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ABSTRACT
A low energy clustering method of body area networks based
on fuzzy simulated evolutionary computation is proposed
in this paper. To reduce communication energy consump-
tion, we also designed a fuzzy controller to dynamically ad-
just the crossover and mutation probability. Simulations
are conducted by using the proposed method, the cluster-
ing methods based on the particle swarm optimization and
the method based on the quantum evolutionary algorithm.
Results show that the energy consumption of the proposed
method decreased compared with the other two method-
s, which means that the proposed method significantly im-
proves the energy efficiency.

Categories and Subject Descriptors
G.2.1 [Mathematics of Computing]: Discrete Mathe-
matics—Combinatorics; F.2.2 [Theory of Computation]:
Analysis of Algorithms and Problem Ccomplexity—Nonnu-
merical Algorithms and Problems

General Terms
Algorithms

Keywords
wireless sensor networks, simulated evolutionary computa-
tion, fuzzy controller

1. INTRODUCTION
With the continuous development of wireless sensor tech-
nology, more and more researchers pay attention to the

high-density wireless sensor networks. High-density wire-
less sensor networks have a wide range of applications in
the battlefield information collection, security systems, hos-
pital theatres, office automation and target localization, etc
[1]. With the improvement of intelligence and the decrease
of production costs, the number of sensors in high-density
wireless sensor network grows exponentially. In some net-
works, such as hospital theatres, there can be hundreds of
sensors working simultaneously. In these applications, how
to reduce the communication energy consumption by clus-
tering is a key issue [2].

The most common clustering protocol for wireless sensor
networks includes LEACH and HEED. LEACH (Low Ener-
gy Adaptive Clustering Hierarchy) [3] is a low energy con-
sumption clustering scheme that significantly improves net-
work lifetime. The LEACH method uses a duty cycle clus-
ter head selection method instead of the fixed cluster heads.
The HEED (Hybrid Energy-Efficient Distributed clustering
approach) was first introduced in [4]. In HEED, the reserved
energy and density of nodes were considered in cluster head
selection.

However, both methods focus on maximizing the network
lifetime instead of minimizing energy consumption. For large
sensor networks, how to select a certain percentage of clus-
ter heads with the minimum energy consumption for data
collection is an important issue. In [5], a method based on
the simple genetic algorithm for data collection is proposed
for minimum data collection energy consumption. However,
the simple genetic algorithm easily falls into local optima,
and it often gets high energy consumption clustering results.

Based on the above studies, a Low Energy Clustering method
of High-density wireless sensor networks based on fuzzy sim-
ulated evolutionary computation (FSEC) is proposed in this
paper. In order to reduce communication energy consump-
tion, we also designed a fuzzy controller to dynamically ad-
just the crossover and mutation probability. Simulations
are conducted by using the proposed method, the clustering
methods based on the particle swarm optimization (PSO)
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and the method based on the quantum evolutionary algo-
rithm (QEA). Results show that the energy consumption of
the proposed method decreased compared to the other two
methods, which means that the proposed method improves
energy efficiency.

2. SYSTEM MODEL
This paper studies a class of high-density sensor network,
in particular, the Wireless Body Area Networks in hospital
theatres, where nodes are randomly distributed in the mon-
itoring area. The sensor nodes within the monitoring area
are divided into a number of clusters, and there is a single
cluster head node within each cluster.

In the uplink transmission phase, the randomly distributed
sensor nodes observe and check the targets within the mon-
itoring area, and then send the observed data to the cluster
head node. The cluster head node collects the data from
sensor nodes and then uploads the data to the gateway n-
ode directly. The gateway node collects the data from the
cluster head nodes and transfers the data to the user for
further analysis and processing.

In the downlink phase, users allocate monitoring tasks to
the cluster head nodes through the gateway node, and then
the cluster head nodes assign the tasks to the sensor nodes
within the cluster to complete monitoring tasks. Generally,
the amount of uplink data is much larger than the downlink
data in monitoring tasks.

