
A Middleware for Power Management in Multicore
Smartphones

Shaosong Li
University of Colorado at Boulder
shaosong.li@colorado.edu

Shivakant Mishra
University of Colorado at Boulder
mishras@cs.colorado.edu

Abstract
Increased power consumption is a critical concern for smart-
phone users. While multi-core processors in smartphones
have already emerged in market, current applications are yet
to take full advantage of this new architecture, particularly
in the area of managing power consumption. This paper
addresses the issue of managing power consumption in mul-
ticore smartphones via a middleware layer that schedules op-
timal number of cores for currently running applications tak-
ing into account the tradeoff between power consumption,
performance and user experience. The paper first describes
a simple and accurate method to measure the overall power
consumption and then studies the impact of scheduling seven
different popular applications over one to four cores on the
overall power consumption. Based on this study, the paper
proposes three new power-aware scheduling algorithms that
dynamically schedule optimal number of cores as well as dy-
namically adjust the voltage frequency of each online core to
achieve the best tradeoff between power consumption, ap-
plication performance and user experience under the current
context. Evaluation from a prototype implementation of the
middleware on a quad-core HTC One shows that these algo-
rithms result in significant reduction in power consumption
while ensuring good performance and user experience.

Keywords
Multi-core smartphones, Power management, Scheduling

1. INTRODUCTION
Mobile use cases such as HD video playback, streaming video
and audio, multitasking, browsing the web, 3D gaming and
3D interfaces have become feasible with the availability of
multi-core architectures in mobile devices. High perfor-
mance computing components in mobile devices, however,
consume significant amount of power reducing battery life,
which is one of the most critical concern mobile users have.
Although multi-core processors are meant to be energy ef-
ficient units, increasing the number of cores can drain the

battery much more rapidly than low power, single-core em-
bedded processors, particularly if the cores are run at high
voltage frequencies. Since more and more applications are
being developed as multi-threaded and users are increasingly
executing multiple tasks concurrently, the issue of managing
the overall power consumption in multicore smartphones is
of paramount importance.

Techniques to reduce the overall power consumption in smart-
phones can be divided into three high level categories. The
first category deals with designing power-aware applications,
wherein utilization of power hungry hardware resources is
minimized and power efficient alternatives to power hun-
gry scenarios are incorporated while recognizing trade-offs
between extended battery life and user experience or perfor-
mance. Examples include [5] and [7]. The second category
deals with dynamic voltage and frequency scaling (DVFS),
wherein voltage or frequency of processor is dynamically ad-
justed“on the fly”to conserve power. Examples include [17].
The third category deals with efficient utilization of the mul-
tiple CPUs of a device. When a smartphone is idle or lightly
used, some cores may be turned off. Techniques such as hot
plugging turn off one or more cores when not needed and
thus save power. These three categories of power manage-
ment techniques are complimentary with one another.

This paper takes a holistic view of managing the overall
power consumption in multi-core smartphones. While re-
ducing the overall power consumption is certainly an im-
portant aspect of managing power, there are several other
issues that must be considered as well. First, there are tech-
nical issues that include how to accurately measure the over-
all power consumption in modern smartphones, and under-
standing how the overall power consumption is affected by
the number of cores that are online at any point in time
and the frequencies at which these online cores are running.
Second, there are three quality indicators that must be con-
sidered together: power consumption, application perfor-
mance and user experience. Under some circumstances, it
may be reasonable to sacrifice application performance or
user experience to save power, while at other instances, it
may be reasonable to improve performance at the expense
of increased power consumption. It is important to under-
stand the tradeoffs between power consumption, application
performance and user experience. Finally, contextual issues
such as the current battery level or expected time interval
before next phone charge have an impact on the relative im-
portance of reducing power consumption and performance.

MOBIQUITOUS 2015, July 22-24, Coimbra, Portugal
Copyright © 2015 ICST
DOI 10.4108/eai.22-7-2015.2260049

This paper proposes a middleware layer that addresses all
these issues to manage power in modern, multi-core smart-
phones. It dynamically schedules an optimal number of
cores online and dynamically adjusts the frequencies of each
of the online cores based on the current CPU load and a
balance factor. Balance factor is used to determine the right
tradeoff between power, performance and user experience,
and the CPU load is then used to determine the right num-
ber of cores and their frequencies to realize that tradeoff.

The paper first describes a simple and accurate method to
measure the overall power consumption in smartphones, and
then studies the impact of scheduling seven different popu-
lar smartphone applications over one to four cores on the
overall power consumption. Next, the paper discusses the
important issue of tradeoff between power, performance and
user experience as well as the impact of remaining battery
life and expected time interval for charging the phone next.
This tradeoff is then abstracted via balance factor. The pa-
per then proposes three new power-aware scheduling mech-
anisms that dynamically schedule optimal number of cores
and then determine the optimal frequency for each core
based on the balance factor and current CPU load. These
mechanisms have been implemented on Android HTC One
smartphone, which is quad-core. Prototype evaluation from
seven popular applications shows that these mechanisms can
reduce the overall power consumption of the smartphone by
as much as 40% over the current default Android scheduler.

2. RELATED WORK
To prolong battery life, most off-the-shelf smartphones and
tablets adopt power management schemes that make use of
dynamic voltage and frequency scaling (DVFS) [16,18] and
processor hot plugging [17]. In [13], the authors have ana-
lyzed the effectiveness of various power management schemes
for multi-core smartphone systems in terms of energy ef-
ficiency and user-perceived response latency. In [14], the
authors have created an application framework that allows
execution of different types of threads, comparing their effi-
ciency and measuring power consumption on mobile devices.
In [15], the authors have created an online power estimation
technique for multi-core smartphones with advanced display
components. However, none of these prior work propose new
scheduling mechanisms for multi-core smartphones.

