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Abstract 

A Smart Grid combines the use of traditional technology with innovative digital solutions, making the management of the 

electricity grid more flexible. It allows for monitoring, analysis, control and communication within the supply chain to 

improve efficiency, reduce the energy consumption and cost, and maximize the transparency and reliability of the energy 

supply chain. The optimization of  energy consumption in Smart Grids is possible by using an innovative system based on 

Non Intrusive Appliance Load Monitoring (NIALM) algorithms, in which individual appliance power consumption 

information is disaggregated from single-point measurements, that provide a feedback in such a way to make energy more 

visible and more amenable to understanding and control. We contribute with an approach for monitoring consumption of 

electric power in households based on  both a NILM algorithm, that uses a simple load signatures, and a web interactive 

systems that allows an active role played by users. 
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1. Introduction 

Nowadays the need to both solve environmental problems 

and cope with the exhausting of traditional fossils  has 

forced many countries and organizations (e.g. the 

European Community) to put in their political agenda the 

energy problem. In this context to find a sustainable 

solution it is needed to combine three different strategies: 

energy saving, efficiency and renewable energies. On the 

other hand the great development of ICT technologies has  

drawn the attention of many researchers on the 

development of smart grids as a hardware and software 

structure that can allow the actuation of the energetic 

strategies. Smart grids are so complex and varied that a 

unique definition is needed. 

 

The Organization for Economic Cooperation and 

Development (OECD) beholds Smart Grid in two 

perspectives [1]. From a solution perspective, the smart 

grid is characterized by:  

 More efficient energy routing and thus an 

optimized energy usage, a reduction of the 

need of excess capacity and increased power 

quality and security. 

 

 

 

 Better monitoring and control of energy and 

grid components. Improved data capture and 

thus an improved outage management. 

 Two-way flow of electricity and real-time 

information allowing for the incorporation 

of green energy sources, demand-side 

management and time market transactions. 

 Highly automated, responsive and self-

healing energy network with seamless 

interfaces between all parts of the grid; 

From a technical components' perspective, the main 

components of a smart grid are: 

 New and advanced grid components. 

 Smart devices and smart metering. 

 Integrated communication technologies.  

 Decision support systems and human 

interfaces. 

 Advanced control systems. 
In this continuously evolving system the user becomes 

the protagonist through the use of electronic devices 
which makes transparent consumption, encourages his 
active participation in the energy market, promotes a 
rational use of energy. 
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Commercial solutions to improve the management of 
energy demand have centered on the deployment of smart 
meters and in-home energy displays that can provide 
whole-house real-time energy monitoring and dynamic 
pricing from suppliers in order to motivate users to shift 
or reduce their energy consumption [2]. 

A number of countries and regions are deploying new 
electricity metering, and its introduction is being 
accelerated by legislation: in the European Union the 80% 
of households will have a smart meter by 2020. Austria 
and Switzerland commissioned a bi-national study on the 
topic “Smart Metering Consumption” [14]. The study, 
completed in 2012, assessed the energy used by existing 
and planned metering, to better understand the impact of 
implementing large scale roll out of smart metering, and 
to estimate the own energy consumption required for the 
operation of this infrastructure. In 2012 study on Smart 
Metering Infrastructure (SMI) was completed and 
presented by Austria and Switzerland to the 4E ExCo as 
well. The study included two major topics namely, Smart 
Metering Consumption (SMC) and Non Intrusive Load 
Monitoring System (NIALM). The term NILM is 
sometimes also used for NIALM. 

The domestic energy monitoring infrastructure planned 

today will be set for decades, millions of smart meters 

will be deployed, and the associated energy consumption 

will be fixed with the technology and architecture chosen 

for these systems. However, end-users at household level 

have often been excluded from this energy efficiency 

optimization process: they have traditionally held a 

passive role in issues related to energy savings although it 

rests on them to decide the amount of energy to consume 

and how to utilize it. As a result, it is quite evident that 

consumers also need to be active players in this process 

and research suggests that users are willing and capable to 

adapt their behaviour to energy saving practices if the 

necessary feedback, support and incentives are given [3]. 

The increasing concern about the impact of energy usage 

on the environment as well as the rise of energy costs are 

arguably the main factors that encourage customers to 

look for ways of decreasing consumes. 