In order to reduce the energy consumption with a node com-
munication distance limitation, we must develop an efficient
clustering scheme for high-density wireless sensor network.
The energy consumption of the wireless sensor network con-
sists of the communication energy, the sensing energy and
the microprocessor energy. Studies show that the transmis-
sion radio energy and receive energy consumption accounted
for more than half of the total energy consumption of wire-
less sensor networks. Meanwhile, the sensing energy con-
sumption and the microprocessor energy consumption are
relatively fixed, which are difficult to reduce through opti-
mization. So we focus on how to reduce the communication
energy consumption via optimal clustering in high-density
sensor networks.

In high-density sensor networks, the transmission radio en-
ergy can be shown as:

costs(k, d) = Eelec · k + εamp · k · dn
(1)

where costs(k, d) is the transmission radio energy, d is the
distance between two nodes, k is the length of sending bits,
εamp is the power amplification parameter, and Eelec is the
electronics energy parameter. Depending on the communi-
cations environment, the general value of n is between 2-4.
The value of n is higher when the communication environ-
ment is worse.

The receive energy of k bits data can be shown as:
costr(k) = Eelec · k (2)

where costr(k) is the receiver dissipated energy for receiving
k bits.

3. DESIGN OF THE FUZZY CONTROLLER
Simulated evolutionary computation specifically includes evo-
lution programming, evolution strategies, genetic program-

ming and genetic algorithms. As the genetic algorithm is
most widely used among these numerical optimization meth-
ods, in this paper, we use fuzzy based genetic algorithm to
develop an efficient clustering scheme for high-density wire-
less sensor networks.

3.1 Adjusting the Algorithm Parameter
Previous studies show that adaptive adjust crossover and
mutation probability can significantly improve the diversi-
ty of the population and improve the convergence rate. To
solve this problem, Srinivas proposed an adaptive genetic
algorithm [7]. The adaptive genetic algorithm adaptively
adjusts crossover and mutation probabilities with the indi-
vidual fitness. The adjusting method is simple, however, the
accelerating effect is not obvious.

In FSEC, a fuzzy controller is designed to automatically
adjust the crossover probability and mutation probability.
When the average fitness of the population is too high, the
fuzzy controller adjusts crossover probability and mutation
probability to a low value to avoid a population diversity
decline. Similarly, when the average fitness of the population
is low, the fuzzy controller adjusts the crossover probability
and mutation probability to a high value to increase the
population diversity.

Meanwhile, for excellent individuals, the fuzzy controller ad-
just its crossover probability and mutation probability to a
lower value to keep the individual structure to the next it-
eration. Similarly, for bad individuals, the fuzzy controller
will increase the crossover probability and mutation prob-
ability to improve the fitness of the individual. We should
notice that for the clustering problem, individuals with low
fitness have lower energy consumption, which means the in-
dividuals are better.

3.2 The Input and Output of the Fuzzy Con-
troller

In the design of the fuzzy controller that adjusts the crossover
probability and mutation probability, first we need to deter-
mine the input and output of the fuzzy controller, and design
the membership function for the fuzzy input and output.

In order to adjusts the of crossover probability and mutation
probability, first we need to do normalization for the average
fitness of the population f , the individual for mutation ft
and the individual with smaller fitness value in the crossover
operation fb. The normalization can be shown as

fc =
fmax − fb

fmax − fmin

(3)

fm =
fmax − ft

fmax − fmin

(4)

fa =
fmax − f

fmax − fmin

(5)

where fc is the normalized fitness of the individual with
smaller fitness value in the crossover operation, and its value
range is fc ∈ [0, 1], fm is the normalized fitness of the indi-
vidual for mutation, and its value range is fm ∈ [0, 1]. fa
is the normalized average fitness of the population, and its
value range is fa ∈ [0, 1]. fmax is the fitness of the individual
with the largest fitness value in the population, and fmin is
the fitness of the individual with the smallest fitness value
in the population.



