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Abstract 

Economic dispatch problem (EDP) has become more complex and challenging in power systems due to the introduction of 

smart grids. In a smart grid, it’s expensive and unreliable for the existing centralized controller to achieve a minimum cost 

when generating a certain amount of power. In this work, we define a quadratic cost function and comprehensive 

constraints to improve the consensus algorithm. We propose a distributed control approach based on the improved 

consensus algorithm to solve the EDP in a smart grid. Different from the centralized approach, the proposed approach 

enables each generator to collect the mismatch between power demands and generations in a distributed manner. The 

mismatch in power is used as a feedback for each generator to adjust its power generation. The incremental cost of the 

generator is selected as the consensus quantity that converges to a common value eventually. Simulation results of 

different case studies are provided to demonstrate the effectiveness of the proposed algorithm. The comparisons between 

the proposed approach and the existing ones are also presented. 
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1. Introduction

Economic dispatch problem (EDP) is one of the essential 

problems in power system operation. Fundamentally, the 

EDP is an optimization problem aiming to reduce the total 

cost of power generators within certain constraints. Various 

mathematical methods and optimization techniques have 

been employed to solve the EDP. The existing methods 

include the lambda-iteration method [1], Lagrangian 

relaxation method [2], gradient projection method [3], 

interior point method [4], and dynamic programming [5]. In 

these methods, the EDPs are assumed to have a convex cost 

function. In order to handle a non-convex cost function, 

many optimization methods are developed, mainly including 

evolutionary programming [6], differential evolution [7], 

particle swarm optimization [8], genetic algorithm [9], 

simulated annealing [10], and tabu search [11]. 

The existing methods require global information via a 

centralized controller to achieve an optimal power 

generation and a minimum cost [12]. However, the 

centralized algorithm may cause a few problems in smart 

grids. First of all, the centralized controller requires a high 

level of connectivity, which may be impaired due to failures 

and modelling errors [13]. Secondly, the topologies of a 

smart grid and its communication network are likely to be 

variable. A small change in the smart grid may lead to 

reconfiguring the centralized algorithm [14]. Thirdly, 

collecting global information from all the generators may 

cause extra cost. Thus, the centralized controller is not 

suitable to solve the EDP in a smart grid. 

Therefore, we investigate distributed control algorithms 

that can be used to solve EDP in the smart grid. Compared 

to the centralized algorithms, the distributed ones have 

significant advantages in information collection, robustness, 

and scalability. More specifically, no centralized controller 

or global information is needed by the distributed 

algorithms. Moreover, the distributed algorithms are 

adaptable to the changes of topologies. Therefore, the plug-
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and-play characteristic of smart grids can be accommodated 

by the distributed algorithms. However, the key to the 

distributed algorithms in smart grids is for all the generators 

to reach a consensus [15]. 

Consensus algorithms have been studied widely for the 

past two decades. The applications of the algorithms can be 

found in the area of system and control [16-17]. The main 

problem in a consensus algorithm is to reach an agreement 

regarding certain quantity of interest by using local 

information exchange [17]. Lately, the consensus algorithms 

have been used in smart grids related problems [18-19]. For 

example, a consensus-based algorithm is applied to solve the 

EDP in a smart grid [18]. The incremental cost of each 

generator is chosen as the consensus variable in order to 

meet the optimization requirement. To satisfy the power 

balance, the mismatch between the demand and total 

generations is fed back to the consensus algorithm so that 

the incremental cost will converge to the optimal value. The 

communication topology of the generators is assumed to be 

undirected and the information exchange is bidirectional. 

However, the assumption is not practical since the 

communication may not be symmetric in real-world 

situations [12]. Moreover, the algorithm is not completely 

distributed since a leader has to be selected to collect the 

power output from each generator in order to calculate the 

power mismatch. 

Recently, a decentralized algorithm is proposed to solve 

the EDP in a smart grid, in which self-organized dynamic 

agents are equipped with the consensus protocol [19]. The 

effectiveness of the proposed algorithm is proved on 118 

bus and 300 bus IEEE test networks. However, the generator 

dynamics is not considered in evaluating the convergence 

rate.  

There are also other methods to solve the EDP in smart 

grids. For example, a heterogeneous wireless network 

architecture is presented to improve convergence speed in 

smart grids [23]. An intelligent quantum inspired 

evolutionary algorithm is proposed to perform the intelligent 

economic scheduling and dispatching [24]. A simultaneous 

perturbation technique is proposed to deal with equality and 

inequality constraints [25]. 

