [1, 6].

In this paper1, we consider heterogeneous LTE networks
based on femto and macro base stations. Unlike most pre-
vious works (see the related work in Section 2), we focus on
reducing the energy consumption in these networks while
considering an on-time location of the mobile users. We
propose two green models, called FTM-based strategy and
MTF-based strategy. The objective of these models is en-
ergy consumption optimization while guaranteeing users ac-
cess control to the network resources. Both strategies are
based on greedy algorithms that are of low complexity and
allow on-line approaches suitable for femtocells management
issue. They both consist of two phases. During the first
phase, the mobile users are initially assigned to femtocells
(FTM-based strategy) or macrocells (MTF-based strategy).
Then in the second phase, each strategy processes a specific
load-balancing between the two types of cells. Because the
femtocells can be switched off, unlike the macrocells, the
purpose of these strategies is to deactivate as many femto-
cells as possible without overusing the macrocells energy.

Using simulation and real network data, we assess the per-
formances of these strategies, in terms of energy consump-
tion and efficiency of the network, the percentage of served
mobile users, the allocated capacity of resource blocks and
the number of deactivated femtocells. Through the obtained
results we show that both strategies are more efficient com-
pared to other strategies such as the current network oper-
ator strategy. Structure of the paper: Section 2 summarizes
the related work. Section 3 is dedicated to the network and
the implied actors description. Section 4 describes the mo-
bile assignment algorithms and the two energy consumption
control strategies that we investigate. Their performances
are analyzed in Section 5. Finally, Section 6 concludes the
paper.

1This work has been partially supported by ANR NetLearn
project.
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2. RELATED WORKS
Considering that macro base stations must be always on,

the objective of mobile operators is to control power con-
sumption of lower part of the network (that is base stations)
while guaranteeing QoS to mobile users. Solutions such
as the use of renewable energy or the use of more energy-
efficient equipments have been considered [2, 15]. Clearly
these equipments consume less energy than the usual ones
but they are more expensive. In the literature, other solu-
tions are investigated. These include the configuration of
base stations by adjusting the size of cells according to the
traffic [12], or by switching off the base stations, which re-
quires a cooperation between base stations [2, 9, 11].

Few papers focus on switching off femto base stations in-
stead of macro base stations in heterogeneous LTE networks
[11, 8, 14]. Authors in [11] and [8] focus on a daily traffic
where their objective was to configure the femto base sta-
tions (by switching off) according to the traffic. In [11] base
stations switching off is considered to improve the energy
efficiency of cellular access networks by reducing power con-
sumption in periods of low traffic. The authors adapt sleep
mode schemes of macro base stations in homogeneous net-
works. They also study the case of several permitted switch
offs per day to reduce progressively the number of active
base stations. The model proposed in [11] considers that
the energy consumed by macro base stations is constant,
which is unrealistic [16] as it depends, linearly, on the traffic
load. This one varies according to the daily traffic from the
femtocells that are switched off.

In [8], authors take into account different sizes of base
stations (macro, micro, pico, ...) which have different power
consumption profiles. Macro base station power consump-
tion is considered as varying with the load, and the com-
munication through different sizes of base station has dif-
ferent radio resource utilization. The authors introduce two
sleep algorithms (single and multiple sleeps) to determine
the time instant to enable small base stations sleep mode.
They prove that switching off a small base station at a spe-
cific time does not decrease the power consumption. This
model does not guarantee an energy consumption optimiza-
tion because when a base station (macro or small) is fed to
satisfy the load of the sleep base station, it may consume
more power and the gain will be negative.

In [14], authors model the system as a discrete-time Markov
process to control the switch on/off of femto base stations.
This model depends only on the current state of the sys-
tem and the available information such as user equipment
localization and current femto base station load.

The key factor that impact power consumption of base
stations is the traffic load. Most of previous work concen-
trate to switch off femto base stations during low load traffic
in order to not sacrifice mobile users access and guarantee
their QoS. In this paper, we manage the traffic based on
mobile users assignment control to reduce the power con-
sumption of the network. Note that, current assignment
strategies are based on the signal quality report a terminal
sends to select the closest cell to which the user is assigned
[18]. Moreover in literature, several cell selection techniques
based on the Reference Signal Received Power (RSRP) are
also proposed for small cells in LTE networks [7].