In the high-density sensor network clustering, the individual
fitness is smaller when the network communication energy
is smaller. For the controller of crossover probability Pc, the
fuzzy controller input parameters includes the normalized
fitness of the individual with a smaller fitness value in the
crossover operation fc and the normalized average fitness of
the population fa.

When fc is greater, it indicates that the individual with
a smaller fitness value in the crossover operation is better.
Similarly, when fa is greater, it indicates that the average
fitness of individuals in the population f is smaller. The
output value range of the controller of crossover probability
is Pc ∈ [0.65, 0.95].

For the controller of crossover probability Pm, the fuzzy con-
troller input parameters includes the individual in the muta-
tion operation fm and the normalized average fitness of the
population fa. When fm is greater, it indicates that the in-
dividual in the mutation operation is better. Similarly, when
fa is greater, it indicates that the average fitness of individ-
uals in the population f is smaller. The output value range
of the controller of crossover probability is Pm ∈ [0.05, 0.26].

3.3 The Membership Function
For crossover probability Pc, we use the triangular mem-
bership function and the Mamdani membership function for
input value fuzzification.

For the normalized fitness of the individual with smaller
fitness value in the crossover operation fc, we choose the
triangular membership function for fuzzification, and select
six fuzzy sets, including very small (FVS), small (FS), rela-
tively small (FRS), relatively big (FRB), big (FB), very big
(FVB) for the of input value range fc ∈ [0, 1]. The first
letter F is used to distinguish different kinds of normalized
fitness of the individuals.

FV S(fc) =

{
−5fc + 1 0 ≤ fc ≤ 0.2
0 fc > 0.2

FS(fc) =

 5fc 0 ≤ fc ≤ 0.2
−5fc + 2 0.2 < fc ≤ 0.4

0 fc > 0.4

FRS(fc) =


0 fc < 0.2
5fc − 1 0.2 ≤ fc ≤ 0.4
−5fc + 3 0.4 < fc ≤ 0.6

0 fc > 0.6

FRB(fc) =


0 fc < 0.4
5fc − 2 0.4 ≤ fc ≤ 0.6
−5fc + 4 0.6 < fc ≤ 0.8

0 fc > 0.8

FB(fc) =

 0 fc < 0.6
5fc − 3 0.6 ≤ fc ≤ 0.8
−5fc + 5 0.8 < fc ≤ 1

FV B(fc) =

{
5fc − 4 0.8 ≤ fc ≤ 1
0 fc < 0.8

(6)

For the normalized average fitness of the population fa, we
choose the Mamdani membership function for fuzzification,
and select six fuzzy sets, including very small (AVS), smal-
l (AS), relatively small (ARS), relatively big (ARB), big
(AB), very big (AVB) for the of input value range fa ∈ [0, 1].
For the Mamdani membership function, if the membership
value is great than 1, the membership value equal to 1. The
first letter A is used to distinguish different kinds of normal-

ized fitness of the individuals.

AV S(fa) = 1 − e
− 0.5

|10fa|2.5 0 ≤ fa ≤ 1

AS(fa) = 1 − e
− 0.5

|2−10fa|2.5 0 ≤ fa ≤ 1

ARS(fa) = 1 − e
− 0.5

|4−10fa|2.5 0 ≤ fa ≤ 1

ARB(fa) = 1 − e
− 0.5

|6−10fa|2.5 0 ≤ fa ≤ 1

AB(fa) = 1 − e
− 0.5

|8−10fa|2.5 0 ≤ fa ≤ 1

AV B(fa) = 1 − e
− 0.5

|10−10fa|2.5 0 ≤ fa ≤ 1

(7)

For the output of the fuzzy controller that adjust Pc, we use
a Gaussian fuzzy membership function for the defuzzifica-
tion. The defuzzification includes seven fuzzy sets, including
very small (GVS), small (GS), relatively small (GRS), medi-
um (GM), relatively big (GRB), big (GB), very big (GVB)
for the of input value range Pc ∈ [0.65, 0.95].The first letter
G is used to distinguish different kinds of normalized fitness
of the individuals.

