Simplifying the in-vehicle connectivity for ITS applications

Sergio M. Tornell, Carlos T. Calafate,
Juan-Carlos Cano, Pietro Manzoni
sermarto@upv.es,{calafate,jucano,

pmanzoni}@disca.upv.es
Department of Computer Engineering
Universitat Politecnica de Valéncia
Camino de Vera, s/n, 46022 Valencia, Spain

ABSTRACT

In-vehicle connectivity has experienced a big expansion in
recent years; car manufacturers are very active in this sense,
and are proposing OBU oriented solutions. This effort is
justified by the user demands for always-on connectivity.
However, currently available OBUs do not provide the de-
sired flexibility and simplicity of use that would be desirable
for ITS applications. For example, none of them considers
the possibility for inter-vehicle device-to-device communi-
cations.

In this paper we present GRCBox, an architecture that ex-
tends the in-vehicle connectivity by providing inter and in-
vehicular communication support. By creating private ve-
hicular networks, GRCBox allows user devices’ applications
to perform direct peer-to-peer communication. In this paper
we describe the GRCBox design along with four case stud-
ies. We also include the experimental results obtained from
a test-bed to show that our solution does not have a negative
impact on the performance when compared to a centralized
solution.

Categories and Subject Descriptors

C2.1 [Network Architecture and Design.]: Dis-
tributed networks.

Keywords

Vehicular Networks, V2V, Smartphone, GRCBox, VANET,

ITS

1. INTRODUCTION

Vehicular Networks (VNs) combine several technolo-
gies to provide Vehicle-to-Vehicle (V2V) and Vehicle-to-

Teemu Karkkainen, Jorg Ott
{teemuk, jo}@netlab.tkk.fi
Aalto University
Espoo, Finland

Infrastructure (V2I) communications [1]. Opportunistic
V2V networks [2] allow implementing applications such
as road-status notification [3], vehicle platoon coordi-
nation, or collaborative content downloading [4]. Al-
though the technology is ready for deployment, it is
expected that car manufacturers will introduce it grad-
ually, starting at high-cost models, which, coupled with
the low renovation rate of the vehicle fleet, will slow
down the deployment of VNs. In addition, dashboard-
integrated On Board Units (OBUs) typically become
technologically obsolete after a couple of years and they
are usually not designed to be updated or replaced dur-
ing the whole vehicle lifetime, which leads to unsatisfied
users.

Meanwhile, the popularization of smartphones has
brought devices with multiple network interfaces to al-
most everyone’s pocket. Smartphones are continuously
carried by users and have multiple network interfaces,
which makes them a suitable platform for implementing
applications based on opportunistic contacts. However,
not only is the smartphone’s connectivity restricted to
infrastructure networks, such as WiFi or 3G/4G net-
works, but also the number of simultaneous active net-
work interfaces is limited to one. These restrictions are
limiting the adoption of smartphones for applications
based on opportunistic connectivity in vehicular scenar-
ios.

To extend in-vehicular connectivity to external net-
works such as Vehicular Ad-Hoc Networks (VANETS),
we have designed the GRCBox Architecture. The GR-
CBox Architecture is based on the GRCBox Connec-
tivity Manager (GCM), which is responsible for cre-
ating an intra-vehicle WiFi network. User devices in-
side the vehicle can connect to this network to share
contents and to reach any of the external networks,
as depicted in Figure 1. GRCBox allows implement-
ing Internet-independent solutions that focus on appli-
cations that exploit local connectivity to provide new
services, such as platoon-oriented applications where
friends or workers share information while traveling to-
gether in different vehicles. Opportunistic applications

MOBIQUITOUS 2015, July 22-24, Coimbra, Portugal
Copyright © 2015 ICST
DOI 10.4108/eai.22-7-2015.2260058

Figure 1: An example GCM connected to several net-
works.

are especially suitable for remote areas where infras-
tructure is expensive to deploy. Moreover, the short life
and local propagation of the information favors privacy.
The GRCBox Architecture provides a Representational
State Transfer (REST) interface [5] and it is based on
basic IP networking, thereby minimizing the modifica-
tions required to create GRCBox-aware applications.
GRCBox also removes the dependency on car manu-
facturers when implementing V2V communications; by
using GRCBox, users can now implement their own
VANETS.