Measurement of power consumption in smartphones has also
been extensively addressed. PowerBooter is an automated
power model construction technique that uses built-in bat-
tery voltage sensors and knowledge of battery discharge be-
havior to monitor power consumption while explicitly con-
trolling the power management and activity states of indi-
vidual components [4]. AppScope, an Android-based energy
metering system that monitors application’s hardware usage
at the kernel level and accurately estimate energy consump-
tion is proposed in [5]. A tool to profile the energy usage of
applications is proposed in [6]. Finally, a new, system-call-
based power modeling approach that gracefully encompasses
both utilization-based and non-utilization-based power be-
havior is proposed in [8]. Besides software measurements,
MonSoon [9] provides accurate hardware-based measurement.
However, all these prior research in power modeling apply
to single-core smartphones.

The default scheduler for Linux kernel since the 2.6.23 re-
lease is CFS (Completely Fair Scheduler). Android kernel
uses CFS with slight changes to the CPU process scheduler
and time-keeping algorithms. Linux kernel also has a num-
ber of CPU frequency governors that vary CPU frequencies
based on certain criteria. The default CPU governor for An-
droid kernel 3.4.10 is OnDemand. This governor has a hair
trigger for boosting clock speed to the maximum speed set
by the user. If the CPU load placed by the user abates,
the OnDemand governor slowly steps back down through
the kernel’s frequency stepping until it settles at the low-
est possible frequency. The Performance governor locks the
phone’s CPU at maximum frequency aimed to maximize
performance. The Powersave governor on the other hand
locks the CPU frequency at the lowest frequency set by the
user aimed to minimize performance consumption.

3. POWER MEASUREMENT
Power measurement using external metering such as Mon-
Soon is expensive and require opening the battery compart-
ment, which is not allowed in newer smartphones. We pro-
pose a software approach that is simple to use and highly
accurate. Newer Android phones provide current and volt-
age information in system files that are regularly updated.
Current value is provided in the system file: /sys/classes/
power supply/battery/bat current now, and the voltage value
is provided in another system file: /sys/classes/power supply/
battery/bat voltage now. So, it is straightforward to mea-
sure power consumption by reading the current and voltage
values from these files and calculating the power (Power =
V oltage × Current). However, it is not clear how accurate
these current and voltage values in the system files are.

So, to assess the accuracy of power measurement using this
software approach, we developed an Android service to log
these values at regular intervals in a file. Android OS up-
dates both of these files regularly at the same time inter-
val. However, the time interval rate differs between differ-
ent hardware. The test phone we used was Google Nexus
One. The reason for using this phone is that it is easy to
open the battery chamber of this phone, and so it allows us
to compare the power measured via our software approach
with the power measured via the hardware approach such
as MonSoon, which has been shown to be highly accurate.
In Google Nexus One, the battery information is updated
nearly every 50 seconds. So, we logged the current and volt-
age values very minute for 30 minutes. In addition, we used
Agilent 34411 A Multimeter to measure the current draw.
To measure the voltage, we used a Fluke 45 Dual Display
Multimeter, in which the sense resistors are connected via
twisted-pair wiring. We wrote a program to control the two
instruments to sample data per minute and saved the cur-
rent and voltage values with time stamp in a second log file.

3.1 Accuracy of Software Approach
Power measurement using both the software approach and
the hardware approach was done at the same time. Fig-
ure 1 shows the values of voltages measured using the two
approaches. We can see that the range for the voltage is
3840mV to 3930mV . Average voltage value measured by
instrument is 3869.148mV while the average voltage value
measured by the software application is 3881.444mV . The
difference in the average voltage values is only 0.318%. Fig-

Application Usage details
Facebook Refresh new posts; Comment on new posts; view images and articles
Pandora Moderate volume; Shuffle play album

Facebook Pandora Run Facebook and Pandora at the same time
Candy Crush Normal play operations; Background music always on
Google Maps Search new places; Navigation simulation; Street view; Zoom in and zoom out operations

Youtube Play HD movie
MPEG Convertor Convert video from .avi to .mp4 format

Table 1: Usage details of applications. Wi-Fi connection is used in all applications

Figure 1: Accuracy of voltage value

ure 2 shows the values of current measured using the two
approaches. We can find that the range for the current is
110mA to 220mA. Average current value measured by the
instrument is 131.741mA, while the average current value
measured by the software application is 135.444mA. The
difference in the average current values is only about 5.322%.
Since these differences are quite low, we conclude that the
current and voltage information obtained from the system
files is quite accurate and we can use it for measuring the
overall power consumption in the smartphone.

Figure 2: Accuracy of current value

4. IMPACT OF NUMBER OF CORES
To understand the impact of running different number of
cores on the overall power consumption, we have experi-
mented with running a variety of applications and measuring
power consumption along with CPU load and performance.
Earlier research has shown that display, GPS and network
consume the most amount of power in smartphones. So, we
have chosen applications that use one or more of these com-
ponents quite extensively and are very popular at present
among Android phone users. In particular, we have chosen
seven applications: Facebook, Pandora, Facebook Pandora,
Candy Crush, Google Maps, YouTube and MPEG Conver-
tor. In all of our experiments, we used Wi-Fi connection for
all applications. Table 1 shows the details of the sequence
of actions for each of the seven applications that we used in

all experiments.