GV S(Pc) = e
− (Pc−0.65)2

2×0.022 0.65 ≤ Pc ≤ 0.95

GS(Pc) = e
− (Pc−0.7)2

2×0.022 0.65 ≤ Pc ≤ 0.95

GRS(Pc) = e
− (Pc−0.75)2

2×0.022 0.65 ≤ Pc ≤ 0.95

GM(Pc) = e
− (Pc−0.8)2

2×0.022 0.65 ≤ Pc ≤ 0.95

GRB(Pc) = e
− (Pc−0.85)2

2×0.022 0.65 ≤ Pc ≤ 0.95

GB(Pc) = e
− (Pc−0.9)2

2×0.022 0.65 ≤ Pc ≤ 0.95

GVB(Pc) = e
− (Pc−0.95)2

2×0.022 0.65 ≤ Pc ≤ 0.95

(8)

For mutation probability Pm, we also use the triangular
membership function and the Mamdani membership func-
tion for input value fuzzification.

DV S(fm) =

{
−5fm + 1 0 ≤ fm ≤ 0.2
0 fm > 0.2

DS(fm) =

 5fm 0 ≤ fm ≤ 0.2
−5fm + 2 0.2 < fm ≤ 0.4
0 fm > 0.4

DRS(fm) =


0 fm < 0.2
5fm − 1 0.2 ≤ fm ≤ 0.4
−5fm + 3 0.4 < fm ≤ 0.6
0 fm > 0.6

DRB(fm) =


0 fm < 0.4
5fm − 2 0.4 ≤ fm ≤ 0.6
−5fm + 4 0.6 < fm ≤ 0.8
0 fm > 0.8

DB(fm) =

 0 fm < 0.6
5fm − 3 0.6 ≤ fm ≤ 0.8
−5fm + 5 0.8 < fm ≤ 1

DVB(fm) =

{
5fm − 4 0.8 ≤ fm ≤ 1
0 fm < 0.8

(9)

For the normalized fitness of the individual in the mutation
operation fm, we choose the triangular membership function
for fuzzification, and select six fuzzy sets, including very
small (DVS), small (DS), relatively small (DRS), relatively
big (DRB), big (DB), very big (DVB) for the of input value
range fc ∈ [0, 1]. The first letter D is used to distinguish
different kinds of normalized fitness of the individuals. The
fuzzification process for fa is the same as the process in the
controller for crossover probability Pc.

For the output of the fuzzy controller that adjusts Pm, we
use a bell-shaped membership function for the defuzzifica-



tion. The defuzzification includes eight fuzzy sets, includ-
ing extremely small (OES), very small (OVS), small (OS),
relatively small (ORS), medium (OM), relatively big (OR-
B), big (OB), very big (OVB) for the of input value range
Pm ∈ [0.05, 0.26]. The first letter O is used to distinguish
different kinds of normalized fitness of the individuals.

OES(Pm) =
1

1 +
∣∣∣ 10Pm−0.5

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

OV S(Pm) =
1

1 +
∣∣∣ 10Pm−0.8

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

OS(Pm) =
1

1 +
∣∣∣ 10Pm−1

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

ORS(Pm) =
1

1 +
∣∣∣ 10Pm−1.4

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

OM(Pm) =
1

1 +
∣∣∣ 10Pm−1.7

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

ORB(Pm) =
1

1 +
∣∣∣ 10Pm−2

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

OB(Pm) =
1

1 +
∣∣∣ 10Pm−2.3

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

OV B(Pm) =
1

1 +
∣∣∣ 10Pm−2.6

0.1

∣∣∣2 0.05 ≤ Pm ≤ 0.26

(10)

3.4 The Fuzzy Rules and Fuzzy Implication
The previous experience for the parameter adjustment can
be summarized as the following fuzzy rules [8]:

(I) ”“IF fc is bigger, THEN the crossover probability Pc is smaller”

(II) “IF fm is bigger, THEN the crossover probability Pm is smaller”

(III) “IF fa is bigger, THEN the crossover probability Pc is bigger”

(IV) “IF fa is bigger, THEN the crossover probability Pm is bigger”

According to the fuzzy rule (I) and (III), we designed a dou-
ble input single output (DISO) fuzzy rule table, which is
shown in Table 1. As the number of the input fuzzy sets for
both fc and fa is 6, the number of the fuzzy rules in Table
1 increases up to 36 for the output Pc.

Table 1: fuzzy rules for adjust the crossover proba-
bility Pc

fc
fa FVB FB FRB FRS FS FVS

AVS 1GVS 2GVS 3GS 4GRS 5GM 6GRB
AS 7GVS 8GS 9GRS 10GM 11GRB 12GB
ARS 13GS 14GS 15GRS 16GM 17GRB 18GB
ARB 19GS 20GRS 21GM 22GRB 23GB 24GB
AB 25GS 26GRS 27GM 28GRB 29GB 30GVB
AVB 31GRS 32GM 33GRB 34GB 35GVB 36GVB

The numbers in the table are used to indicate the order of
rules. To assess the influence of each rule, we use the fuzzy
implication Ri(i = 1, 2, · · · , 36) to express i-th rule for ad-
just the crossover probability Pc. Once all the contribution-
s of the 36 implications are determined, we can aggregate
these 36 fuzzy implications into one output fuzzy implica-
tion R, namely

R = R1

∪
R2

∪
· · ·R36 =

∪36

i=1
Ri (11)

Each fuzzy implication can be expressed by the inference
“IF fc is A and fa is B, THEN Pc is U” that is activated by
the input valuefc and fa, namely A(fc) ∧B(fa) → U(Pc).

As we apply the minimum (Mamdani) implication for each
A(fc)∧B(fa) → U(Pc), the text form and the corresponding
activation degrees of the consequent parts of these 36 rules
become:

(1)IF fc is FVB and fa is AVS, THEN Pc is GVS, R1(fc, fa, Pc) =
FV B(fc) ∧ AV S(fa) ∧ GV S(Pc)

(2)IF fc is FB and fa is AVS, THEN Pc is GVS, R2(fc, fa, Pc) =
FB(fc) ∧ AV S(fa) ∧ GV S(Pc)

· · ·

(36)IF fc is FVS and fa is AVB, THEN Pc is GVB, R36(fc, fa, Pc) =

FV S(fc) ∧ AV B(fa) ∧ GVB(Pc)

According to the fuzzy rules (II) and (IV), we designed a
double input single output (DISO) fuzzy rule table, which
can be shown in Table 2. As the number of input fuzzy set
for both fm and fa are 6, the number of fuzzy rules in Table
2 increases up to 36 for the output Pm.

Table 2: fuzzy rules for adjust the mutation proba-
bility Pm

fm
fa DVB DB DRB DRS DS DVS

AVS 1OES 2OES 3OVS 4OS 5ORS 6OM
AS 7OES 8OVS 9OS 10ORS 11OM 12ORB
ARS 13OVS 14OS 15ORS 16OM 17ORB 18OB
ARB 19OVS 20OS 21OM 22ORB 23ORB 24OB
AB 25OS 26ORS 27OM 28ORB 29OB 30OVB
AVB 31ORS 32OM 33ORB 34OB 35OVB 36OVB

To assesse the influence of each rule Gi(i = 1, 2, · · · , 36), we
use the fuzzy implication Gi(i = 1, 2, · · · , 36) to express the
i-th rule for adjusting the mutation probability Pm. Once
all contributions of 36 implications are determined, we can
aggregate these 36 fuzzy implications into one output fuzzy
implication G, namely

G = G1

∪
G2

∪
· · ·G36 =

∪36

i=1
Gi (12)