Figure 1: Heterogeneous LTE architecture: a mobile
user can detect macrocells (UE2) only, or macrocells
and femtocells (UE1).

3. THE NETWORK DESCRIPTION
We consider an heterogenous LTE cellular network com-

posed of classical macro base stations and femto base sta-
tions. In such networks, outdoor femtocells are deployed by
operators to locally increase the capacity of their mobile net-
works or the operators could rent a partial usage of private
femtocells.

Within the coverage area of each macro base station, a
set of femtocells is deployed by the same mobile operator.
The femto base stations are connected to the macro base
stations via the LTE logical X2 interface [1]. In this case, a
mobile terminal in the network is able to detect macrocells
only, or macrocells and the femtocells in their coverage areas
(see Figure 1). Such a network is deployed in urban areas
and its objective is to guarantee data communications with
a high Quality of Service (QoS) [1, 6].

Within the heterogeneous LTE cellular network, three main
actors can be identified: the mobile user, the femtocell and
the macrocell.

3.1 The mobile user
Consider a user u located in the area of a femtocell f ; we

denote by CovMob(f) the set of all users covered by f . Let
us denote by Femto(u) = {f / u ∈ CovMob(f)} the set
of all femtocells f such that u is in CovMob(f). We also
denote by Connect(u) the cell (femto or macro) to which u
is really connected to, that is the cell which really serves the
user. This cell can be one of the following cell types:

• a femtocell in Femto(u),

• a macrocellm covering at least one femtocell in Femto(u),
that is Connect(u) = m,

• nothing, that is Connect(u) = ∅.

A user u is characterized by its resource requests Req(u),
in terms of Resource Blocks (RBs) (considered as a capacity
value Capa(u) in the following) [18].

3.2 The Femtocell and the Macrocell
A femtocell f can be characterized by its state

St(f) ∈ {ON,OFF}, and the sets of users that are po-
tentially or physically connected to it. These sets are, re-
spectively, defined as Ulog(f) = {u / f ∈ Femto(u)} and



Fconnect(f) = {u / f = Connect(u)}, and such that,
Fconnect(f) ⊆ Ulog(f). We also denote by Mac(f) the
set of all macrocells covering f .

A macrocell m is characterized by the set of all users ter-
minals connected to it, Mconnect(m) = {u / m = Connect(u)}.
It covers a set of femtocells noted CovFem(m).

3.2.1 Allocation of resources to users
The whole capacity that a femtocell f (respectively macro-

cell m) can provide to connected users is noted Capa(f) (re-
spectively Capa(m)). If the capacity requested by a user is
satisfied by f (respectively m), then the capacity dedicated
by the cell is Capa(u) = Req(u) (respectively
Capa(u) ≥ Req(u)). Indeed for femtocells, we consider that
the capacity to be allocated is equal to the one requested,
but for macrocells, the capacity dedicated to a mobile user
u by a macrocell m depends on the capacity requested by u,
Req(u), and on the signal quality between the base station
of this cell and u. This quality is mainly function of the
real distance between u and the center of m. Worse is this
quality, greater is Capa(u).

To model such a phenomenon, each femtocell f is char-
acterized by a signal quality Qual(f,m) between f and the
base station of each macrocell m ∈ Mac(f). This corre-
sponds to the exact position of f in the coverage area of m.
We consider three situations of a user u in a macrocell m,
that is, u can be close (good quality Qual(u,m) = 0), far
(Qual(u,m) = 1), or very far (Qual(u,m) = 3) from the
macrocell base station. Thus the distance MinQual(u,m)
between a mobile user u and the base station of the macro-
cell m covering it is the following:

MinQual(u,m) = min
f∈Femto(u)/m∈Mac(f)

Qual(f,m) (1)

Therefore the actual capacity provided by the cell is:

Capa(u) = Req(u)× (1 +MinQual(u,m)) (2)

3.2.2 Energy consumption
With each femtocell f , we associate an energy cost func-

tion CostFemto(f). This cost depends on the state (ON ,
OFF ) of the cell as follows:

• if the femtocell is deactivated, that is St(f) = OFF ,
then CostFemto(f) = 0,

• if the femtocell is activated (St(f) = ON) but no user

is connected to it, then we assume Efemto
0 the power

consumption of an empty femtocell,

• if the femtocell is activated and serving users, then:

Ef = C1 (|{u / Connect(u) = f}|) + Efemto
0

where C1 is a linear function [16].