Part of the industry has proposed vendor-specific al-
ternatives that integrate smartphones in VNs. The Car
Connectivity Consortium (CCC), which integrates com-
panies from the automotive and the telecommunica-
tions sector, released Mirrorlink [6], a standard tech-
nology that moves the computing tasks from the OBU
to the smartphone, and present the information on the
OBU'’s display. Users can also interact with the smart-
phone through the dashboard elements. Google and Ap-
ple, two of the biggest technology companies, have also
proposed their own solutions, Android Auto [7], and
CarPlay [8], respectively. However, all these proposals
rely on the Internet infrastructure to provide in-vehicle
connectivity, ignoring the advantages of V2V commu-
nication and opportunistic contacts. Moreover, these
proposals are heavily dependent on companies and cen-
tralized service providers.

An example of new applications based on opportunis-
tic peer-to-peer communications is the Scampi project
[9]. Its authors developed a framework to provide op-
portunistic communication for smartphones. They pro-
posed to deploy autonomous routers (called LibeRouters)
that, by creating WiFi connectivity islands, provide
a network for opportunistic contacts between smart-
phones. By using a Delay Tolerant Network (DTN)
[10] architecture and taking advantage of node mobil-

ity, Scampi distributes messages to nodes connected to
other Scampi routers. Since the Scampi platform re-
quires nodes to be associated to the same router in
order to exchange information, it is not suitable for
VNs, where nodes move quickly and contacts based on
the infrastructure last only for a short period. Our
GRCBox can complement the Scampi platform by in-
creasing the smartphones’ connectivity beyond the local
Scampi router, thereby increasing the number and du-
ration of opportunistic contacts.

To the best of our knowledge, GRCBox is the first ef-
fort aimed at increasing the user device in-vehicle con-
nectivity in order to allow users to create their own
autonomous VN and test innovative VN applications.

The rest of this paper is organized as follows: Section
2 details the GRCBox Architecture. Section 3 presents
four case studies, that illustrate the use and perfor-
mance of the GRCBox. Later, section 4 provides some
insights on ongoing developments and future plans. Fi-
nally, section 5 concludes the paper by summarizing our
contributions.

2. THE GRCBOX ARCHITECTURE

The GRCBox Architecture defines both the GRCBox
Connectivity Manager (GCM) placed in the vehicle and
a client-server REST API that allows applications to
interact with the GCM to reach external networks. To
implement the REST API we used the RESTlet frame-
work [11], which simplifies the implementation. Fig-
ure 2 represents the architecture including both parts
the GCM and the client API. An example of a GCM
placed in a vehicle and connected to three different ex-
ternal networks, is shown in Figure 1. In this example
an application running in the user device may choose to
connect to the VANET for local communication, or con-
nect to either the cellular network or the WiFi network
to reach the Internet. In this section, we first detail the
different software modules running in the GCM. Then,
we offer a general overview of the interaction between
the GCM and the User Application.

2.1 The GCM

The GRCBox Connectivity Manager (GCM), which
is placed inside vehicles, must have at least one WiFi
interface to which user devices are connected to (called
inner interface), and one or more external interfaces
used to provide connectivity to external networks. The
GCM is composed of several modules that work to-
gether. A scheme of the different components, their
connections, and the paths traversed by data flows is
presented in Figure 2. The GCM software is based on a
Linux operating system, and it takes advantage of sev-
eral well-known Linux services to provide the desired
functionality. The different components running in the
GCM are the following;:

Application
| RESTlet Client API |

T
1

Control 1 Data Flow
1
¥ Discovery :
| RESTlet Server API | lgerice |
Core Module :
Multicast Iptaples:
Proxy Routing
Rules Iface T ':
Database Monitoring] : : 1
R
GCM Network : 1 1 :
Manager L L
Daemon 1 : : 1
! 1 1 !
R

Figure 2: GRCBox Architecture with GCM modules in
detail.

Discovery Service: The Linux daemon dnsmasq is
used to answer DHCP and DNS requests. It is
configured to resolve the “grcbox” domain name to
the GCM inner interface. This way clients on the
inner network can connect to the GCM without
information about its IP address by attempting a
connection to “http://grcbox/”.

Packet Forwarding: To define fine grained, per con-
nection routing, GCM uses Iptables for connection
filtering and labeling, and the Linux kernel support
for “Policy Routing”.