Nevertheless, the major difficulty is the lack of 

information about day-to-day activities; for instance, 

energy bills, which are usually received at the end of each 

month, cannot be used to distinguish the effects of 

individual actions or to obtain meaningful feedback about 

the effectiveness of users’ change of habits [4][5]. Such 

problems need innovative feedback mechanisms with 

greater transparency about the consumption at any time 

and the associated cost that can potentially improve 

energy savings practices. Current trends in the 

development and convergence of ICT and energy 

networks are ushering a range of possibilities in areas 

such as residential energy monitoring (measuring, 

processing and providing feedback in near-real-time), 

context-aware application and activity detection [6]. 

In this paper we present an overall ICT architecture for 

energy consumption awareness: data about energy 

consumption collected in users' homes are sent to a 

service provider site that, after disaggregating and 

processing them, allows a user friendly representation of 

energy consumption providing the user with a direct 

feedback about his habits and distribution of consumption 

among his appliances. 

Within this architecture, one important software module is 

related to a Non Intrusive Appliance Load Monitoring 

(NIALM) algorithm, in which individual appliance power 

consumption information is disaggregated from single-

point measurements, that provide a feedback in such a 

way to make energy more visible and more amenable to 

understanding and control. One of the main contribution 

of this work is a new and simple algorithm for 

disaggregating the overall consumption into individual 

appliance. The rest of the paper is organized in the 

following way. Section II describes the overall system 

architecture. In Section III basic NIALM concepts are 

presented. In section IV numerical analysis of 

experimental results are discussed. Then in section V, the 

SEEE project along with on field experimental tests are 

presented. Finally we draw some conclusions and propose 

future development in Section VI.  

2. System architecture 

In this Section the overall architecture of the system is 

presented. In the envisaged scenario, energy consumption 

data coming from users’ homes are sent to a service 

provider where data are appropriately processed in order 

to give users detailed information about their energy 

consumption habits. The overall architecture, shown in 

Figure 1, is broken down into three main subsystems: 

 

- Local monitoring subsystem: it is composed of a 

power meter installed at the user’s home, where 

it measures the global energy consumption of the 

user (along with other energy parameters) and a 

network device able to communicate the 

measured data to the central monitoring 

subsystem by means of a common Internet link. 

- Central monitoring subsystem: it is the core of 

the system, where all the processing takes place. 

It has all the software components required to 

process the data coming from the power meters, 

to execute the NIALM algorithms, to store 

processed data on an appropriate DBMS, and to 

generate a graphical data presentation for the end 

user. 

- User presentation: being typically a web-based 

interaction, it does not require any special 

prerequisites on the user side allowing, among 

other things, to access the system wherever they 

may be (after a suitable authentication). 
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The logical architecture of the Central monitoring 

subsystem is represented in Figure 2 

It is composed of several modules providing the following 

features: 

 Data communication: it is the module that 

manages the communication with the Local 

monitoring systems and deals with the store of 

measured data into the Raw DB. The protocol 

used to get the measured data is the 

Modbus/TCP, which allows to directly query the 

measurement device over an IP network. 

 NIALM module: by means of a novel NIALM 

algorithm, it is able to perform a workload 

characterization that disaggregates the global 

energy consumption of the appliances. Details on 

the behavior and the algorithm executed by this 

module will be given in section III. 

  Data Management and Persistence: it manages 

data persistence and controls data access for the 

purpose of historical data analysis and 

presentation to the end user. Three different 

databases are used: 

o Raw DB: it stores the raw data coming 

from the local monitoring systems; 

these are the input data for the NIALM 

module; 

o Processed DB: it stores  the results 

produced by the NIALM module; it also 

contains intermediary information 

generated by the system’s business 

logic; 

o User configuration management: this 

module contains users related data, such 

as information about their appliances 

and their configurations, users’ 

feedback, and so on. 

 Business logic: it is the module containing the 

logic needed to process data and generate the 

useful information to be presented to the home 

user; 

 Presentation layer: this layer is responsible for 

presenting the home user with the required 

information. It is equipped with a simple and 

effective web interface. Through the web 

interface users may also provide "feedbacks" 

regarding their consumption habit, thus 

proactively interacting with the system in order 

to improve the behavior of the NIALM 

algorithm. 

 Billing system interaction: this module manages 

the interaction with the billing system of the 

energy provider. It retrieves information about 

the provider’s cost of energy and transforms the 

users’ data related to energy consumption 

(measured in Watt) into an actual cost. 

A simplified view of the information model used within 

the software architecture is represented in UML class 

diagram depicted in Figure 3. 

 

 
 

Figure 2 Software architecture 

 

In the diagram entities, mutual relationships and 

relationships’ cardinalities were modelled; entities-roles 

are briefly explained in the following: 

- User: it models the information associated to the user 

(authentication information included). 