Regarding each macrocell m, we denote by Load(m) the
load of m.

Load(m) =

∑
u/Connect(u)=m Capa(u)

Capa(m)
(3)

This basic load depends on the total capacity of all users
that are connected to m and the minimum signal quality
they require. More details about the load are provided in
the following section.

Assuming that the power consumed by an empty macro-
cell is Emacro

0 , that is, when no users are physically con-
nected to it, its power cost is the following:

Em =M1(Load(m)) + Emacro
0

where M1 is a linear function and Emacro
0 is a real number

[16].

4. ENERGY CONSUMPTION CONTROL
STRATEGIES

The control of energy consumption in heterogeneous LTE
networks relies on the mobile users assignment control. Given
a set of users U , each user u ∈ U can be connected to a
cell in Femto(u) or in Mac(u) =

⋃
f∈Femto(u)

Mac(f). Thus

for each user u ∈ U , we consider two energy consumption
control strategies. Both strategies consist of two phases.
The first phase executes a greedy algorithm assigning u to
a femtocell (femto greedy algorithm) or a macrocell cover-
ing it (macro greedy algorithm). The second phase applies
a load balancing between the macrocells and the femtocells
to minimize the energy consumption.

In the following, we first focus on the greedy algorithms
presentation, then describe the two phases of both energy
consumption control strategies.

4.1 The greedy algorithms
Because the power consumption of a femto base station is

less sensitive to the load than the power consumption of a
macro base station, two main principles are considered, one
for each type of cell:

• Macrocells: try to not fully fill in these cells in order
to be able to use all of them during the load balancing
phase. Clearly, this takes into consideration the extra
cost due to the signal quality.

• Femtocells: fill in as much as possible the femtocells to
which, at least, one mobile user is already connected,
in order to maximize the number of deactivated fem-
tocells.

Note that a cell is said full if its available capacity does
not allow serving a new mobile request.

A mobile user assignment to a femtocell or a macrocell
comes down to select the cell (femto or macro) that allows
satisfying the cell type corresponding principle (see above).
The corresponding optimization problem can also be consid-
ered as a set cover problem with capacities and unsplittable
demands [5] or as a resource assignment problem [3]. But
the specific capacity constraints in our context make the ap-
proximation algorithms proposed in the literature for these
problems difficult to adapt here. Furthermore, an optimal
solution for these problems may not be realistic consider-
ing the short sojourn time of a mobile user in a cell and
its speed to cross a femtocell. This is why we consider here
greedy algorithms with low time complexity.

Indeed, greedy algorithms are of low complexity and al-
low on-line approaches suitable for femtocells management
issue. Such approaches are thus compatible with user mo-
bility between cells. In the following, we present the two
greedy algorithms we consider.



4.1.1 Femto greedy algorithm
The first greedy algorithm assigns each mobile user u ∈ U

to a non saturated femtocell f ∈ Femto(u). If a mobile user
cannot be assigned to one of the femtocells, because either
it is not possible or the choice is to keep some femtocells off,
the algorithm tries to assign it to a macrocell m ∈Mac(u).
In our context, the best femtocell is the one that allows
minimizing the number of non full femtocells. These cells
are the ones having at least one mobile in service.

The purpose of this algorithm is thus not to assign all mo-
bile users in U to femtocells, but to find a good compromise
between the number of activated femtocells and the number
of mobile users they serve. More precisely, if Un is the set
of mobile users that are not assigned yet, the algorithm re-
lies on a partition of the femtocells set F into three subsets
possibly updated after each user assignment:

• F0: the subset of empty femtocells which have, at least,
one unassigned user in their coverage area. That is, for
each femtocell f ∈ F0, there exists u ∈ Un, such that
f ∈ Femto(u).

• F1: the subset of non full femtocells which have, at
least, one unassigned mobile in their coverage area.
Initially all the femtocells are empty, then F1 is ini-
tialized with 20% of the femtocells in F0. This value is
chosen experimentally and is preserved when F1 is up-
dated with the femtocells having the maximum num-
ber of unassigned users in their coverage area.

• F−1: the subset of saturated femtocells and/or having
only assigned mobile terminals in their coverage area.