All experiments were done on HTC One developer edition,
which is quad-core and has 2 GB DDR2 RAM and 64 GB
storage. The Android version is 4.2.2 and the Kernel version
is 3.4.10. Current and voltage values are updated on this
phone every 50 ms, which is much higher than the update
rate on Google Nexus One. We mainly focus on application
performance and thread distribution using CPU load as the
main parameter. CPU load information is read from the
system file /proc/stat. We have reported the overall CPU
load resulting from all cores, ranging from 0.00 to 1.00.

4.1 Application Performance
We ran each application on one core, two cores, three cores
and four cores respectively. On-Demand governor was used
in each of these runs. We measured current, voltage, overall
CPU load, CPU load for each core, and power consumption.
Each application was run for five minutes and measurements
were taken every second. Table 2 shows the results of run-
ning Pandora. We can see that the voltage values decrease as
the number of online cores increases. However, current and
power values do not have this linear property. All other ap-
plications also provided similar behavior. For Pandora, the
least power consumption occurs under two-core scenario.

of online Current Voltage Power Overall
cores mA mV mW CPU load

1 504 4029 2034 0.10
2 491 3917 1922 0.127
3 551 3889 2143 0.16
4 625 3814 2385 0.18

Table 2: Power and CPU load for Pandora

Table 3 shows the CPU load and power consumption for each
application. Here, the top line for each application shows the
CPU load and the second line shows power consumption.
We can see that for Facebook, Pandora, YouTube, Face-
book Pandora and MPEG Convertor, power consumption is
lowest when using one or two cores. Power consumptions dif-
ference between one core and two core scenarios is relatively
small in these applications. However, for Google Maps, and
Candy Crush, power consumption is lower when running
three or four cores. We also notice that there is high cor-
relation between power consumption and overall CPU load.
Lower CPU load generally implies lower power consumption.

Based on this observation of high correlation between CPU
load and power consumption, our guiding scheduling prin-
ciple is: as the CPU load increases beyond some threshold

Application 1 core 2 cores 3 cores 4 cores
Facebook 0.10 0.12 0.13 0.127

2031 2014 2722 2403
Pandora 0.10 0.127 0.16 0.18

2034 1922 2143 2385
Facebook 0.129 0.133 0.184 0.201
Pandora 2705 2755 3187 3224
Candy 0.317 0.309 0.305 0.297
Crush 4598 4464 4387 3849
Google 0.353 0.334 0.314 0.29
Maps 5457 4917 4714 4090

Youtube 0.125 0.178 0.206 0.21
2760 2907 3103 3263

MPEG 0.134 0.145 0.166 0.171
Convertor 2322 2450 2441 2843

Table 3: CPU load and power for 7 apps. For each
app, top line: CPU load, bottom line: power (mW)

value, start a new core, and similarly, as the CPU load de-
creases below some threshold value, shut down one core. To
determine these threshold values, we need to take a closer
look at the relation between the number of cores, power
consumption and CPU load. One problem is that CPU load
caused by each application changes over the application du-
ration, i.e. an application may incur high CPU load at one
point in time and a low load at another point in time. To
determine the threshold values, we need an application that
exhibits steady CPU load variation with a user-controlled
knob to steadily increase or decrease the CPU load incurred.
We address this issue in Section 6.

5. POWER, PERFORMANCE AND USER
EXPERIENCE TRADEOFF

The proposed power management middleware needs to achieve
a balance among three important goals: minimizing power
consumed by the application, maximizing the performance
it exhibits and providing a good user experience. These
goals of course may conflict with one another. For example,
power consumed by an application is generally lowest when
the cores are run at the lowest frequency. However, running
cores at the lowest frequency worsens application perfor-
mance and may negatively impact user experience. So, it
is important to incorporate a tradeoff mechanism to achieve
an optimal balance among these three goals.

There are two important factors that have an impact on this
tradeoff: application type and current context. Application
type determines which of the three goals is more important
than the others. For some applications, such as gaming and
video streaming, user experience is the most important goal.
For such applications, the middleware tries to maintaimain-
tain a good user experience at minimal power consumption.
On the other hand, for high performance applications such
as mpeg encoding and FFT calculation, performance is the
most important goal. For such applications, the middle-
ware tries to maintain an acceptable performance at min-
imal power consumption. In addition, relative importance
of power, performance and user experience depends on at
least two contextual features: remaining battery level and
the expected time interval before the next charge. For ex-

ample, if the remaining battery level is low and the next
time to charge the phone is not too close, reducing power
consumption at the expense of application performance or
user experience is a reasonable tradeoff.

To arrive at an appropriate balance between power, perfor-
mance and user experience, our middleware incorporates a
balance factor. This balance factor can take one of seven
values: +3, +2, +1, 0, -1, -2, -3. Positive values mean
performance is more important and negative values mean
reducing power consumption is more important. A balance
factor of +3 means the performance is the most important
goal and the system must be configured to achieve the best
performance, no matter what the power cost is. On the other
hand, a balance factor of -3 means power consumption is the
most important goal and the system must be configured to
minimize power consumption, no matter what the perfor-
mance or user experience cost is. A value of +2 (or +1)
means that the performance is important, but up to 5% (or
10%) of the performance may be sacrificed if that helps in re-
ducing some power consumption. Similarly, a value of -2 (or
-1) means that reducing power consumption is important,
but up to 5% (or 10%) of power may be sacrificed if that
helps in improving some performance. Finally, a balance
factor of 0 means up to 10 % of power and performance may
be sacrificed. The choice of 5% or 10% is arbitrary, and can
be adjusted as needed. Compute a balance factor for an ap-
plication under a particular contexual scenario is discussed
in Section 7.4.

6. DESIGN AND IMPLEMENTATION
6.1 Optimal Number of Online Cores

CPU # of Power Performance
Load online cores (mW) (second)
0.02 1 967 5.13

2 1083 5.16
3 1064 5.09
4 1123 5.13

.