Each fuzzy implication can be expressed by the inference
“IF fm is A and fa is B, THEN Pm is U ↪aś that activated
by the input value fm and fa, namely A(fm) ∧ B(fa) →
U(Pm). As we apply the minimum (Mamdani) implication
for each A(fm) ∧ B(fa) → U(Pm), the text form and the
corresponding activation degrees of the consequent parts of
these 36 rules become:

(1)IF fm is DVB and fa is AVS, THEN Pm is OES, G1(fm, fa, Pm) =
DVB(fm) ∧ AV S(fa) ∧ OES(Pm)

(2)IF fm is DB and fa is AVS, THEN Pm is OES, G2(fm, fa, Pm) =
DB(fm) ∧ AV S(fa) ∧ OES(Pm)

· · ·

(36)IF fm is DVS and fa is AVB, THEN Pm is OVB, G36(fm, fa, Pm) =

DV S(fm) ∧ AV B(fa) ∧ OV B(Pm)

3.5 Defuzzification
According to Zadeh, we use the max-min aggregation oper-
ation to get the output fuzzy set of Pc, which can be shown
as

U
∗
(Pc) = (E⃗

∗
)
T ◦

36∪
i=1

Ri =

36∪
i=1

Ui (Pc) (13)

where U∗ is the membership function of the resultant out-
put fuzzy set of Pc, the operator ↪ař◦ ↪aś means the minimum
implication for the corresponding elements, and Ri is defined
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in Section 3.4. (E⃗∗)T is the minor premise that straightened
according to the line. The fuzzy interpretation of the i-th
rule can be presented as

(1) U1(Pc) = (FV B(fc0) ∧ AV S(fa0)) ◦ R1(Pc)

(2)U2(Pc) = (FB(fc0) ∧ AV S(fa0)) ◦ R2(Pc)

· · ·

(36)U36(Pc) = (FV S(fc0) ∧ AV B(fa0)) ◦ R36(Pc)

In the defuzzification, we use the Mean of Maximum (MOM)
method to calculate the control output of Pc, and the result
can be shown as Fig.1.

From the figure we can see that in the input value range
fc ∈ [0, 1] and fa ∈ [0, 1], the output Pc meets the previous
experience (I) and (III) for the parameter adjustment, which
are “IF fc is bigger, THEN the crossover probability Pc is
smaller” and “IF fa is bigger, THEN the crossover probabil-
ity Pc is bigger”. Similarly, the output fuzzy set of Pm can
be shown as

U
∗
(Pm) = (H⃗

∗
)
T ◦

36∪
i=1

Gi =

36∪
i=1

Ui (Pm) (14)

where U∗ is the membership function of the resultant out-
put fuzzy set of Pm, and Gi is defined in Section 3.4. (H⃗∗)T

is the minor premise that it is straightened according to the
line. The fuzzy interpretation of the i-th rule can be pre-
sented as

(1) U1(Pm) = (DVB(fm0) ∧ AV S(fa0)) ◦ G1(Pm)

(2) U2(Pm) = (DB(fm0) ∧ AV S(fa0)) ◦ G2(Pm)

· · ·

(36) U36(Pm) = (DV S(fm0) ∧ AV B(fa0)) ◦ G36(Pm)

In the defuzzification, we also use Mean of Maximum (MOM)
method to calculate the control output of Pm, and the result
can be shown as Fig.2.

From the figure we can see that in the input value range
fm ∈ [0, 1] and fa ∈ [0, 1], the output Pm meet the previ-
ous experience (II) and (IV) for the parameter adjustment,
which are “IF fm is bigger, THEN the mutation probability
Pm is smaller” and “IF fa is bigger, THEN the mutation
probability Pm is bigger”.