At each step of this algorithm, we consider in priority
the unassigned users detecting at least one femtocell in F1

(i.e. F1 ∩ Femto(u) 6= ∅) and one femtocell in F0. Among
these users, we select one of those detecting less femtocells in
F1 ∪ F0. This mobile user is then assigned to a femtocell in
F1∩Femto(u) that has the maximum number of unassigned
mobile users in its coverage area.

When a mobile user is covered by only femtocells belong-
ing to F1 (or to F0), this user is assigned to a femtocell in
F1 (or in F0) which has the highest number of unassigned
mobile users in its coverage area.

Once the mobile is assigned to a femtocell in F1 or F0,
the capacity of this femtocell is updated. Set F1 is also
updated, and if necessary, F−1 too. In this case, we consider
that as long as |F1| < ρ × |F1 ∪ F0|, where 0 < ρ ≤ 1, F1

is increased with a femtocell from F0 that maximizes the
number of unassigned mobile users in its coverage area.

The algorithm ends when mobile user assignment is no
more possible.

4.1.2 Macro greedy algorithm
In order to maximize, at each step, the number of non full

macrocells, we consider a greedy algorithm which consists of
assigning each user to a macrocell chosen in a subset of non-
saturated macrocells. Referring to the set cover approach,
the algorithm relies on the number of unassigned mobiles in
the macrocell coverage area, that is |Macro(u)|, u ∈ U . The
purpose of this greedy algorithm is to find a good compro-
mise between the available capacity of macrocells and the
number of users they serve. For that, this algorithm relies
on a partitioning of the macrocells set M into two subsets:

• M1: the subset of non saturated macrocells which have,
at least, one unassigned mobile user in their coverage
area.

• M−1: the subset of saturated macrocells and/or having
only assigned mobile users in their coverage area.

At each step of this algorithm, we consider an unassigned
mobile user u ∈ Un detecting at least one macrocell in M1,
that is, M1 ∩Macro(u) 6= ∅. This mobile is then assigned
to a macrocell m ∈ M1 ∩Macro(u) that has the minimum
number of unassigned mobile users in its coverage area.

Once the mobile user is assigned to a macrocell in M1,
the capacity of this one is updated. Set M1 is also updated,
and if necessary, M−1 too. When no more mobile user as-
signment is possible, the algorithm ends.

4.2 The power consumption control strategies
We define now the two strategies we consider to control the

power consumption in the network. Both strategies consists
of two phases. The first phase (Phase 1 ) executes one of
the greedy algorithms defined above. Then, to minimize
the whole energy consumption, we consider a load balancing
phase (Phase 2 ) between macrocells and femtocells. This
last phase consists mainly in deciding which femtocells to
deactivate by reallocating the users connected to them to
macrocells, if the energy over cost (depending on the signal
quality parameter) is not too high.

4.2.1 The FTM-based strategy
The first energy consumption control strategy consists of

the following two consecutive phases:

• Phase 1: Execute the femto greedy algorithm defined
in Section 4.1.1). At the end of this phase, the remain-
ing unassigned mobile users are considered for assign-
ment to the macrocells in which they have the best
signal quality, that is, macrocells in which they are
the closest to the base station.

• Phase 2: In order to deactivate a maximum number of
femtocells, the second phase of this strategy consists
in transferring the mobile users from femtocells to the
macrocells overlapping them and having enough ca-
pacity to absorb these mobiles. This transfer process
is noted FTM (Femto To Macro). Empty femtocells
can then be switched off. However, the femtocells that
are deactivated, in priority, are the ones providing the
maximum energy saving. The selection is done accord-
ing to the following procedure:

(a) Compute the energy consumption gain of each
femtocell f ∈ (F−1 ∪F1) as follows: if the macro-
cells in Mac(f) have globally enough available ca-
pacity to absorb all the mobile users in f , we com-
pute the energy consumption, EC(m), of each
macrocell m ∈ Mac(f) when serving the trans-
ferred mobiles from f . The gain is then the dif-
ference between the energy consumption of f and
the minimum energy cost of the mobile users trans-
fer from f to macrocells in Mac(f). Note that
this gain can be negative.

(b) Select the femtocell f with the best positive gain,
if it exists. Its mobile users are then transferred



to the macrocells in Mac(f) to which they will be
effectively connected. f is deactivated and these
macrocells capacities are updated.

The FTM process ends when there is no more positive
energy gain.

In the rest of the paper, FTM-based strategy is referred
to as strategy S1.