Table 4: Relation between CPU load, number of
cores, power and performance

To understand the relationship between total CPU load,
number of online cores, power consumed and performance,
we implemented a simple application that exhibits steady
CPU load throughout its run, and the value of this load is
user-controlled. This application consists of two nested loops
and has three parameters, loop counts for the two loops and
the number of threads created to execute these loops. These
three parameters can be adjusted to vary the CPU load from
2% to 100% in steps of 2%. In other words, there are fifty
versions of this application exhibiting CPU loads of 2%, 4%,
6%, ..., 100% respectively. For each CPU load ranging from
2% to 100%, we obtained power consumed and performance
exhibited if the application is run on one core, two cores,
three cores and four cores. The entire table is too large to
include here. Table 4 illustrates one entry of this table.

From this table, we calculated the optimal number of cores
for each CPU load and balance factor. For example, for a
balance factor of −3, the optimal number of cores for a given

Figure 3: Optimal number of online cores for differ-
ent balance factors and CPU loads

CPU load corresponds to the one that consumes least power
for that CPU load. For a balance factor of +3, the optimal
number of cores for a given CPU load corresponds to the one
that provides the best performance for that CPU load. For a
balance factor of −2 (or −1), the optimal number of cores for
a given CPU load corresponds to the one whose performance
is the best among those entries whose power consumption is
with in 5% (or 10%) of the least power consumed for that
CPU load. For a balance factor of +2 (or +1), the optimal
number of cores for a given CPU load corresponds to the one
whose power consumption is least among those entries whose
performance is with in 5% (or 10%) of the best performance
for that CPU load. Finally, for a balance factor of 0, the
optimal number of cores for a given CPU load corresponds
to the one where both the power onsumption and the perfor-
mance are with in 10% of the best power consumption and
best performance respectively. In a few cases, where there
is no such entry, we gradually increased the percentage by
one until we got an entry that satisfied this requirement.

Figure 3 illustrates the optimal number of online cores for
each CPU load and balance factor. We can see from this fig-
ure that the optimal number of online cores for each balance
factor starts at a lower number and generally increases as the
CPU load increases. For example, for balance factor of −3,
the optimal number of cores is one for CPU loads up to 46%,
two for CPU loads between 48% and 70%, three for CPU
loads between 72% and 82%, and four for CPU loads higher
than 82%. Similarly, for a balance factor or +3, the optimal
number of cores is generally three for CPU loads up to 38%,
and four for CPU loads higher than 38%. We also notice that
the optimal number of online cores for performance-oriented
balance factors (+3, +2 or +1) is higher than or equal to
the optimal number of online cores for power-oriented bal-
ance factors (−3, −2 or −1) for the same CPU load. This
is expected, since smaller number of online cores in general
result in lower power consumption but poorer performance.

Another observation we make is that the transition of the
optimal number of online cores to the next higher number
takes place at smaller CPU loads as we move from balance
factors −3 to +3. For example, this transition from one to
two cores for balance factor −3 occurs at 46− 48%, while it
occurs at 36−38% for balance factor −2, 32−34% for balance
factor −1, and so on. This is expected, since smaller number
of online cores in general result in lower power consumption
but poorer performance.

We expect that for any given balance factor, the optimal
number of online cores for a given CPU load will be higher
than or equal to the optimal number of online cores for a
lower CPU load. This holds true for almost all cases in
Figure 3 with a few exceptions. There are a few instances
in this figure where the optimal number of cores is actually
lower than the one for a lower CPU load, e.g. CPU load
52% and balance factor +3. Also, there are a few instances
where the optimal number of cores is actually higher than
the one for a higher CPU load, e.g. CPU load 64% and
balance factor −3. These are unexpected results. A closer
examination of these unexpected values shows that there is
very little difference (less than 1%) in power consumed or
performance from the optimal number of online cores for
adjacent CPU loads. For example, the performance value
for 52% CPU load for three online cores is 6.71 sec while
it is 6.69 sec for CPU load of 50% and four online cores or
6.73 sec for CPU load of 54% and four online cores. So, we
attribute these unexpected results to the slight variations in
operating conditions of different experiments.

Since there is some cost associated with bringing a new core
online or shutting off a current online core, we ignore these
unexpected transitions in order to minimize the number of
transitions as CPU load changes. Table 5 shows the optimal
number of online cores for different balance factors and CPU
loads, calculated from the results shown in Figure 3 and
ignoring the unexpected transitions.

Balance One Two Three Four
factor core cores cores cores

+3 <=38% >=40%
+2 <=18% 20% - 42% 44% - 58% >=60%
+1 <=28% 30% - 54% 56% - 72% >=74%
0 <=28% 30% - 54% 56% - 72% >=74%
-1 <=34% 36% - 60% 62% - 82% >=84%
-2 <=38% 40% - 60% 62% - 82% >=84%
-3 <=46% 48% - 70% 72% - 82% >=84%

Table 5: Optimal number of online cores for various
CPU loads and balance factors

6.2 Optimal Voltage Frequency
CPU Frequency Power Performance
Load Hz mW (second)
0.02 384,000 844 5.23

918,000 987 5.18
1,135,000 1033 5.08
1,728,000 1141 5.10

.