3.6 Computational Complexity
For the computational complexity analysis, the two fuzzy
controllers are equivalent to two dual input single output
functions g1(fc, fa) = Pc and g2(fm, fa) = Pm. The output
Pc is calculated in advance and stored in a table for each
input (fc, fa) that rounds to a certain precision. Similarly,
the output Pm is calculated in advance and stored in a table
for each input (fm, fa) that rounds to a certain precision. In
this way, the computational complexity of both controllers
is O(1).

4. LOW ENERGY CLUSTERING BASED ON
FUZZY SIMULATED EVOLUTIONARY
COMPUTATION

In high-density WSNs, the traditional clustering method-
s lack an overall consideration, so there are some sensors
far from the cluster head, which result in energy waste. The
clustering method proposed in this paper establishes a global
unity mechanism for minimizing communication energy con-
sumption, which considers the position of the cluster heads
and the sensor nodes. The main steps of our methods are in-
dividual encoding and initial population generation, design
fitness function, selection, crossover and mutation, adaptive
adjustment of parameters based on the fuzzy controller, etc.

4.1 Population Encoding and Initialization
In FSEC, the encoded solutions are represented by chromo-
somes. First, we conduct a natural number coding for all the
nodes within the region with natural number 1 to L. In this
way, each individual can be encoded as a vector of binary
numbers, with the same length as the number of nodes L.
Each bit of the individual is composed of a Boolean variable
stating whether the corresponding sensor node is selected as
the cluster head node or not. The “1” represents the node
is selected as a cluster head node in the corresponding po-
sition, and “0” represents the node is selected as a sensor
node in the corresponding position. Each sensor node only
clusters with the nearest cluster head. For example, if there



are 8 nodes in the region and No.3, No.5 and No.7 nodes
are selected as cluster head nodes, the individuals can be
represented as “00101010”.

We use a population with a fixed number of individuals. The
population can be shown as

P =


e1,1 e1,2 · · · e1,L−1 e1,L
e2,1 e2,2 · · · e2,L−1 e2,L
.
.
. en,l

.

.

.
eN−1,1 eN−1,2 · · · eN−1,L−1 eN−1,L

eN,1 eN,2 · · · eN,L−1 eN,L



=


E1

E2

.

.

.
EN−1

EN

 (en,l ∈ {0, 1})

(15)

where L is the number of nodes in sensor networks, N is the
number of individuals in the population, M is the number
of cluster heads. en,l=1 represents the n-th node of l-th
individual is the cluster head node, and en,l= 0 otherwise.

We assume that there is a fixed number of cluster head nodes
in sensor networks, so the constraint can be shown as

L∑
l=1

en,l=M (n ∈ {1, 2, · · · , N}) (16)

where M is the number of cluster head nodes.

4.2 Fitness Function
Each individual in the population is awarded a score depend-
ing on the communication energy consumption. The fitness
function is defined as

Fit(E) =

L∑
l=1

(costs + costr) (17)

where En =
[
en,1 en,2 · · · en,L−1 en,L

]
is the fit-

ness of the n-th individual of the population, and the fitness
value equals to the communication energy consumption of
the n-th clustering scheme. By this definition, the individu-
als with smaller fitness in the population are the better ones
and are more likely to be parents in the next generation.

4.3 Selection
We use the roulette wheel proportionate selection strategy
for the selection operator. The selection operator selects an
individual from the current population for the next popula-
tion with the probability inversely proportional to its fitness
value, which can be shown as

PSELECT (En) =

1
Fit(En)

N∑
n=1

1
Fit(En)

(18)

In this way, the individuals that have a lower communi-
cation energy consumption will have a higher probability to
be selected as parents.

4.4 Crossover
In the crossover operation, two new offspring individuals are
generated from each pair of selected parent individuals. In
order to keep the number of cluster head nodes fixed, we
designed a crossover operator based on Boolean operation.

Firstly, we apply the logical AND operation to each pair of
selected parent individuals, and obtain an intermediate bi-
nary vector E′. The length of binary vector E′ is equal to
the number of sensor nodes L. For example, when paren-
t individuals are E1= [00101010] and E2= [00100101], the
intermediate binary vector is E′ = [00100000].