In this paper, we use the incremental cost as the 

consensus variable. The equal incremental cost criterion is 

also adopted to achieve the optimal dispatch. Compared to 

[15], in our study, each generator is not required to know the 

cost function parameters of other generators. It estimates the 

mismatch between the demand and generation in a collective 

manner. With a proper initialization, the local estimate of 

the mismatch may not be equal to the actual one. But the 

summation of all the local mismatches is exactly equal to 

the actual one. In our model, the leader generator is not 

needed to collect all the power output of each generator. The 

local estimate of the mismatch is used to adjust the power 

generation as if it is the actual mismatch. The incremental 

cost converges to an optimal value in our algorithm. 

Different from [15], the communication among power 

generators can be unidirectional. 

We extend the cost function by adding comprehensive 

generator constraints in order to study the transients of the 

proposed algorithm. The generator’s dynamics is included in 

our simulation model. We study the performance of the 

consensus-based distributed control algorithm under 

different communication topologies. We also compare the 

performance to that of the conventional EDP methods. The 

results are illustrated in different case studies. As compared 

to the existing consensus-based algorithms, the proposed 

approach avoids prohibited operation zones, considers 

transmission line power flow limits, and improves the 

accuracy of the optimal solution by applying power loss into 

the cost function of the consensus algorithm. 

The paper is organized as follows. In Section II, we 

define our cost function with comprehensive constraints. In 

Section III, the fundamental graph theory and the improved 

consensus algorithm are presented. Simulation results of 

different case studies are shown in Section IV. Comparisons 

between the consensus algorithm and the conventional ones 

are carried out in Section V. Section VI concludes the paper. 

2. Definition of economic dispatch
problem 

In this section, we explain the EDP with transmission losses 

and generator constraints in a smart grid.  

2.1. EDP cost function 

The objective of the EDP is to minimize the total cost of 

power generation. A quadratic cost function of i-th generator 

is given as follows: 

iiiiiii PPPC   2)(              (1) 

where Pi is the output power of generator i, αi, βi, γi are the 

cost coefficients of generator i. Then the total cost of 

operation for all generators is calculated as:  

 iiiii

m

i

iit PPPCC   


2

1

)(           (2) 

where m is the number of power generators. 

2.2. Transmission loss 

The total transmission loss is a function of the generator 

power outputs, which can be represented using B 

coefficients as follows [20]: 
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where Bij, B0i, B00 are the transmission loss coefficients. 
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2.3. Practical constraints of generator 

Power balance 

ld

m

i

i PPP 
1

                             (4) 

where Pd and Pl are the power demand and loss, 

respectively.  

Ramp rate limit 
As in [8], we assume that the constraints of ramp rate limits 

for generation changes are given.  

When generation increases,  

 

iii URPP  0
                              (5) 

 

and when generation decreases,  

 

iii DRPP  0
                              (6) 

 

where Pi and Pi
0 

are the current and previous output power, 

respectively. URi and DRi are the up ramp and down ramp 

limits of the i-th generator, respectively.  

Generation limit 
Each generator has to satisfy its own generation limits, that 

is, 

 
maxmin

iii PPP                             (7) 

 

where Pi
min

 and Pi
max

 are the minimum and maximum output 

of the i-th generator, respectively.  

Prohibited operation zone 
A typical thermal unit with many valve points can generate 

prohibited operation zones. In practice, a generator has to 

avoid operating in the prohibited zones. The expression of 

the operation zones can be found as follows: 

 
l

iii PPP 1,

min   

l

jii

u

ji PPP ,1,   

max

, ii

u

ni PPP   , j = 2, 3, … , n    (8) 

where n is the number of prohibited zones of generator i. 

    
 ,       

 ,     
 , and     

  are the sectional operation limits of 

generator i.  

Line flow constraint 
The power flow of a transmission line should remain less 

than the maximum capacity of the power that can be carried 

by the line, i.e., 

 
max

,, kLinekLine PP                               (9) 

 

where PLine,k is the power flow of line k, and 
max

,kLineP  is the 

maximum capacity of line k.  

3. Consensus algorithm 

In this section, we introduce the basic graph theory and our 

improved consensus algorithm to solve the EDP. 