Table 6: Relation between CPU load, frequency,
power and performance

The next question is at what frequencies should each of these
online cores run? Clearly, this again depends on the value of
the balance factor and the current CPU load on each core.
A core in HTC One developer edition provides 14 different
frequencies, ranging from 384, 000 Hz to 1, 728, 000 Hz. To
understand the impact of frequency on power consumption
and performance, we followed a similar methodology as the
one we used in determining the optimal number of online
cores for different CPU loads and balance factor values. We

ran our application for CPU loads ranging from 2% to 100%
on a single core under four different frequencies: 384,000 Hz,
918,000 Hz, 1,350,000 Hz and 1,728,000 Hz. We chose these
four frequencies as they provide a good coverage of the over-
all range of frequencies available and are commonly used by
current CPU governors, including OnDemand, performance
and powersave governors. For each run, we measured power
consumption and performance. The entire table listing fifty
different values of CPU loads, four different frequencies for
each CPU load along with measured power consumption and
performance is too large to include here. Table 6 illustrates
some parts of this table. From this table, we calculated the
optimal frequency for each CPU load and balance factor.

Figure 4: Optimal frequency for different balance
factors and CPU loads

Figure 4 illustrates the optimal frequency for each CPU load
and balance factor. Comparing this figure with Figure 3, we
see that the variation of optimal frequency with increasing
CPU loads and different balance factors follows a similar
pattern as the variation of optimal number of online cores.
Table 7 shows the optimal frequencies for different balance
factors and CPU loads. This table is based on the results
from Figure 4 and ignoring the unexpected transitions.

Balance 384000 918000 1350000 1728000
factor Hz Hz Hz Hz

+3 <=38% >=40%
+2 <=18% 20% - 38% 40% - 58% >=60%
+1 <=28% 30% - 64% 66% - 82% >=84%
0 <=28% 30% - 56% 58% - 72% >=74%
-1 <=38% 40% - 60% 62% - 82% >=84%
-2 <=46% 48% - 58% 60% - 82% >=84%
-3 <=52% 54% - 70% 72% - 82% >=84%

Table 7: Optimal frequency for various CPU loads
and balance factors

6.3 Scheduling Mechanisms
We now propose three new scheduling mechanisms for multi-
core Android devices. Thees mechanisms are based on cur-
rent CPU load and balance factor, and dynamically change
the number of online cores as well as the frequency of each
online core to maintain a balance between power consump-
tion and performance. They operate in two stages. First,
based on the overall CPU load and balance factor, they
schedule the optimal number of cores to run using Table
5. Next, for each online core, they schedule the optimal fre-
quency using Table 7 based on the CPU load on that core
and the balance factor.

Threshold based scheduling: The first mechanism is
threshold based scheduling mechanism. This mechanism strictly
follows the optimal number of cores and optimal frequencies
of Tables 5 and 7. For example, suppose two cores are
online at present and the current CPU load goes to 44%
and the balance factor is +2. The threshold based schedul-
ing mechanism will bring in a third core online in this case.
On the other hand, if the current CPU load comes down to
18%, the scheduling mechanism will shut off one of the cur-
rent online core. A similar strategy is used for determining
the frequency for each online core based on the CPU load
on that core and the balance factor.

While this mechanism ensures that the number of online
cores is always optimal, there is a potential problem for
applications that exhibit frequent changes in CPU loads.
For such applications, the scheduler will result in frequent
core switching, which in turn will lead to increased power
consumption resulting from increased thread migrations be-
tween different cores. The next two scheduling mechanisms
attempt to reduce the number core switching while keeping
an optimal number of cores online.

Time interval based scheduling: The time interval based
scheduling mechanism relies on a preset time interval, time int.
For a given balance factor, whenever the CPU load crosses
one of the thresholds for a change in the optimal number
of cores, the middleware turns on or off a core only if the
CPU load remains in the new threshold interval for at least
time int time units. A similar strategy is used for determin-
ing the frequency for each online core based on the CPU
load on that core and the balance factor and a time interval.

Threshold interval based scheduling: The threshold in-
terval based scheduling mechanism relies on a preset thresh-
old interval, thresh int to prevent frequent core switching.
For a given balance factor, when the CPU load goes up, a
new core is turned on only if the CPU load crosses thresh-
old for a change in the optimal number cores plus thresh int.
Similarly, when the CPU load goes down, a core is turned off
only if the CPU load crosses a threshold value for a change
in the optimal number cores minus thresh int. A similar
strategy is used for determining the frequency for each online
core based on the CPU load on that core and the balance
factor and a threshold interval.

7. EVALUATION
Our evaluation of the three scheduling mechanisms consists
of three parts. First, time interval based scheduling and
threshold interval based scheduling mechanisms depend on
the values of time int and thresh int. We have conducted
several experiments to determine optimal values of these
thresholds. Second, we evaluate the three scheduling mecha-
nisms for individual applications with respect to the overall
power consumption and performance for various values of
balance factor. Finally, we explore the question of how to
compute an appropriate value of the balance factor for a
given application under various contextual scenarios.

7.1 Time Interval
Time interval based scheduling mechanism relies on time in-
terval time int. To determine an optimal time interval, we
experimented with four different time intervals. Since the

highest update rate for HTC One is 50 ms, we experimented
with time intervals of 50 ms, 200 ms, 500 ms and 1 second.
For each time interval, we ran the seven applications using
the time interval based scheduling mechanism for five min-
utes and recorded their power consumption with a balance
factor of zero. Figure 5 shows the power consumption for
seven applications under the four different scenarios.

Figure 5: Power consumption for different time in-
tervals

From this figure, we can see that the 200 ms time inter-
val results in the lowest power consumption among the four
time intervals. Also, we can already see that the time inter-
val based scheduling mechanism does result in saving power
when compared to the default Android scheduling mecha-
nism (See Table 3). Based of these results, we decided to
use time int = 200 ms for all our experiments.