- Power Meter: this entity models the measurement 

device installed at the user’s home.  

- Device: this entity models a generic device 

consuming energy (appliance). It is characterized by 

some energy parameters that constitute its signature 

load. 

- Category: devices are grouped into categories, in 

order to allow for simple filtering and compact 

visualization by users. 

- Device energy consumption: this entity stores all the 

consumption data associated to a device obtained 

from the NIALM algorithm. 

- State: it represents the state of the device. 

Service provider 
(Central monitoring 
subsystem) 

User home 
(Local monitoring 

subsystem) 

Measurement 
device 

User 
(Presentation subsystem) 

Figure 1 Overall system architecture 
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- Global raw data: this entity is needed to store the 

global consumption data and associated 

measurements produced by the Power Meter and 

locally stored into the RawDB. 

 

 
 

Figure 3 Information Model 

3 The NIALM concept 

Non-intrusive methods are intended to offer installation 

simplicity and the ability to distinguish important load 

changes measurements at a central monitoring point [7]. 

Researchers at MIT were the early users of this 

technology to monitor residential and commercial end-

user loads [8]. 

In the proposed method, the operating states of given 

appliance are determined by identifying moments where 

its active and/or reactive power consumption 

measurements change from one nearly constant or steady-

state value to another one. These steady-state changes 

usually correspond to the appliance either turning on or 

turning off and they are characterized by a magnitude 

value and a sign (in active and/or reactive power (±∆P, 

±∆Q)). 

 

 
 

Figure 4 Overview diagram of the NILM algorithm 

 

In Figure 4 the main structure of the NILM algorithm is 

presented. The output is the status of each appliance, 

whereas the input can be classified as follows: 

 Measurements: it contains the information 

coming from the local monitoring subsystem 

(e.g. voltage, current, active and reactive  power, 

total harmonic distortion and so on). 

 Status0: it is the daily initial status of all 

appliances. 

 Appliance Data: it contains information about 

type and signature of loads, mainly rated active 

(P) and reactive (Q) power. It is worth 

mentioning that the initial information about 

loads can be obtained only from data in 

nameplates or in technical documentation 

provided by the manufacturer. 

 Parameters: the NILM algorithm needs some 

parameters that are somehow correlated with the 

set of appliances.  

The NILM program is written in the Matlab programming 

language and its behavior is described by the flowchart 

depicted in [9]. Measurements have to be preprocessed 

before entering the NILM algorithm: this data treatment 

aims to smooth out small or erratic variations in the total 

demand signal. This preprocessing consists mainly in P 

and Q linearization. It performs also filtering of spikes 

and low frequency noise. Filtered signals consist of 

piecewise line where each positive or negative demand 

drop is more likely to represent a significant ON or OFF 

signal. The algorithm compares each change in the global 

P signal to each rated power appliance. If the magnitude 

of the change is greater than the rated power of an 

appliance the change is attributed to that appliance. If 

there are more than one candidate that can generate the 

same power drop, a new comparison in change in the Q 

global signal is applied. So as matter of fact, the proposed 

algorithm uses only power analysis to characterize the 

signature of electric appliances. 

Although this method achieves an estimated detection 

accuracy of about 70%, it is possible to improve these 

results by an effective interaction with customers.  

4 Numerical Results 

The robustness of the disaggregation algorithm has been 

tested both numerically and experimentally. Specifically, 

in this section, the function, that randomly generates 

different and controlled load profiles is described. The 

main parameters that need to be set to generate a load 

demand profile are: the number of the appliances (na) and 

the number of samples (ns), as well as deltaT, which is the 

minimum number of samples between a switch on and a 

switch off of an appliance. In this numerical analysis 

these parameters assume the following values:  

na = 10, ns = 500 and deltaT = 2. 
For sake of simplicity, in this numerical analysis, only 

ON-OFF appliances are chosen, whereas in the proposed 
NIALM algorithm also multi-state loads are considered. 

Figure 5 shows an example of a generated global load 

profiles, active and reactive power. 

Device User

Category

Power

Meter

Global

Raw data

Device

Energy 

consumption
State

*

1

1 11

1

1
1

1
*

*
*
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Figure 5 Global generated load profiles: active power 

(solid red line) and reactive power (dashed blue line) 

 

This function also generates some data sets containing 

useful information to run the disaggregation algorithm. 