3.1. Graph theory 

A graph G is used to model the power system components 

and the way they exchange information based on 

communication theory [14]. Let G = (V, E, A), where V is a 

set of elements called nodes, E is a set of pairs of distinct 

nodes called edges, and A = [aij] R
n×n 

is the adjacency 

matrix. A directed graph is a graph where the edges have 

directions associated with them. In a smart grid, nodes 

represent the buses of the power system, the edges represent 

the transmission lines between the buses, and the adjacency 

matrix represents the edge weights. A directed edge from i 

to j is denoted by a pair (i, j) E. The pair (i, j) means that 

generator j can receive information from generator i. The in-

neighbor of the i-th generator is denoted by 


iN = {j   V | 

(j, i) E}. Likewise, the out-neighbor of the i-th generator 

is denoted by 


iN  
= {j   V | (i, j)  E}. Practically, a 

generator can receive information from its in-neighbor, and 

send information to its out-neighbor. The in-degree and out-

degree of node i is denoted as 
  ii Nd  and 

  ii Nd , 

respectively. A directed graph is strongly connected if there 

exists a connection between any pair of two nodes. It’s 

noted that 0

id and 0

id  in a strongly connected 

graph. 

3.2. Consensus algorithm 

Two matrices P, Q R
n×n

, where P = {pi,j}, and Q = {qi,j}, 

associated with a strongly connected graph G = (V, E, A) can 

be defined as: 

 

Vji
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otherwise

Nj
dq i
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0

1
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It’s noted that the summation of row elements of P is equal 

to unit, and the summation of column elements of Q is equal 

to unit. The i-th row of P represents the weights of in-

neighbors of node i. Likewise, the i-th column of Q 

represents the weights of out-neighbors of node i.   

Consider the following two discrete-time systems: 
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
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
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'
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where ξi(k) and ξi’(k) are the state variables associated with 

node i in graph G at time step k. In a smart grid, the state 

variable represents a physical quantity such as the output 

power, incremental cost, or power mismatch, etc. Equations 

(12) and (13) have the same structures but with two different 

sets of weights. In Eqn. (12), all state variables converge to 

a common value. In Eqn. (13), all state variables do not 

converge to a common value, but the summation of all state 

variables is constant [12]. That is: 

 

kk
n

i

n

i ii   
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3.3. Solution to the EDP 

The incremental cost of the i-th generator is derived as:  

 

iii

i

ii
i P

dP

PdC
  2

)(
                  (15) 

 

According to the incremental cost criterion, when all the 

generators operate at the optimal point, the incremental costs 

are equal to the optimal value, that is: 

 

iiii P  
**

2                           (16) 

 

Therefore, the optimal output of the i-th generator can be 

obtained from (16): 

 

i

ii
iP





2

*
* 
                               (17) 

 

Let us denote by λi(k) the estimation of the optimal 

incremental cost of the i-th generator, Pi(k) the estimated 

optimal power output of the i-th generator, and ΔPi(k) the 

estimated local power mismatch between the power demand 

and total power generations.  

The main process for the consensus algorithm is stated as 

follows: 

 



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iNj

ijjii kPkpk )()()1( ,        (18) 
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




iNj

iijjii kPkPkPqkP ))()1(()()1( , (20) 

 

where ε is a small positive constant, and k is the time step. 

The initializations of λi(0), Pi(0), and ΔPi(0) are selected as 

feasible constant values.  

It’s noted that Eqns. (18), (19), and (20) are iterative and 

only need local information to be updated. For generator i, it 

only requires information from its in-neighbors. Therefore, 

the iteration process is a distributed algorithm.  

The algorithm is stable if the constant ε is small enough. 

All the state variables converge to the optimal values, that 

is, 

 

Vikfor  ,  

 

0)(,)(,)( **  kPPkPk iiii        (21) 

4. Simulation results 

In this section, four case studies are carried out to evaluate 

the performance of the proposed consensus-based 

distributed algorithm. A smart grid of five generators is 

developed using Matlab/Simulink in discrete time step, as 

shown in Fig. 1.  

The simulation models can be divided into three main 

layers: power layer, communication layer, and control layer. 

The system of five generators is modelled in the power layer. 

A simplified synchronous generator block in Matlab is used 

to model the generator dynamics in this layer. The start-up 

dynamic is modelled by this block that represents the 

excitation and server inertia.  