7.2 Threshold Interval
Threshold interval based scheduling mechanism relies on the
threshold interval value threshold int. Based on Table 5, we
observe that a switch in the optimal number cores can occur
over a CPU load difference of as low as 15%, which means
there would be overlap if we set the threshold interval to
be more than 7.5%. So, we experimented with threshold
intervals of 1%, 3%, 5%, and 7% to avoid this overlap. For
each threshold interval, we ran the seven applications using
the threshold interval based scheduling mechanism for five
minutes and recorded their power consumption for a balance
factor of zero. Figure 6 shows the power consumption for
seven applications under the four different scenarios.

Figure 6: Power consumption for different threshold
intervals

From the figure, we can see that the 5% threshold inter-
val results in the lowest power consumption among the four
threshold intervals. Also, we can already see that the thresh-
old interval based scheduling mechanism does result in sav-
ing power when compared to the default Android scheduling

mechanism (See Table 3). Based of these results, we decided
to use thresh int = 5% for all our experiments.

7.3 Scheduling Mechanisms Evaluation
We have measured power consumption from running the
seven popular applications under the three scheduling mech-
anisms for all values of balance factors. To get a better
fine-grained understanding of our three schedulers, we have
experimented with two variations. In variation one, we mea-
sured power consumption for each application under the
three scheduling mechanisms when each of these schedul-
ing mechanism schedule the optimal number cores but the
frequency of each core is determined by the OnDemand gov-
ernor. In variation two, we measured power consumption
for each application under the three scheduling mechanisms
when each of these scheduling mechanisms schedule the opti-
mal number cores as well as the optimal frequency for each
core. For comparison purposes, we also ran each of these
applications using the default OnDemand governor, Perfor-
mance governor and the Powersave governor.

Results are shown in Figures 7 and 8 for Facebook, Candy
crush, Google Maps, YouTube, Pandora and MPEG con-
verter. In both of these figures, the three horizontal lines
show the power consumption under OnDemand governor
(middle horizontal line), Performance governor (upper hor-
izontal line) and the Powersave governor (lower horizontal
line). The three vertical bars for each balance factor show
the power consumption under variation two (optimal num-
ber of core and optimal frequency) of the three scheduling
mechanisms. Finally, the symbols on top of each bars that
are connected using lines show the power consumption un-
der variation one (Optimal number of cores and OnDemand
governor) of the three scheduling mechanisms.

The first important observation we make is that the three
scheduling mechanisms provide significant reduction in power
consumption compared to the current state of the art sched-
ulers on Android. Even compared to the Powersave governor
that provides the lowest power consumption in Android to-
day, all three proposed scheduling mechanisms consume less
power when balance factor is −3. Similarly, if the perfor-
mance is important (balance factor +3), the three proposed
scheduling mechanisms result in significantly lower power
consumption than Performance governor. Table 8 provides
the range of power savings for the seven applications as the
balance factor is varied from +3 to −3 compared to the
power consumption under OnDemand governror. We can
see that maximum power saving is as high as 40.5%. How-
ever, it is important to note that this power saving comes
at a cost to the application performance or user experience.
This issue is further evaluated in the next subsection.

The second important observation we make is that both
stages of the three scheduling algorithms, scheduling of opti-
mal number of online cores in the first stage and scheduling
optimal frequency in each online core in the second stage
contribute to power saving. This is true for all values of
balance factors in all applications. The third important ob-
servation we make is that both the time interval based and
the threshold interval based scheduling mechanisms provide
higher power savings than threshold based scheduling mech-
anism. This indicates that there is power cost associated

Figure 7: Power consumption in Facebook (left), Candy Crush (middle) and Google Maps (right). Horizontal lines:

Performance governor (upper), OnDemand governor (middle), Powersave governor (lower); Lines joined by dots:

Schedulers (Optimal # cores only); Vertical bars: Schedulers (Optimal # cores and optimal frequencies).

Figure 8: Power consumption in YouTube (left), Pandora (middle) and MPEG Converter (right). Horizontal lines:

Performance governor (upper), OnDemand governor (middle), Powe rsave governor (lower); Lines joined by dots:

Schedulers (Optimal # cores only); Vertical bars: Schedulers (Optimal # cores and optimal frequencies).

OnDemand Threshold Time Threshold

Application governor based Interval Interval

mW % % %
Facebook 1950 0.1 - 25.2 1.7 - 31.1 1.9 - 32.3

Pandora 2600 -2.7 - 28.7 0 - 32.4 -0.2 - 35

Facebook

Pandora 2750 2.5 - 25.3 4.5 - 28.8 3.0 - 31.1

Google

Maps 4500 2 - 33.7 3.3 - 37.1 3.1 - 38.8

Candy

Crush 3512 5.8 - 27.6 0.4 - 33 6.4- 35.7

Youtube 2936 0.4 - 34 2.9 - 35.9 1.5 - 40.5

MPEG

Convertor 2450 2.7 - 35 4.2 - 39 8 - 39

Table 8: Percentage range of power consumption
savings from the three scheduling algorithms over
default Android scheduler for seven applications

with bringing in new cores online or taking cores offline. For
most cases, the threshold interval based scheduling mech-
anism consumes slightly lower power than the time inter-
val based scheduling mechanism. However, this difference
is quite small, and in fact the time interval based schedul-
ing mechanism does consume less power in a few cases. So,
based on our current experiments, there isn’t suffcient evi-
dence to definitely choose one mechanism over the other.