4.2.2 The MTF-based strategy
The second and last strategy consists of the following two

phases:

• Phase 1: execute first the macro greedy algorithm de-
fined in Section 4.1.2. Once it is no more possible
to assign mobiles to macrocells, the remaining unas-
signed mobiles are considered for assignment to femto-
cells based on the signal quality at which the femtocells
are detected.

• Phase 2: It consists of transferring the mobile users
from macrocells to non full femtocells. The objec-
tive of this process, which is noted MTF (Macro To
Femto), is to transfer the mobile users of a macrocell
m to the femtocells that m overlaps. This can be pos-
sible only if the capacity of the femtocells allows ab-
sorbing the macrocell traffic. The femtocells that are
selected to receive the macrocell customers, in priority,
are the ones providing maximum energy consumption
decrease. Thus the femtocells selection procedure is
the following:

(a) For each mobile user u in macrocell m,
m = Connect(u), compute the energy con-
sumption gain of each neighboring femtocell f ,
Mac(f) ⊂Mac(u), as follows: if a femtocell
f ∈ Femto(u) has enough available capacity to
serve u, the gain in this case is the difference be-
tween the energy consumption of m and f in both
phases. Formally, if C(uf ) and C(um) are the en-
ergy cost if mobile user u is assigned to femtocell
f and macrocell m, respectively, f is selected if
C(uf ) < C(um).

(b) Consider the femtocell f ∈ Femto(u) with the
maximum positive gain, if it exists, that is,
C(uf ) = min

fi∈Femto(u)
C(ufi), mobile user u is ef-

fectively assigned to femtocell f . The cells capac-
ities are updated accordingly.

The MTF transfer process ends when all initially as-
signed mobiles to macrocells during Phase 1 are re-
visited and no more energy saving is possible. Empty
femtocells can then be deactivated.

In the rest of the paper, MTF-based strategy is referred
to as strategy S2.

5. PERFORMANCE ANALYSIS
In order to assess the efficiency of both energy consump-

tion control strategies, we compare the performances of each
strategy Si, i ∈ {1, 2} to the performances of an approach
Ri in which the first phase consists of an initial assignment

Strategy Phase 1 Phase 2

Initial mobiles assignment
mobiles trans-
fer (effective
connection)

S1

femto greedy algorithm then
closest macrocells for the re-
maining mobiles

as defined in
FTM strategy

S2

macro greedy algorithm then
closest famtocells for the re-
maining mobiles

as defined in
MTF strategy

R1

closest femtocells then clos-
est macrocells for the re-
maining mobiles

as defined in
FTM strategy

R2

closest macrocells then clos-
est femtocells for the re-
maining mobiles

as defined in
MTF strategy

BS
1

- random cell type (femto or
macro) then the closest cell -

2

- random cell type (femto or
macro) then the closest cell
+ deactivate empty femto-
cells

Table 1: Considered scenarios

of a mobile user to a detected cell (femtocell for i = 1 and
macrocell for i = 2), based on a random choice simulating
radio signal measurements.

We also compare the performances of each strategy Si,
i ∈ 1, 2, to a Basic Strategy (BS), in which the type of cell
(femtocell or macrocell) a mobile user can be assigned to is
randomly (uniformly) chosen. In this case, if the mobile is
assigned to a femtocell (respectively a macrocell) then its
terminal is connected to the closest femtocell (respectively
macrocell). In the following, we note BS1 this strategy and
BS2 the same strategy where empty femtocells are deac-
tivated and this to be in line with the approaches in the
literature (([8][11][14])). Note that these approaches do not
apply any users assignment control. Table 1 summarizes all
considered scenarios.

Remember that in current LTE Het-Nets femto base sta-
tions are deployed to help the macrocell-based network to
face some of its problems [10]. While in this paper, we con-
sider femtocells and macrocells equally in the network.

All approaches are assessed using simulation which results
are obtained for a confidence level of 95%.

5.1 Building the network coverage
We consider field data from cellular networks of Hous-

ton,Texas, a major US urban area [13]. The data sets were
gathered on mobile terminals belonging to members of the
Rice community. The data collection lasted between three
and six weeks, depending on the participants. We deduce
the mobile network architecture which consists of one hun-
dred (100) femtocells and thirty-six (36) macrocells. Using
the collected data sets, we extract the neighborhood of each
cell in the network. This provides us with the set of femto-
cells that are deployed within the coverage of each macrocell.
Additionally, we assume the existence of an umbrella macro-
cell, that is, a macrocell that can absorb the traffic in the
areas that are not covered with regular macrocells.