Further, the program provides the load profiles for each 

appliance in such a way that it will be possible to compare 

the profiles coming from disaggregation to the real ones. 
There are many factors that significantly affect the 

efficiency of the disaggregation algorithm, such as: 
measurement accuracy of power meters (normally ± 1% 
f.s. and + - 0.25 f.s.), electrical characteristics of the 
customer’s appliances, and, finally it is related to actions 
that can fulfill the users. 

Related to the appliances electrical characteristics there 
are two important aspects that impact greatly the 
effectiveness of disaggregation: the first one is connected 
with the nominal power of appliances. In fact when in a 
domestic dwelling, there are appliances whose rated 
powers are too small or close each other, considering a 
given power threshold (e.g. 4 W), the efficiency tends to 
decrease. The second one is linked with the simultaneous 
switching on and/or off of two or more appliances. 

In [12] a similar approach is adopted to evaluate the 
robustness of a NIALM algorithm, the following disturbs 
are considered: variation of the rated power of appliances 
(due to variation of frequency and voltage) and unknown 
not stored appliances. 

In this context two indices that characterize a given 
group of appliances have been defined, that is KGP and 
DgP. 

 

min

_
P

P
KG

Lim DeltaP


    (1) 

 
Where: 

- Pmin is the smallest value among the rated power of  
appliances belonging to a given group;  

- Lim_DeltaP is a parameter, i.e. 4W, it is a threshold for 
the detection of the switching events. 

 

 min , 1,2,....,P i j aDg P P wherei j n       (2) 

 

DgP is the smallest value among the values obtained from 

the differences between the rated power of i-th and j-th 

appliance. Similar indices have been defined for the 

reactive power, KGQ and DgQ.  

Finally it has been introduced another index, named 

global number of simultaneous switching – GNSS. Given 

a certain period of time, for example a day, it is equal to 

the number of samples characterized by simultaneous 

switchings, nss, by the number of the involved appliances 

nca [13]. 

 

GNSS        
   
       (3) 

 

A numerical calculation of KGP and DgP has been 

performed referring to the load profiles shown in Figure 

5, and the results are reported in Table 1. The value 

reported in red is Pmin in (1). 

 

Table 1 Rating of appliances and global indices 

 
Appliance 

number 
Rating  

KGP 

 

DgP 
 

P(W) Q(var) Cos(ᵠ) 

1 86 87.73 0.70    

2 64 99.75 0.54   

3 17 25.81 0.55   

4 25 15.49 0.85 4.25 2 

5 29 32.13 0.67   

6 86 114.16 0.60   

7 91 153.48 0.51   

8 50 46.81 0.73   

9 62 87.07 0.58   

10 77 30.43 0.93   

TOTAL 587 692.86 0.65  

 

The graphical results of the  disaggregation algorithm, 

described in [9], are reported in Figure 6 where the global 

profile generated, named Pgg, is shown in red and the 

global profile coming from the application of the 

disaggregating algorithm, named Pgd, is shown in blue. 

 

 
Figure 6 Global load profile Pg: Pgg- generated (dashed 

red line) and Pgd- disaggregated (solid blue line). 

 
The efficiency of the NILM algorithm must be evaluated 
quantitatively [10]; in this context two efficiencies have 
been defined . 

The first efficiency is based on the different, sample by 
sample of the generated and disaggregated global power 



EAI Endorsed Transactions on Energy Web 
12 2014 | Volume 1 | Issue 3 | e4 

G. M. Tina et al. 

6 

[9] [11]. In (4) only the active power efficiency is shown, 
but the reactive power efficiency has a similar definition. 

   

 

1

1

s

s

n

gd gg
i

p n

gg
i

P i P i

P i

 











    (4) 

Where: 

i is the i-th sample; 

ns is the number of time samples; 

Pgd is global disaggregated load profile; 

Pgg is global generated load profile. 

Due to compensation phenomena it can be happen that p 
can be very high (e.g 80% ÷ 90 %), but the profiles of the 
single appliance can be wrong. This is the reason why 
another efficiency, based on the state errors, has been 

introduced, that is s, the definition is:  

 

 , ,
1 1

1

1
( ), ( ) *

a s

a

n n

g j d j j
sj i

s n

j
j

xor SSA i SSA i P
n

P


 



     
    
    



 



 (5) 

Where: 

j is the j-th appliance; 

na is the number of appliances; 

Pj is the rated power of jth appliance 

SSAg,j(i) and SSAd,j(i) are logical values, that indicate the 
states of the appliance j at time i.  

The logical operation xor allows to have a value equal to 
one when SSAg,j(i) and SSAd,j(i) assume the same values 
(that can be either 0 or 1). 