The power mismatch is fed back to the power layer in 

order to guarantee the convergence of the algorithm. A 

communication network is built in the communication layer. 

A unit communication is assumed in this layer. The 

communication delay is also considered in this layer. The 

proposed consensus algorithm is implemented in the control 

layer. The implementation of the consensus is based on 

Eqns. (18), (19), and (20). Each generator is connected to 

other generators by power transmission lines and 

communication signals.  

The five-unit smart grid is shown in Fig. 1. The 

communication topology is shown in Fig. 2.  

Based on Fig. 2, the matrices P and Q can be derived 

from Eqns. (10) and (11): 
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It’s apparent that P and Q are row- and column- unit-

summation, respectively.  

The parameters of the five generators are shown in Table 

I. The constraints are listed in Table II. The load power 

demand is 850 MW.  

4.1. Case study 1: without generator 
constraints 

In this case, no generator constraint or transmission line loss 

is considered. The convergence rate ε is equal to 0.0005. A 

small convergence rate will guarantee the stability of the 

algorithm. The simulation is carried out at a discrete time 

step of 0.001s. The generator output, incremental cost, and 

total power generation are plotted in the following figures. 

 

 

 

Consensus-
based

Control 
algorithm

G1

G2 G3

G4 G5

Communication 
layer

Control layer

G1

G2

G3

G4

G5

Power layer

Power 
Mismatch

Incremental Cost

Figure 1. The simulation model of a five-generator 
smart grid, in which three main layers are indicated, 

five generators are modelled in power layer; 
communication topology is represented in 

communication layer; and the consensus algorithm is 
implemented in control layer. 

 
 
 

G1

G2 G5

G3 G4
 

 

Figure 2. Communication topology of five generators: 
star topology. 

 

 

 

 

 

Table 1. Parameters of the five generators 
 

Gen.   
      

             

1 50 200 561 7.92 0.00156 

2 200 500 310 7.85 0.00194 

3 50 200 78 7.97 0.00482 

4 50 300 561 7.92 0.00156 

5 50 200 78 7.97 0.00482 

 
 

 
Figure 3. Case 1: the incremental cost of the five 

generators. 
 

 
Figure 4. Case 1: the power generations and demand. 
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Table 2. Constraints of generators 
 

Gen. UR DR Prohibited zones 

1 100 120 [90 110] 

2 100 120 [350 380] 

3 100 120 [90 110] 

4 100 120 [90 110] 

5 100 120 [90 110] 

 
Figure 3 shows that the incremental costs of the five 

generators all converge to the optimal value, i.e.,     
          . The corresponding power outputs of the 

generators are 243.9MW, 214.4MW, 73.86MW, 243.9MW, 

and 73.86MW, respectively. The comparison between 

power demand and total power generation is given in Fig. 4. 

It can be seen that the optimal power generation is achieved 

at 0.04s.  

4.2. Case study 2: with generator constraints 

In this case, the generator’s constraints and transmission line 

loss are considered for a more practical situation. For 

example, the generator should satisfy its operation 

constraints such as the operation limits, UR/DR rates, and 

prohibited zones. The incremental costs and power 

generations are presented in Figs. 5 and 6, respectively.  

It can be seen that generation 1 reaches its limit at 0.007 sec.  

Its incremental cost settles at λ1 = 8.545$/MWh. However, 

in order to satisfy power balance, the other four generators 

have to generate more power. The corresponding 

incremental cost will increase as indicated by Fig. 5. The 

new optimal incremental cost for the four generators is λ
*
 = 

8.752$/MWh. The optimal power outputs are 200MW, 

232.5MW, 81.12MW, 266.3MW, and 81.12MW, 

respectively. The power generation and power loss are 

861.04MW and 11.04MW, respectively. 

 

 

 
Figure 5. Case study 2: the incremental cost of the 

five generators. 

 

Figure 6. Case study 2: the power generation, power 
loss, and power demand. 

4.3. Case study 3: with a different 
communication topology 

In this case, a different communication topology is 

presented in order to test the capability of the proposed 

algorithm. Different from the star topology in Fig. 2, a loop 

topology is shown in Fig. 7. 

 

G1

G2 G5

G3 G4
 

Figure 7. Communication topology of five generators: 
loop connection. 