In our experiments, we define a femtocell capacity of 16



Figure 2: Network load versus basic and increased
loads

mobile users. The macrocells capacity is set to 14k of RBs
while a mobile user request is set to 10 RBs.

The energy consumption of the base stations of both the
femtocells and the macrocells are load dependent and are
respectively:

• Ef = Efemto
0 + 0.8W × Load(f)

• Em = Emacro
0 + 188W × Load(m)

where Efemto
0 = 9.6W and Emacro

0 = 260W are the power
consumption of empty femtocells and macrocells, respec-
tively [16].

The load of the network can basically be defined as the
sum of RBs requested by all mobile users divided by the
sum of capacities of all macrocells and femtocells. We refer
to this load definition as the basic load (see Equation 3).
But this definition does not take into account the fact that
the number of RBs that could finally be allocated to a user
assigned to a macrocell can be greater than the number of
RBs it requests, depending on the signal quality (related to
the corresponding power boosting level [16]). In our model,
the signal quality is directly function of the distance between
the mobile user and the base station of the macrocell. Thus
for each mobile user covered by, at least, one macrocell, we
consider the one in which the signal quality is the best for
this user and we compute the required number of RBs to be
allocated by the macrocell to satisfy it (for users covered by
any femtocell, we keep considering the number of requested
RBs). Based on this number of RBs per user, we consider
a load defined as the increased load. The difference between
the basic load and the increased load provides an idea about
the possible impact of the user assignment on the real load,
compared to the basic load. Note also that these load defini-
tions do not take into account the distribution of loads over
all cells.

Figure 2 shows the evolution of the interval between basic
and increased loads for different values of the basic load,
based on 200 networks and 50 instances for each one.

5.2 Numerical results
To assess the efficiency of our energy consumption control

strategies, we investigate the following performance mea-
sures:

• the energy consumption of the network,

• the percentage of activated femtocells,

• the percentage of satisfied mobile users, that is, mobile
users which receive the minimum requested quantity of
RBs,

• the percentage of allocated RBs of the network,

• the relative energy efficiency of the network (Eff).
This one is defined as the average network energy con-
sumption per served mobile user.

1. Energy consumption of the network: Figure 3 shows
the results we obtain for all strategies as functions of both
the basic and increased loads. In particular, it shows the
importance of controlling the mobile assignment for the en-
ergy consumption of the network; the lack of such a control
as in the first basic strategy (BS1) leads to a high energy
consumption and this for all network loads.

A simple switch off of the femtocells (BS2) allows already
reducing this consumption, in particular when the network is
not loaded (about 7% reduction). This is how some related
works proceed ([8, 11]). But it is more gainful if a mobile
assignment control is considered. An assignment control like
in strategy S2 allows a further reduction of the energy con-
sumption of the network, and this for all load values.

Figure 3: Energy consumption of the network.

Comparing strategies S1 and S2, we can see that the for-
mer provides better results for all loads. However as the load
(basic and increased) decreases, the difference decreases also
due to the fact that the second phase of both strategies is
based on a load balancing criterion. With S1, when the
network is not loaded (macrocells have more available ca-
pacities), more femtocells can be offloaded to the macrocells
covering them.
S2 and R2 assign mobile users to macrocells in priority.

Knowing that the large quantity of energy is consumed by
macrocells explains why strategies cannot enhance more the
energy consumption of the network. Clearly for all loads,
strategy S1 provides better performances in terms of energy
consumption. However, when the network is unloaded (ba-
sic load ≤ 0.3), all the strategies, but BS1, behave pretty
similarly.



To summarize, in terms of energy consumption, giving
priority to an initial assignment of the users to femtocells
during the first phase, and the load balancing during the
second phase can enhance the energy consumption of the
network even if the assignment is based on signal quality
(R1 and R2).

2. Percentage of activated femtocells: Figure 4 shows that
S1 and R1 are the strategies that allow deactivating the
highest percentage of femtocells, and this for all loads.

Both strategies give priority to femtocells during the first
phase and offload them to the macrocells covering them,
if there is a benefit for energy consumption optimization.
Giving priority to macrocells during the first phase, like in
strategies S2 and R2, activates more femtocells. For all net-
work loads, strategies disperse mobile users within the cells.