To evaluate how the disaggregation algorithm works with 

different set of appliances, charaterized by the two indices 

Dgp and KGp, twenty sets of appliances have been 

generated and the global profiles disaggregated. The 

results are reported in [13], where it is shown also that a 

NIALM approach based only on P and Q load signatures 

is not sufficient to reach very high efficiency in the load 

disaggregation.  

5 SEEE project and on field validation tests 

A project named SEEE (Systems Efficiency for Energy 

Emancipation), whose partners are the department DIEEI 

of University of Catania, Catania (Italy) and a Sicilian 

energy trader, is under development; it aims to study 

hardware and software solutions for providing advanced 

tools to electric utilities users (mainly residential)  not 

only to optimize their energy consumptions but also to 

make them an active part of future Smart Grids. In this 

way the users can have access to information and tools, in 

such a way to become aware of their energy consumptions 

habits. Further it will be possible to use information on 

the energy price and tariffs, and to reach many objectives 

such as: increasing the reshaping of load curves (i.e. 

redirect the electrical loads to the hours of low network 

usage), improving efficiency and reducing the electricity 

bill.  

The main idea of the proposed architecture is to exploit as 

much as possible the commitment of the users by means 

of active interaction with a dedicated web site. The user 

plays an active roles in the whole process in many steps. 

Firstly, the user is required to communicate the list of 

appliances connected to the main power supply along 

with some information about their electrical 

characteristics. 

The more complete the information provided by the user 

during this phase, the more accurate the results provided 

by the NIALM algorithm. However, since we are aware 

that not only the user may not be able to provide precise 

and complete  data about his appliances, but also the 

results of NILM algorithm are affected by errors (see par.  

4), an interactive phase has been designed. So, during the 

normal operation of the system, the user can be engaged 

in two different kinds of interactions, i.e. feedback, named 

respectively Check status and Verify signature, 

hereinafter described: 
- Check status: the user is prompted to confirm some 

information about the status of one or more 
appliances. He has to provide information related to 
the state, (on/off) of the i-th appliance. By means of 
this information, the NIALM algorithm will improve, 
and correct, if necessary, its disaggregation results. 

 

 

Figure 7 Logic scheme of check status feedback  

 

- Verify signature: The user is asked to turn on and/or 
turn off a specific appliance, in order to revise the 
signature of the i-th load. This interaction is enforced 
if the user, during the preliminary step, has not been 
able to provide all the needed information related to 
nominal power of appliances. So the rated power of i-
th appliance is corrected  from P and Q to P’ and Q’. 
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Figure 8 Logic scheme of verify status feedback 

 

The presentation layer has been implemented as a Web 
application by following a Model-View-Controller 
(MVC) paradigm. While the Controller part has been 
implemented as a Java Servlet, the Model and the 
different Views have been implemented through HTML 
and JSP pages. The designed system has been developed 
in a real domestic scenario in order to better evaluate the 
overall behavior of the system. 

The graphs, in Figure 9, Figure 10, and Figure 11 show 

the power consumption of a typical domestic user 

(e.g.user A). These pieces of information can help the user 

to  understand his energetic behavior. Specifically Figure 

9 shows the home page where the global measurements 

(P, Q, V, I, THD, Power factor) are shown in different 

time frames (one day, two days and one week), and 

updated every three minutes. Since data produced by the 

NIALM module are stored in the database (Processed 

DB), the user can decide what to analyze. Figure  shows 

the “Appliance Power” page, where the NIALM 

algorithm results are represented by a piecewise graph 

with the same time features as the previous graph. 

 

 

Figure 9 Home page of SEEE web site. 

 

 

Figure 10 Power consumption grouped by appliance. 

 
 

Finally, in the Overview page shown in Figure 11, two pie 

charts are presented: pie chart A where the monthly 

percentage of energy composition of each appliance is 

depicted, and pie chart B which shows the cost rate of the 

electricity bill for each appliance. 

 

 

Figure 11 Pie Chart A about Power Consumption 

Overview, Pie Chart B about Costs Overview. 

 
Before starting the monitoring of a given user, it is very 
important to characterize it by the historical data taken by 
the electricity bills. Hereinafter, we will report the results 
concerning  the user that is now under monitoring (user 
A). 
User A has a supply contract with power committed to 3 
kW. During the first step of user’s characterization, user A 
communicates the list of appliances connected to the main 
power supply. In Table 2, the various appliances, grouped 
by category, of user A’ house are placed. 