 
 
It’s observed that this topology has a slightly higher 

incremental cost than the star topology in case 1.  

The optimal incremental cost for the four generators is 

8.778 $/MWh. The power outputs of generators are also 

shown in Fig. 9.  
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Compared to case 2, it takes slightly more time for the 

generators in case study 3 to reach the optimal generations. 

It also requires more generations from the generators. The 

power outputs of five generators are: 200MW, 239.2MW, 

83.86MW, 274.8MW, and 83.81MW, respectively. The 

corresponding power generation and power loss are 

881.67MW and 31.67MW, respectively.  

The corresponding matrices P and Q are derived as 

follows. 




















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

3/13/1003/1

3/13/13/100

03/13/13/10

003/13/13/1

3/1003/13/1

P  

 

























3/13/1003/1

3/13/13/100

03/13/13/10

003/13/13/1

3/1003/13/1

Q  

 

 
Figure 8. Case study 3: the incremental cost of the 

five generators. 
 

It can be concluded that different topologies can have 

different convergence speeds on the consensus algorithm.  

4.4. Case study 4: with generator dynamics 

In this case, the dynamics of generators are considered. The 

characteristics of the generators are modelled using the 

simplified synchronous generator from Matlab/Simulink. 

The simulation results are shown in the following figures.  

It’s noted that it takes a longer time for the generators to 

reach a consensus due to the inertia of the generators. After 

about 2s, the generators reach the same consensus as in case 

2. Similar dynamics are exhibited in the power generations. 

The generator power outputs are presented in Fig. 11. The 

power balance is validated in Fig. 12. 

 
Figure 9. Case study 3: the power generation, power 

loss and power demand. 
 

 
Figure 10. Case study 4: the incremental cost for the 

five generators. 
 

 
Figure 11. Case study 4 generator output. 
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Figure 12. Case study 4: the power generation, power 

loss and power demand. 

5. Comparison with conventional 
algorithms 

In this section, the performance of proposed consensus 

algorithm is compared to the conventional EDP solutions. 

Lambda iteration and particle swarm optimization (PSO) are 

chosen as examples to compare with the consensus-based 

distributed algorithm. The scenario in case study 2 is used 

for the comparison. The results of the incremental cost and 

total cost are listed in the following figure, respectively.  

 

 

 
Figure 13. Incremental cost comparison between 

lambda iteration and consensus algorithm. 
 

Compared to the lambda iteration, the consensus-based 

algorithm has a smaller optimal incremental cost. It takes 

less time for the consensus algorithm to reach its optimal 

point. In terms of the total cost, the consensus algorithm has 

a similar cost to the lambda iteration. Among the three 

algorithms, the PSO has the largest total cost. It needs more 

iterations to reach the optimal point. In summary, the 

proposed consensus algorithm has better performance than 

the lambda iteration and PSO methods.  

 

Figure 14. Cost comparison between lambda iteration, 
PSO and consensus algorithm. 

6. Conclusion 

A consensus-based distributed algorithm is proposed in this 

paper to solve the EDP in smart grids. The convex cost 

function with comprehensive constraints is defined to 

improve the solution to the EDP. An improved consensus 

algorithm is proposed for the generators to obtain the power 

mismatch in a distributed manner. The locally estimated 

power mismatch is then used to calculate the power 

generation of each generator. As illustrated by the 

simulation results, all generators converge to the optimal 

generations that are subject to the generator constraints and 

power balance. Different communication topologies have 

different effects on the convergence rate of the consensus 

algorithm. The dynamics of generators may also increase the 

convergence time of consensus algorithm. The simulation 

results are presented in several case studies.  

The effect of communication topology on the iteration 

speed of the consensus algorithm is not critical. A large 

convergence constant may cause system instability. The 

dynamic of motors is a key factor that affects the iteration 

speed of consensus algorithm.  

The consensus-based algorithm has a lower cost and 

fewer iterations as compared to the conventional methods 

including the lambda iteration and PSO methods. 

In our future work, the cases will be further studied using 

power system simulation tools, such as PSCAD and 

RSCAD, etc. Meantime, we need to investigate the 

convergence rates of the consensus algorithm in different 

scenarios. For example, the effect of the size of the power 

units on the convergence rate should be investigated. We 

also need to investigate the accuracy of the consensus 

algorithm in different scenarios. 
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