Ifaces Monitoring: To monitor the status of the net-
work interfaces, GCM connects to the Network-
Manager daemon using the DBUS interface to per-
form event subscribing tasks.

Core Module: The most important part of the GCM
is its core module. The core module performs sev-
eral activities: it listens to clients’ requests through
the REST API, maintains a database of all reg-
istered rules, starts and stops multicast proxies
when needed, and performs actions when events
on the interfaces are notified.

Concerning the hardware required to run the GCM,
our plans are to find a cheap and small embedded com-
puter that can be easily plugged into vehicles. The com-
puting power required by the GCM is minimal, and it
should run flawlessly in embedded computers such as
Raspberry Pi' or BeagleBone Black?. However, in our
first experiments using Raspberry Pi, we found that the

"http://www.raspberrypi.org/
Zhttp://beagleboard.org/black

board presented power management and instability is-
sues that prevent connecting more than one wireless
interface. Currently we are testing several other em-
bedded boards to find one suitable to our requirements.
Meanwhile, we have used an Asus EeePC netbook with
low computational power.

2.2 User Device-GCM Interaction

The GCM creates a WiF1i access point to which smart-
phones, tablets, and other user devices in the vehicle
will associate. Once the user devices connect to the
GRCBox’s wireless network, they can share contents
between them, as well as access the external networks.
By default, every new connection is forwarded from the
GCM through the default Internet connection. In case
an application requires the use of any other available
interface, it must notify it to the GCM. In this section
we enumerate the steps a GRCBox application must fol-
low to communicate with a non-default network. First
of all, we need to introduce the concept of “rules”: A
rule enables applications to choose the outgoing inter-
face for a certain connection, or to register as listeners
for a defined incoming connection. A rule is a packet
filter defined by the following elements:

e Rule Type: The GRCBox Architecture defines three
different kind of rules, Incoming, Outgoing and
Multicast. Multicast rules define bi-directional mul-
ticast packet flows between the internal interface
and one of the external interfaces.

e Interface Name: The name of the outer interface
to which the rule applies.

e Protocol: The protocol of the connection. Cur-
rently, GRCBox supports UDP and TCP, though
we expect to implement more protocols, such as

SCMP or ICMP, in the future.
e Source Port: The source port of the connection.

e Source Address: The source address of the connec-
tion.

e Destination Port: The destination port of the con-
nection.

e Destination Address: The destination IP address
of the connection.

The steps that GRCBox applications must perform
are the following:

1. Check GRCBox availability: Once the device
is associated to the GRCBox wireless network, the
application must check if a GCM is available. To
do so, the application will try to connect to the
“http://grcbox/” url to check the status of the
GCM.

2. Application Registration: After checking the
availability of the GCM, an application must reg-
ister itself to get a key. This key will be used for
later application-server interactions to ensure no
other application but the owner of a rule can re-
new, remove, or modify it.

3. Check the Status of the Interfaces: The next
step is to check the status of the different net-
work interfaces to identify if the desired interface
is available. At this point the application can also
check other previously registered rules to avoid
conflicts.

4. Register the desired rule[s]: Now the appli-
cation can register as many rules as required to
configure the GCM to forward specific incoming
and outgoing connections, or to forward multicast
packets to external interfaces.

5. Transmit Data: At this point the application
can effectively use the registered connections which
will be forwarded according to the defined rules.

6. Close the Connection: When a rule is no longer
required, it must be removed from the GCM. This
step is optional since rules are always removed
from the GCM database if the application is dis-
connected.

7. Application Disconnection: Once the applica-
tion ends its interaction with the GCM, it should
notify it to allow removing its registered rules.

The interactions between GRCBox applications and
the GCM rely on the RESTlet API exposed by the
GCM. The details of this API are described in [12].
Section 3 includes examples of multiple case studies to
clarify this communication.

GRCBox also supports the integration of third party
applications by providing a management application that
enables the interactive definition of new rules for non-
GRCBox applications. Thereby, the user can define
rules for well-known application protocols such as HT'TP,
POP3, etc.