Finally, power savings is different for different applications.
For example, there is greater power saving in case of Google
Maps than Candy Crush. This is related to the variance
in the CPU load as an application runs. When the CPU
load changes frequently as an application is running, the

new scheduling mechanisms ensure that the number of on-
line cores is always optimal and the frequency of each online
CPU remains optimal, resulting in increased power savings.
When the CPU load is steady, switching between different
number of cores or frequencies is not needed as frequently.
Thus the power saving is relatively low for such applications.
It is interesting to note that even for applications such as
Candy Crush where the CPU load is mostly steady, the new
scheduling mechanisms save significant power 27.6%. This
indicates that the default Android scheduler does a poor job
in allocating the optimal number of cores even for applica-
tions that have relatively steady CPU load.

7.4 Balance Factor
We now consider the issue of balance factor. The key ques-
tion is how do we determine a reasonable value of the balance
factor for a given application being used under a specific
context. Among the seven applications that we have ex-
perimented with, performance is likely the most important
goal for Mpeg converter, while user experience is the most
important goal for Facebook, Candy crush, Google Maps,
YouTube, Pandora and Facebook+Pandora. So, to deter-
mine the right balance factor for these applications, we need
to look at the performance exhibited by Mpeg under the
seven different balance factor values, and user experience
for the other applications under the seven different balance
factor values.

Figure 9 shows the performance of Mpeg converter for differ-
ent balance factors under the three scheduling algorithms.
The test converts one 4-min, 4.64 MB avi format file to mp4
format. For comparison purposes, we also measured the per-
formance of this application using the Performance governor
(horizontal line in Figure 9). The three vertical bars for each

Figure 9: Performance of Mpeg converter for differ-
ent balance factors under the three scheduling alo-
gorithms

balance value in this figure show the power consumption un-
der the three scheduling mechanisms. We can see from this
figure that all three scheduling mechanisms with balance
factor +3 provide better performance than the performance
governor. The threshold interval based scheduling mecha-
nism provides the best performance in this case. Further-
more, from Figure 8, we can see that the power consumption
under all three scheduling mechanisms is much lower than
the power consumption under performance governor for bal-
ance factor of +3.

To understand the impact of our scheduling mechanisms on
user experience, we conducted a user study among 35 smart-
phone users. Each user installed our middleware and ran
seven applications under four different scheduling mecha-
nisms (default OnDemand governor, Threshold based sched-
uler, Time Interval based scheduler, and Threshold Interval
based scheduler). For our three schedulers, users ran each
application for seven different values of balance factor. Thus,
each user ran a total of 156 apps. After running each appli-
cation, each user filled out a survey form (See Table 9 for a
sample survey form). For Facebook, we mainly focus on the
response time, for YouTube and Pandora, we mainly focus
on the loading time, and for Google Maps and Candy Crush,
we focus on both loading time and response time.

Scheduler Balance factor
Apps Loading Time Response Start
Facebook in one second immediately cold

1 to 3 seconds noticeable delay warm
> 3 seconds stuck hot

Pandora in one second immediately cold
1 to 3 seconds noticeable delay warm
> 3 seconds stuck hot

...
Maps in one second immediately cold

1 to 3 seconds noticeable delay warm
> 3 seconds stuck hot

Table 9: Survey form for each scheduler and each
balance factor for different applications

The entire survey results are too large to fit in the paper.
Here we report a summary of our findings. The survey re-
sults showed that even though we can save significant power
with balance factor −3, the performance in most cases was

unacceptable. The loading time for YouTube and Pandora
was much longer than 3 seconds, and there was a noticeable
delay for Facebook. The Google Maps was totally stuck.
However, for the balance factor −2, the loading times were
less than one second for YouTube and Pandora, and there
was no delay for Facebook. But there wass still a noticeable
dalay for Google Maps and Candy Crush. For the balance
factor −1, there was no delay in any application.

Balance Ondemand Threshold Time Threshold
factor governor based Interval Interval

(mW) (%) (%) (%)
Facebook 1950 0.1 - 20.7 1.7 -23 1.9 - 22.7
Pandora 2600 -2.7 - 22.2 0 - 23.3 -0.2 - 23.1
Facebook
Pandora 2750 2.5 - 21.1 4.5 - 23.8 3.0 - 23.1
Google
Maps 4500 2 - 23.3 3.3 - 25.1 3.1 - 24.5
Candy
Crush 3512 5.8 - 18.6 0.4 - 20.1 6.4- 19.7

Youtube 2936 0.4 - 22.5 2.9 - 23.9 1.5 - 23.5
MPEG

Convertor 2450 2.7 - 21.4 4.2 - 24.0 8 - 23.4

Table 10: Percentage range of power consumption
savings from the three scheduling algorithms over
default Android scheduler for seven applications
with acceptable performance or good use experience

Based on the survey results, we have identified values of
balance factor for each application under which the perfor-
mance or user experience is acceptable. Table 10 provides
the overall power savings over the OnDemand governor for
these balance factor values. We can see from the upper end
of the percentage ranges of savings in this table that the
three scheduling algorithms can save as much as 18 - 25%
power, while ensuring that the performance or the user ex-
perience remains acceptable.

We now consider the impact of current context on determin-
ing a right value of balance factor for an application. We
consider two contextual features, remaining battery power
and the expected time to charge the phone next. We con-
sider three possible values of remaining batter power: less
than 30%, between 30% and 60%, and greater than 60%.
Similarly, we consider two possible values of the expected
time to charge the phone next, “soon” and “not so soon”.
Here “soon” implies that the charging facilities are immedi-
ately available, e.g. the user is in or close to his/her home
or office. “Not so soon” implies that the user may not be
able to charge his/her phone for at least another hour.

Table 11 provides suggestions for the appropriate values of
balance factor for different types of applications under dif-
ferent contexts. These suggestions are based on the results
reported in Table 10 and how critical the available power sit-
uation is in the smartphones. If the user can charge his/her
phone soon, the remaining battery power has no impact on
balance factor value. Otherwise, the choice of balance fac-
tor progressively moves towards increased power savings (to-
wards −3) as the remaining battery power is reduced.