As there is no control strategy to activate/deactivate fem-
tocells in Het-LTE currently, all femtocells are activated in
the basic strategy (BS1). Regarding basic strategy BS2 in
which empty femtocells are deactivated, when the network
is not very loaded, it provides the same results as strategies
S2 and R2 which have mixed curves. However as the load
increases, the pourcentage of deactivated femtocells by BS2

decreases, compared to these strategies.
Figure 3 and Figure 4 show also that femtocells deactiva-

tion can be the key factor to energy consumption improve-
ment of the network. Strategies S1 and R1 performances
prove it.

Figure 4: Percentage of activated femtocells.

3. Percentage of satisfied mobile users and allocated RBs:
Figure 5 shows once again that strategies S1 and R1 are
more efficient, in terms of the percentage of served users
when the network is lightly loaded (increased load less than
75%). They are closely followed by strategies S2 and R2.
When the network load increases, BS strategies serve less
mobile users (note that BS1 and BS2 curves are mixed up).

This figure shows also that the percentage of served mobile
users decreases as the loads increase for all strategies, and
especially when S1 or R1 is used. Indeed, the FTM-based
strategy assigns mobile users to femtocells in priority and
this one has a limited capacity than macrocells.

When the network is heavily loaded (95% of increased load
and more) the BS strategies cannot serve more than 55%
of mobile users, and the other strategies serve between 65%
and 60% of total satisfied users.

Clearly, the fact that the strategies make energy consump-

Figure 5: Percentage of satisfied mobile users.

tion savings does not have an impact on the percentage of
served mobile users and the offered QoS. Quite the opposite,
it enhances the percentage of satisfied mobile users by man-
aging RBs allocation. Indeed, Figure 6 proves that the key
factor to serve more mobiles while consuming less energy is
the mobile users assignment control.

Figure 6: Percentage of total allocated capacity

Because of the signal quality impact on resource alloca-
tion, some mobile users monopolize more capacity if they
are connected to a macrocell. Indeed, the allocated capac-
ity is greater than the requested one. Considering strategies
S2 and R2, the mobile users are assigned to macrocells in
priority, which is more capacity consuming. This reduces
the percentage of served mobile users most of the time. For
this reason, strategies S1 and R1, which assign the mobiles
to the femtocells in priority, serve more mobile users while
allocating less RBs. Figure 5 and Figure 6 show that this
property is especially true in this case when the network
becomes loaded (increased load at 90% ).

4. Relative energy efficiency: Figure 7 shows the ratio
between the results in Figure 3 and Figure 5. Lower is the
efficiency value, much better is the energy consumption. For
all network loads, proposed strategies (S1, R1, S2 and R2)
enhance the efficiency of the network by controlling mobile
users assignment. Indeed, these strategies provide better
results than the results obtained using BS approaches (BS1



and BS2).

Figure 7: Efficiency of the network Eff

5. Global synthesis of the proposed strategies: The main
objective of any mobile operator is to maximize the number
of satisfied users. Thus, by controlling mobile users assign-
ment, the FTM-based approaches (S1 and R1) are the most
efficient in terms of energy consumption and percentage of
served mobile users, compared to MTF-based approaches
(S2 and R2). FTM-based approaches are also more gainful
for dimensioning purposes, in terms of required femtocells.
These strategies require centralized implementation and of-
fer a global control of the network, which is compatible with
today standards of mobile networks. Their low time com-
plexity makes it possible to execute each mobile user location
change for reasonably sized network coverage.

6. CONCLUSION
In this paper, two strategies are proposed according to mo-

bile users initial assignment priority. Each strategy consists
of an initial assignment of the mobile users then offloading
them from/to macrocell (resource allocation) if it is gainful,
in terms of energy consumption.

Using simulation experiments and real data of network
topology, the performances of our strategies are compared
to the ones illustrating the strategy used currently by mobile
operators and strategy proposed in the literature. Proposed
strategies improve energy consumption optimization of the
network without any impact on the percentage of mobile
users satisfied. Quite the opposite, more mobile users are
served when their assignment is controlled. The proposed
strategies are centralized and can be considered in a multi-
tenancy architecture to minimize the information exchanges
between the base stations [17]. They are compatible with
mobility in heterogeneous LTE networks and allow them to
evolve as such. In the future, we will focus on real time
constraints and more fairness between mobile users.
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