3. CASE STUDIES

In this section we detail the interaction between a
GRCBox-enabled application and the GCM through four
different case studies. In the first case study, we ana-
lyze the communication between an application and the
GCM in the case of a typical client-server connection
between two user devices connected to different GCMs.
In the second case study, we illustrate how the Scampi
middleware can be adapted to support the GRCBox Ar-
chitecture. The first and the second case studies focus
on the most novel feature of the GRCBox Architecture;

Server @ @ Client
Check GCM

Get Ifaces status \
Register \

App|

Register \
Incomming Rule F—

TCP/UDP
Connection

Deregister \

Application | ———%

Figure 3: Example of a client GRCBox application con-
necting to a server.

i.e.. VANET connectivity. Therefore, we do not limit
our analysis to describing them, but also analyze the
performance of the GRCBox Architecture. In the third
case study, we describe the case of a TCP/IP applica-
tion that wants to establish a connection with a server
connected to the Internet using a specific external inter-
face. The fourth case study presents the case of a VoIP
application that requests to route all the VoIP connec-
tions through a specific interface. We believe that, al-
though more specific use cases might occur, these case
studies illustrate the flexibility offered by the GRCBox
Architecture.

3.1 Direct VANET Communication

This is a basic case of direct client-server commu-
nication between devices. It assumes that the client
and server connectivity has been configured using some
auto-configuration system like the one presented in [13].
Therefore, the client knows the public IP of the vehi-
cle connected to the VANET where the device acting
as a server is connected. Neighbor discovery is out-
side the scope of this case study, and its impact is ex-
plored in the next case study. For both UDP flows and
TCP connections, only one rule on the server side must
be registered. The rule must specify which port is the
server running in the user device listening for connec-
tions at, so the GCM can forward connections attempts
on the external interface by performing Network Ad-
dress Translation (NAT). As depicted in Figure 3, the
steps performed by the server device for establishing
such communication are the following:

1. The device must check the availability of the GCM.
2. Connect to the GCM and register itself.

3. Check the status of the interfaces and select the
VANET interface.

4. Register a new rule to forward incoming connec-
tions.

mmm— Data Flow

802.11g Chl

Smartphone
Tablet

(a) Scenario 1

Ad-Hoc = Data Flow

802.11g Chl

802.11g Ch1l

Tablet AKX

Smartphone

(b) Scenario 2

Figure 4: Scenarios used in our experiments.

5. Wait for incoming connections from clients and
process them.

6. When the server is stopped, the application should
deregister itself from the GCM, which will also re-
move all its rules.

The client does not need to perform any interaction
with its GCM, since the GCM will forward the connec-
tion through the VANET interface based on the desti-
nation IP.

3.1.1 Performance Analysis

We have run experiments to evaluate the performance
of the GRCBox Architecture in 2 different scenarios:

the first experiment is an analysis of the maximum through-

put, and the second analyses the UDP Round Trip Time
(RTT) between client and server. In the first scenario,
we used an Android Nexus 7 tablet and a BQ4.5E smart-
phone connected to the same GCM, which acted as a
standard WiFi Access Point, since connections can be
established without interaction with the GCM, this is
the baseline scenario. In the second scenario we con-
nected each device to different GCMs, which were then
connected to the same ad-hoc network, in this case the
connection must be established through the GCMs. Ta-
ble 1 and Figure 4 summarize the configuration of both
scenarios. To implement the GCMs we used an Asus
1000h EeePC netbook running a Debian Linux distri-
bution with an 802.11a USB wireless network interface
configured in the Ad-Hoc mode.

The GRCBox management application was used to
configure the required rule on the GCMs.

Maximum Throughput.

To evaluate the impact of the GRCBox Architecture
on the maximum throughput experienced by a client-
server connection when using the GRCBox, we tested
the network performance using the iperf [14] tool. We
have collected measurements for both UDP and TCP
protocols. Each experiment was repeated 60 times to
discard random effects, and the role of the user devices

Table 1: Devices Configuration

Element Characteristics

Tablet Google Nexus 7 (2012)
Smartphone BQ Aquaris 4.5E

GCMs Asus EeePc 1000h, Intel Atom

N270

Ad-Hoc Network || 802.11a, Frequency:5.18 GHz

WiFi 1 802.11g, Frequency:2.462 GHz

WiFi 2 802.11g, Frequency:2.412 GHz

was interchanged after half of the experiments to dis-
card the effects associated to the device’s performance.
Results are shown in Figure 5a in a boxplot chart.