Secondly, we apply the logical XOR operation to each pair
of selected parent individuals, and obtain another interme-
diate binary vector E′′. The length of binary vector E′′ is
equal to the number of sensor nodes L. For example, when
the pair of selected parent individuals are E1= [00101010]
and E2= [00100101], the other intermediate binary vector is
E′′= [00001111].

Finally, we average random assign the “1” in individual E′′

to the corresponding position of E′ to generate two new off-
spring individuals. The ↪ařaverage ↪aś means the number of
“1” assigned to each individual is equal, and the ↪ařrandom ↪aś
means the possibilities of the distribution being equal. For
example, when E′ = [00100000] and E′′= [00001111], the
possible two new offspring individuals can be Enew

1 = [00101100]
and Enew

2 = [00100011].

4.5 Mutation Operation
In order to add some diversity to the population and keep the
number of cluster head nodes fixed, some random mutations
are applied to the individuals in the population. The muta-
tion operation is done by randomly exchanging the position
of “1” and “0” in an individual with a certain probability.
For example, the individual E= [00101100] can be mutated
to E= [00101001], which means the “1” in the 6th bit and
the “0” in 8th bit exchanged.

4.6 Fuzzy Adjust the Algorithm Parameters
In the traditional genetic algorithm, crossover and muta-
tion probabilities of selection have a great influence on the
performance of the algorithm. We use the adjust method
presented in Section 3.

5. SIMULATION RESULTS AND DISCUS-
SION

In this section, the proposed FSEC is tested with different
sensor nodes and cluster head proportions to investigate the
low energy clustering problem in high-density WSNs. Simu-
lation experiments were conducted to verify the communica-
tion energy reduction of the proposed clustering method. In
the simulations, the monitoring area is 100m×100m, and n-
odes in high-density sensor network are randomly distribute
within the simulating hospital floor area. The gateway node
is located at (50, 50). As the communication energy con-
sumption of uplink is much larger than downlink in most
WSNs, we only consider the uplink communication energy
consumption. In the simulations, we set k = 1Mbps, n = 3,
Eelec = 50nJ/bit, εamp = 100pJ/bit/m2[6].

Comparisons are made with PSO and QEA by only consid-
ering the best solution in each iteration. In QEA, we use the
same lookup table as [9]. In PSO, the cognitive and social
parameters are set to 2, and the maximum velocity is set to
6.

Fig.3 and Fig.4 show the communication energy consump-
tion of the high-density WSN using FSEC, the PSO and
QEA with 300 and 400 nodes respectively, where the energy
consumption is obtained directly from the formula (1) and
(2). The cluster head proportion is 10%. The results are the
average over 10 runs with different random nodes distribu-
tions. According to these comparisons, the proposed FSEC



Figure 3: The communication energy consumption
by iteration with 300 nodes and cluster head pro-
portion of 10%

Figure 4: The communication energy consumption
by iteration with 400 nodes and cluster head pro-
portion of 10%

has a lower communication energy consumption than that
of PSO and QEA methods with different numbers of nodes
after 100 iterations.

As it may be observed in these figures, in the beginning,
communication energy consumption of all the algorithms de-
creased. However, after only few iterations the QEA fall into
evolutionary stagnation. From the figures, we can also see
that PSO is much slower in convergence compared with F-
SEC. More specifically, the communication energy consump-
tion of FSEC is 9.78% and 4.57% less than that of PSO, and
28.08% and 29.69% less than that of QEA for 300 and 400
nodes respectively.

6. CONCLUSION

In this paper, we propose a fuzzy simulated evolutionary
computation clustering method to reduce communication
energy consumption for body area networks. In order to re-

duce communication energy consumption, we also designed
a fuzzy controller to dynamically adjust the crossover and
mutation probability. Simulation results show that the com-
munication energy consumption of the proposed method de-
creased compared to the other two methods, which means
that the proposed method significantly improves the energy
efficiency.
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