Application Next Charge / Available Battery
Type Soon / NA Not soon / < 30% Not soon / 30-60% Not soon / >60%

Video streaming +1 -1 0 +1
Audio streaming 0 -1 -1 0

Games +1 -1 0 +1
Navigation +2 -2 0 +2

Web browsing -1 -2 -1 -1
High Performance 0 -2 -1 0

Table 11: Suggested balance factors for different types of applications under different contexts

8. CONCLUSION AND FUTURE WORK
Power management in smartphones is a key issue that re-
quires balancing three important goals, reducing power con-
sumption, maximizing application performance and provid-
ing good user experience. With mobile device transition
to multicore architecture, this paper addresses the issue of
power management in multicore smartphones via a mid-
dleware layer that dynamically schedules optimal number
of cores running at optimal frequencies to realize a good
tradeoff between power consumption, performance and user
experience. A prototype evaluation on Android HTC One
smartphone shows that the proposed scheduling mechanisms
result in significant power savings over the default Android
scheduling mechanisms while ensuring good performance and
user experience. These power savings hold across a range of
popular smartphone applications.

Our first future direction is related to balance factor. In this
paper, our choice of balance factor ranging from −3 to +3
and the meaning of each balance factor value are arbitrary.
There are several issues that need to be considered here.
How does a shorter or longer range of balance factor impact
finding an appropriate balance factor value for a given ap-
plication running under a particular context? What impact
does it have in managing power consumption? Another is-
sue related to balance factor is that its value is related the
application. This poses a problem when multiple applica-
tions with different requirements are running at the same
time, e.g. Mpeg converter where performance is an impor-
tant goal and Pandora where user experience is an important
goal. What should be the right balance factor in this case?
We plan to conduct additional experiments with different
ranges of balance factor and also conduct additional user
studies to address these issues. Finally, our current sched-
ulers operate in two stages. An interesting question is can
these two stages be combined so that a decision about the
optimal number of cores and optimal frequency for each core
is taken in one step based on the CPU load and balanced
factor, and will this result in additional power savings? We
plan to explore this approach in our future work.

9. REFERENCES
[1] The Benefits of Multiple CPU Cores in Mobile Devices.

NVIDIA Whitepaper.
[2] C.H. (Kees) van Berkel. Multi-Core for Mobile Phones.

DATE ’09 Proceedings of the Conference on Design,
Automation and Test in Europe, Pages 1260-1265

[3] A. Carrol and G. Heiser. An analysis of power
consumption in a smartphone. USENIX ATC, 2010.

[4] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z.
Mao, and L. Yang. Accurate online power estimation
and automatic battery behavior based power model

generation for smartphone. CODES+ISSS, 2010.
[5] C. Yoon, D. Kim, W. Jung, C. Kang, H. Cha.

AppScope: Application energy metering framework for
Android smartphones using kernel activity monitoring.
USENIX, 2012.

[6] J. Flinn and M. Satyanarayanan. Powerscope: A toolfor
profiling the energy usage of mobile application.
WMCSA, 1999.

[7] M. Dong and L. Zhong. Self-constructive high-rate
system energy modeling for battery-powered mobile
system. MobiSys, 2011.

[8] A. Pathak, Y. Hu, M. Zhang, P. Bahl, and Y. Wang.
Fine-grained power modeling for smartphones using
system call tracing. EuroSys, 2011.

[9] Monsoon power monitor.
http://www.msoon.com/LabEquipment
/PowerMonitor/.

[10] CPU Load Calculation.
http://www.linuxhowtos.org/System/procstat.html

[11] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha.
Non-instrusive and online power analysis for
smartphone hardware components. Technial Report.
MOBED-TR-2012-1, Yonser University, 2012.

[12] Robert Basmadjian, Hermann de Meer. Evaluating
and Modeling Power Consumption of Multi-Core
Processors. ACM, 2012.

[13] Thomas Hubbard, Rainmondas Lencevicius, Edu
Metz, Gopal Raghavan. Performance Validation on
multicore Mobile Devices. Verified Software: Theories,
Tools, Experiments, Pages 413 - 421

[14] Sangwook Kim, Hwanju Kim, Jongwon Kim, Joonwon
Lee, Euiseong Seo. Empirical Analysis of Power
Management Schemes for Multi-core Smartphones.
ICUIMC ’13 Proceedings of the 7th International
Conference on Ubiquitous Information Management
and Communication, January 2013

[15] Marius Marcu, Dacian Tudor, Sebastian Fuicu, Silvia
Copil-Crisan, Florin Maticu, Mihai Micea Power
Efficiency Study of Multi-threading Applications for
Multi-core Mobile Systems. WSEAS TRANSCATIONS
on COMPUTERS, Issue 12, Volume 7, December 2008

[16] Minyong Kim ; Joonho Kong ; Sung Woo Chung An
online power estimation technique for multi-core
smartphones with advanced display components
Consumer Electronics (ICCE), 2012 IEEE International
Conference, January 2012

[17] T. Mudge Power: A first class architecture design
constraint. IEEE Computers, 34(4):5258, April, 2001

[18] Weiser, Mark and Welch, Brent and Demers, Alan and
Shenker, Scott Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation, 1994

[19] Z. Mwaikambo, A. Raj, R. Russel, and J. Schopp
Linux kernel hotplug CPU support. In In Proceedings
of the Ottawa Linux Symposium, 2004.

[20] Liang, Y., P. Lai, and C. Chiou An energy
conservation DVFS algorithm for the android operating
system. IJournal of Convergence 1.1, 2010.