Notice that, no matter whether TCP or UDP is used,
the maximum throughput achieved when using the GR-
CBox Architecture (Scenario 2) is slightly better than
the one achieved when both devices are connected to
the same WiFi Network (Scenario 1). The main cause
behind this difference is the use of a different channel for
each wireless network when using the GRCBox. This
setup avoids collisions between nodes, when transmit-
ting requests and responses. The high variability expe-
rienced in all the experiments is due to the presence of
interference, which heavily affects throughput in wire-
less networks.

UDP Round Trip Time (RTT).

To test the delay introduced by the GRCBox Archi-
tecture when comparing against an infrastructure net-
work we have developed a small application that sends
an UDP message to a server running on another device.
The server will then send a new UDP message as a re-
sponse, so the RTT can be measured at the first sender.
We performed the test on both scenarios presented be-
fore, collecting more than 500 measurements per sce-
nario. Figure 5b shows a boxplot that summarizes the
results we obtained. We have used a logarithmic scale
to be able to clearly represent infrequent values in both
the low and high ranges. It can be observed that, on

TCP ubP

.| =

T T T T
Scenario 1 Scenario 2 Scenario 1 Scenario 2

(a) Throughput obtained for UDP and TCP tests.

10
9_
8 -
7 -

6

RTT(ms)
N

T T
Scenario 1 Scenario 2

(b) UDP RTT results.

Figure 5: Direct VANET communication results.

average, the RT'T is about 2 ms higher when using GR-
CBox. This effect is due to the multi-hop nature of the
communication: adding an extra hop between sender
and receiver increases the RTT. During this experiment
we discovered that the main source of delay in Android
devices is the WiFi interface power management per-
formed by the Android operating system, which in some
cases increased the RTT by up to 508 ms. If we com-
pare the delay introduced by the GRCBox against the
delay introduce by the OS, we can conclude that the
GRCBox impact on the RTT is negligible.

3.2 Scampi: Neighbor Discovery and
Connection Establishment

To illustrate the use of a more elaborated VANET
application we describe the modifications required to
adapt the Scampi router [9] to the GRCBox Architec-

Scampi
Router

Remote Scampi
Neighbor

Check GCM

Get Ifaces status >
Register \

App
Register \

MulticastRule | ——
Register \
Incomming Rule

—

Hello Hello

Normal Scampi
Operation

Exchange
Multicast Béacons

TCP <
Connection [

Deregister &_—/

Application [——

Figure 6: Example of integration between Scampi and
GRCBox.

ture. Although Scampi was not designed for VANETS,
it is a good example of a Device to Device (D2D) appli-
cation. Scampi neighbors are discovered by multicast-
ing beacon messages periodically. Once a new neighbor
has been discovered, Scampi establishes a TCP/IP con-
nection to exchange information. As shown in Figure 6,
the modifications required on the the Scampi router to
adapt it to the GRCBox are the following:

1. Check the GCM availability.
2. Get the list of available interfaces and their status.

3. Create a new multicast proxy associated to the
Ad-Hoc interface to forward multicast beacons to
the external networks.

4. Register a rule for incoming connections from the
neighbors reached by the multicast messages. Now
the application can receive connections from re-
mote neighbors.

5. Perform standard Scampi activity.
6. Once the application is closed, it must remove it-
self from the GCM’s applications database. This

will remove both rules.

In this case, both rules are long-lasting rules that
must be active as long as the application is running.

Scampi Scampi
Application Application
Scampi Scampi
Middleware Middleware
Notify New
Experiment L
T R
Bundles
Generation Application
Bundles Distribution Reception
Computed
______ Server time
Computed Notify Last
Clienttime | 14 Bundle Received
Network

Figure 7: Bundles sent to measure the Scampi through-
put.

3.2.1 Performance Analysis

As in the previous case, we have run two different ex-
periments to evaluate the performance of the GRCBox
Architecture combined with Scampi: the first experi-
ment measures the maximum bundle throughput, and
the second experiment measures the Scampi RTT of
bundles between two devices. To avoid modifying the
Scampi’s source code we have created a multicast plugin
that can be activated through the management applica-
tion to forward the multicast beacon messages sent by
the Scampi router from the inner network to the desired
external network. Both experiments were run once the
Scampi nodes had discovered each other and the Scampi
topology was stable.

Scampi Throughput.