 

Table 2 User appliances Characterization 

 

 Category 

Light Appliances Computer / 
entertainment 

Total 
number 

7 10 7 

Global 
Power (W) 

271 14073 666 
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The user has entered with an energy trader a contract that 

provides different tariff schemes, in this case a time-of-

use tariff has been agreed.  

Actually the Italian Authority for Electricity and Gas 

(AEEG) approved the entry into force of a mandatory 

Time-of-Use (ToU) tariff among residential customers 

subject to the universal supply regime in Italy from July 

1st 2010. It provides for variable electricity prices during 

the day: the price is higher during “peak hours” (the hours 

between 8 am and 7 pm on working days, also called F1 

time slots) and lower during “off-peak hours” (all the 

remaining hours, also called F2 and F3 time slots, which 

basically comprise nights and weekends). The AEEG 

established a 18-months transition period (until December 

31st 2011): during such a period the price difference 

between peak and off-peak hours was limited (transitional 

ToU tariff) while, starting from January 1st 2012, it has 

become larger (final ToU tariff), based on the actual 

electricity market prices. ToU tariff is more convenient 

than the flat tariff only if more than 2/3 (i.e. 66.67%) of 

the total consumption occurs during off-peak hours: such 

value represents an “indifference threshold”.  

It is worth specifying that average consumption shift is 

only 1%, the main two factors that may have prevented a 

larger consumption shift are: a) rather limited price 

difference between peak and off-peak hours; b) other 

components of the final price are not time-dependent the 

variation on the final price between peak and off-peak 

hours was even lower. In our case there are three time 

slots (F1-F2-F3), and the electricity bill depends on the 

electricity usage habits, i.e. during which hours of the day, 

and in which day of the week, the appliances are used. 

Figure 12 shows the F1, F2, F3 daily and weekly time 

slots (F1 takes about 38 % of hours in a week, whereas F2 

takes about the 21 %)  and relative price. On this regard, it 

is worth noticing that the price of electricity in F1 is about 

30% greater than the  one in F3.   

 

 

 
Figure 12 Time of use tariffs, F1, F2, F3: weekly time 

slots and relative prices. 

Starting from the data reported in the electricity bills of an 

year, some information about energy behavior of the 

customer under study can be drawn. For example both 

cooling and heating of the house are based on electrical 

appliances (e.g. heat pumps), so the electricity demand 

increases during winter and summer and decreases in the 

other seasons.  Figure 13 shows a bar graph with the 

monthly average daily demands, and the electricity usage 

habits over the year is very evident. 

 

 
Figure 13 Monthly Average Daily Demand.  

 

 
Figure 14 Monthly Hourly time of use Demand 

 

 

Information reported in Figure 13 is not sufficient to 

understand how the user behaves respect with his 

electricity demand during a day and a week, so in Figure 

14 the monthly hourly time-of-use demand divided by 

time slots is reported. It is clear that the demand is greatly 

concentrated in F1 and F2 slots whereas the nocturnal 

hours are much less used. 

 

6. Conclusions 

In this paper a domestic energy monitoring system based 

on a NIALM algorithm has been presented. The system is 

non-invasive for the user as it is based on a single point of 

measurement: a disaggregation algorithm allows to obtain 

the load of some user’s appliances.  
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The proposed disaggregation algorithm is simple  as it is 

based on a basic and straightforward signature (i.e. rated 

active power and power factor), as a consequence the 

results of this algorithm has to be corrected by means  of 

the user interaction (i.e. feedback) 

A software architecture has been designed in order to 

process all of the data at service provider’s side. User 

information are presented through a user-friendly Web 

interface; this interface also gathers the user feedback 

which is needed to improve the efficiency of the 

disaggregation algorithm. Currently, the proposed 

research is focusing on the impact of the feedback on the 

minimization of the error of disaggregation. 

The next step in the on field test is to enlarge the number 

of monitored users in such a way to perform a 

comparisons with users with similar characteristics. The 

results of this comparison, shown to the web users, could 

induce a ‘positive competition’ in electric demand 

reduction.  

Finally, in the context of Smart Grids, it would be 

interesting to analyze a domestic user with a photovoltaic 

(PV) power plant; on this regard forecast methods for 

both PV production and electric demand could be used to 

predict them in the next 24 hours, with the aim of 

improving the predictability of energy exchanges with the 

network. Forecast algorithms can be also used to predict 

the preferences of the users in using the home appliances, 

in order to identify which appliances are going to be used 

by the user and at what time of the day.  
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