To measure the performance of the Scampi platform
when combined with the GRCBox Architecture we have
developed a client application that, by using the Scampi
API, generates a burst of bundles that are passed to
the Scampi router in order to be distributed to scampi
neighbors. Once the server application, which is run-
ning in the other device, receives all the bundles, it con-
firms their reception by creating a new bundle. The
server application measures the time and the amount
of data received to calculate the throughput in terms
of Mbps. When running the scampi middleware under
heavy load it presents some issues that complicate com-
puting the time required to exchange a certain number
of bundles. Therefore, we needed to signal the begin-
ning of each experiment through a notification bundle,
that has to be confirmed by the server. In the same
way, the reception of the last bundle of the burst has

1000 -
750
(2]
Q.
Q
<
g. 500
<
(o2}
>
o
=
250
E Scenario 1
- Scenario 2
O -
64 256 512 1024
Bundle Size(kB)
(a) Scampi throughput in Mbps.
5.00 .
L]
4.00 - . '
3.00 - $ H
o
L]
2.00
D i .
= . i
= ° [
E 1.00 -
a
1S
@
s}
2]
0.25

T T
Scenario 1 Scenario 2

(b) Scampi RTT test results.

Figure 8: Scampi results.

to be notified to the client, so it can compute the total
required time. This behavior is summarized in Figure
7. It is important to notice that, when the scampi mid-
dleware receives a new bundle, it is not immediately de-
livered to the user application, and thereby the Scampi
RTT does not depend on the network resources alone.
We repeated the experiment varying the size of the bun-
dles. Fach experiment was repeated 10 times. Figure
8a shows the obtained results.

According to the results, the Scampi throughput is
slightly better in scenario 1. However, the range of the
boxes overlaps in most cases, which means that the dif-
ference between both scenarios is not statistically sig-
nificant. Besides, the figure also shows that the perfor-
mance of Scampi is really poor when compared to the
results presented in the section 3.1, and that it becomes
worse as the bundle size becomes smaller. The reason is
that the Scampi platform has a big overhead, not only
because of the bundle protocol, but also due to compu-
tation overhead at the middleware layer: every bundle

Server

GRCBox App @

Check GVR

Get Ifaces status \)
Register

App | T——
Register

NewRule [———uo |

Exchange .
Information TCP/IP Connection

Deregister

Application | ————n |

P

Figure 9: Example of a client GRCBox application con-
necting to a server.

must be processed by several threads, including copy-
ing it to permanent storage before notifying it to the
application.

Scampi Round Trip Time (RTT).

The RTT test consisted on generating a minimum-
size bundle on the source node, that is then distributed
by the Scampi router. When the application running
on the destination device receives the bundle, it gener-
ates a response bundle that confirms the reception of
the first bundle. Finally, when the source node applica-
tion receives the response bundle it computes the RTT.
Figure 8b shows the obtained results.

As can be seen in the results, there is almost no differ-
ence between the distributions of the RTT in both sce-
narios. When both devices are connected to the same
AP, the Scampi RTT is slightly better than when us-
ing the GRCBox. However, when focusing on the value
of the quartiles, this small difference becomes insignif-
icant. It is worth noticing the high number of mea-
surements that experienced a high RTT (represented as
outliers). These high values are due to some instabil-
ity issues found in the Scampi middleware under heavy
load in Android.

3.3 Device to Internet Connectivity over WiFi

Figure 9 illustrates the case where an application
wants to use the WiFi interface to connect to a remote
Internet server and avoid using the low-bandwidth 3G
connection. To do so, the application must perform the
following steps:

GRCBox App
Check GVR

Get Ifaces status \
Register \

App| =
Register \
SIP Rule

Incomming |«
SIP Call >

Register \
RTP Rule

Remote
SIP Phone

RTP Flows

Al

- == == = == (== == == == == = Call Finished

Deregister \
RTP Rule
Deregister

Application [———— |

Figure 10: Example of a VoIP GRCBox application.

1. Check the GCM availability.
2. Get the list of available interfaces and their status.

3. Register an outgoing rule which includes the re-
mote address, the remote port, and the desired
interface.

4. Initiate the connection and exchange information
as usually, using sockets or any other network API.

5. Once the connection has finished, the rule must be
removed.

6. When closed, the application must remove itself
from the GCM applications database.

In this case, the registered rule is only used during
the connection to the server, and it is expected to be
removed by the application as soon as the connection
ends.

3.4 VoIP Application over 3G

Figure 10 illustrates the case of a GRCBox VoIP ap-
plication attempting to use the highly-stable 3G con-
nection to receive VoIP calls ignoring more unstable in-
terfaces. Due to the nature of VoIP connections, the
application must follow these steps, which include cre-
ating 2 different rules:

1. Check the GCM availability.

SIP Negotiation

2. Get the list of available interfaces and their status.

3. Register an incoming rule for SIP connections that
includes only the local port, the local address, and
the desired listening external interface.

4. When a SIP negotiation occurs, the application
must create as many rules as required according
to the parameters of the negotiated RTP flows.

5. At this time, the RTP packets can flow between
the GRCBox application and its remote peer.

6. Once the call is concluded, the RTP rule can be
removed from the GCM.

7. When the application is closed it must remove it-
self from the GCM applications database. This
will also remove any other rule registered by the
application.

In this case, the SIP rule is a permanent rule that
must be active as long as the application is running. On
the other hand, the RTP rule is expected to be removed
as soon as the VoIP call finishes.

4. WORK IN PROGRESS

This section includes some ongoing development. The
first subsection presents two real applications we are
currently developing and testing. The second subsec-
tion is a list of issues that remain open for the GRCBox.

4.1 Other GRCBox Applications

We have designed GRCBox with the goal of creating
a platform to easily test collaborative vehicular com-
munication solutions for user devices. We are currently
working on a variety of GRCBox applications that use
the ad-hoc communication capabilities.

One of the applications is an overtake assistant appli-
cation that streams video captured from the camera of
a smartphone placed on the dashboard of the vehicle in
front to the rear vehicle. The application sends periodic
beacons through the GCM to announce the location of
the vehicle. Using this information, rear vehicles can de-
tect vehicles in front and ask for an overtake-assisting
video stream.

We have also adapted our previously presented Warn-
ing Ambulance Application [15] which shows a warning
on the driver’s smartphone when a warning message
from a nearby ambulance is received. The warning mes-
sage contains information about the ambulance’s loca-
tion and future route, so that the driver can take deci-
sions in advance, increasing security and reducing am-
bulance delay. Moreover, the application also forwards
the warning message to other nodes. Figure 11 shows
a screen capture of our application showing the ambu-
lance location and future route (in orange), as well as

—r Rectorat

«_50.m
LUK

Figure 11: Ambulance warning application

8

the vehicle’s current location and route (in blue)3. To
run the original application, the user was forced to root
its smartphone; in addition, no matter whether the de-
vice is rooted, not all the smartphones can be configured
to use ad-hoc communications. By using the GRCBox
architecture, the application is easier to deploy and test.

Beside testing services that would require a high num-
ber of GCMs to be deployed for these services to be
useful, such as the ones introduced before, we envi-
sion GRCBox applications focused on vehicle platoons.
The GRCBox architecture can be used to provide in-
ter and intra-vehicle communication to friends or co-
workers that move together using different vehicles. They
can share multimedia content, directions, etc. without
requiring a mobile broadband Internet connection which
is usually hard to find on remote roads.

4.2 Open Issues

Although GRCBox is fully operational, some issues
remain. We plan to improve GRCBox by implementing
high-level rules, thereby creating a new semantic able
to support rule definitions such as “use the most stable
interface for VoIP calls” or “forward multicast packets
to every ad-hoc or infrastructure network”.

Currently, when using the management application,
the user can only define which interface it wants to use,
being unable to configure the interface properties. We
plan to support remote interface configuration. The
management application can also be improved by in-
cluding some predefined rules for some common third-
party applications.

We have designed the GRCBox Architecture as a

3A video of this application can be found on our channel in
youtube https://www.youtube.com/watch?v=Wh4cwmdvecM

quick deployment platform for research, allowing to eas-
ily test vehicular applications for smartphones; there-
fore, we have considered that all the devices in the net-
work were trustworthy. Currently, it would be simple
to create a malicious application that compromises the
system. In case of commercial deployment plans, fur-
ther research in this direction must be carried out.

5. CONCLUSIONS

In this paper we have presented the GRCBox Archi-
tecture, which allows implementing vehicular applica-
tions by extending in-vehicle connectivity to external
networks. The GRCBox Architecture is composed of a
low-cost hardware module called GRCBox Connectivity
Manager (GCM), and a set of libraries that allow de-
velopers to use it. We have presented four study cases
that illustrate the use of the GRCBox Architecture:)
simple VANET communication, i) neighbor discover-
ing and connection establishing using Scampi, i) ac-
cess to the Internet, and iv) VoIP Internet application.
We have evaluated the performance of the GRCBox on
the two first cases. Our results shown that the GRCBox
Architecture is fully operational and that, in terms of
throughput and delay, the penalty to pay when com-
paring the GRCBox against an infrastructure network
is minimal and clearly compensated by the extra con-
nectivity offered by the GRCBox.

The GRCBox Architecture have been released under
an open source license and can be found in our GitHub
page [16]. As an open source development, we want to
invite the research community to download, use, and
improve our GRCBox Architecture.

Acknowledgments

This work was partially supported by the Ministerio de
Economia y Competitividad, Programa Estatal de In-
vestigacion, Desarrollo e Innovacion Orientada a los
Retos de la Sociedad, Proyectos I+D+1 2014, Spain,
under Grant TEC2014-52690-R, BES-2012-052673 and
EEBB-1-14-07890.

References

[1] M. Gerla and L. Kleinrock. “Vehicular networks
and the future of the mobile internet”. In: Com-

puter Networks 55.2 (Feb. 2011), pp. 457-469. ISSN:

13891286. po1: 10.1016/j.comnet.2010.10.015.

[2] K. C.Lee and M. Gerla. “Opportunistic vehicular
routing”. In: Wireless Conference (EW), 2010 Eu-
ropean. IEEE, Apr. 2010, pp. 873-880. ISBN: 978-
1-4244-5999-5. DOI: 10.1109/EW.2010.5483530.

3]

[10]

[13]

[16]

J. Santa and A. Gomez-Skarmeta. “Sharing context-
aware road and safety information”. In: Pervasive
Computing, IEEE (2009), pp. 58-65.

O. Trullols-Cruces et al. “Cooperative Download

in Vehicular Environments”. In: IEFEFE Transac-
tions on Mobile Computing 11.4 (Apr. 2012), pp. 663
678. 1SSN: 1536-1233. DOI: 10.1109/TMC. 2011 .
100.

R. T. Fielding. “Architectural styles and the de-
sign of network-based software architectures”. PhD
thesis. University of California, 2000.

Car Connectivity Consortium (CCC). MirrorLink.
http://www.mirrorlink.com/. Feb. 2015.

Google Inc. Android Auto.
http://www.android.com/auto/. Feb. 2015.

Apple Inc. CarPlay.
https://www.apple.com/ios/carplay/. June 2014.

T. Karkkéinen et al. “SCAMPI Application Plat-
form”. In: Proceedings of the Seventh ACM Inter-
national Workshop on Challenged Networks. CHANTS
’12. New York, NY, USA: ACM, 2012, pp. 83-86.
ISBN: 978-1-4503-1284-4. DOI: 10.1145/2348616.
2348636.

M. Khabbaz, C. Assi, and W. Fawaz. “Disruption-
tolerant networking: A comprehensive survey on
recent developments and persisting challenges”. In:
IEEE Communications Surveys & Tutorials 14.2
(2012), pp. 607-640.

J. Louvel, T. Templier, and T. Boileau. Restlet in
Action: Developing RESTful Web APIs in Java.
Greenwich, CT, USA: Manning Publications Co.,
2012. 1sBN: 193518234X, 9781935182344.

S. M. Tornell et al. “GRCBox : Extending Smart-
phone Connectivity in Vehicular Networks”. In:
International Journal of Distributed Sensor Net-
works (2014), Article ID 478064.

J. Cano et al. “EasyMANET: An extensible and
configurable platform for service provisioning in
MANET environments”. In: IEEE Communica-
tions Magazine 48 (2010), pp. 159-167. 1sSN: 01636804.
DOI: 10.1109/MCOM.2010.5673087.

Iperf homepage. https://iperf.fr/. Feb. 2015.
S. M. Tornell et al. “Evaluating the feasibility of
using smartphones for ITS safety applications”.

In: VT'C Spring 2013 IEEE Vehicular Technology
Conference. 2013. 1SBN: 9781467363372.

GRC. GRC GitHub Account.
https://github.com/GRCDEV. Aug. 2014.

