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Abstract

Accurate multi-region load forecasting (MRLF) can effectively ensure the stable operation of the power system and is
essential for the economic dispatch of the power system. However, with the gradual deepening of the dynamic spatial
dependence among multi-region loads and the unmeasured nature of loads, the challenge is posed to MRLF. To address this
challenge, a graph attention learning-based load forecasting model for multi-region considering dynamic spatial correlations
aggregation is presented in this paper. Firstly, the regional load series is decomposed into a trend component and a fluctuation

component through the discrete wavelet transform. Secondly, a generative adversarial network with the concept of zero-sum
game is proposed for adversarial training of spatio-temporal prediction models. Furthermore, reasonable future multi-
regional load forecasting values are obtained through a aggregation module that aggregate the trend component and the
fluctuation component. Finally, the multi-regional load data of the New York Independent System Operator (NYISO) is
used as a case. Compared with the evaluation metrics of mainstream models, the model presented in this paper is effective
and superior in MRLF.
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between the supply and demand of the power system.
Accurate load forecasting can help power companies
formulate scheduling programs in advance to ensure the
stable and reliable operation of the power system. It can also
help to rationally regulate generator power, enhance the
economic effectiveness of the power system, and decrease the
influence on environmental pollution. Therefore, accurate
load forecasting is an indispensable part of ensuring the stable
operation of the power system.

1. Introduction

With the rapid development of the global economy and
sustained population growth, electricity demand has
exhibited a rapid upward trend. Coupled with the rapid
advancement of technology and shifts in lifestyle, electricity
consumption patterns have become increasingly complex and
diverse. Meanwhile, load forms have grown more diversified,
with enhanced volatility.

However, accurate load forecasting is beneficial for
maintaining the stable operation of the power system.
Reasonably adjust the power supply by forecasting changes
in load. Thus, it achieves the purpose of maintaining the
stable operation of the power system and realizing the balance
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Short-term load forecasting (STLF) methods include
traditional methods and artificial intelligence methods.
Traditional STLF models include regression models[1],
Autoregressive Integrated Moving Average (ARIMA)
models[2][3], grey relational degree models[4], and
exponential smoothing models[5]. However, most traditional
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models cannot effectively forecast nonlinear load series due
to their simple structure[6]. With the continuous development
of computing power and artificial intelligence algorithms,
artificial intelligence models are gradually being applied in
the field of STLF[7].

As a subset of machine learning, deep learning utilizes
multi-layer neural networks to capture intricate mappings
between inputs and outputs, while also mitigating the gradient
vanishing problem commonly encountered in shallower
models[8]. Currently, many scholars have applied deep
learning models to load forecasting. Oziipak et al. [9]
proposed a hybrid deep learning model for predicting short-
term load demand by combining recurrent neural networks
and long short term memory network (LSTM). Sun et al. [10]
proposed a short-term load forecasting method based on
gated recurrent units (GRU) and stochastic configuration
network (SCN). This method achieves multi-scale power load
forecasting by adaptively capturing high-frequency intrinsic
mode functions through GRU and processing low-frequency
IMF through SCN. Han et al. [11] proposed a short-term load
forecasting model that combines an improved sand cat swarm
algorithm (MSCSO) with a self attention time convolutional
network. MSCSO effectively optimized the key parameters
of the model. This significantly improves the accuracy and
robustness of the model.

The methods described above primarily model the
temporal dependencies in load series to improve forecasting
accuracy. However, power load also exhibits significant
spatial dependencies[12]. Therefore, to enhance load
prediction accuracy, the spatial dependencies among loads
should not be neglected. Scholars are increasingly focusing
on this aspect to improve the precision of load forecasts.
Vieira et al.[13] proposed to apply spatial convolution to the
load forecasting problem to capture the spatial dependencies
between neighboring load nodes through spatial convolution.
This method significantly improves forecasting performance
compared to autoregressive methods. Lin et al. [14] used
graph neural networks to capture hidden spatial dependencies
between different houses. Compared with the baseline, the
accuracy of residential load forecasting has been significantly
improved. Liu et al. [15] proposed a short-term load
forecasting model based on dynamic adaptive adversarial
graph convolutional network. It generates a dynamic adaptive
graph through node embedding method for the spatio-
temporal relationship between loads.

Although the above methods have improved prediction
accuracy to some extent, previous work has overlooked some
problems. Firstly, the spatial dependencies among loads are
dynamically changing, and most existing methods are unable
to capture these dynamic spatial dependencies[16][17]. As
shown in Figure 1, edges represent the spatial dependencies
among nodes. The Figure 1 shows that the spatial
dependencies of nodes exhibit dynamic variations over time.
Secondly, as a type of time series data, load data can be
decomposed into various components, including trend,
seasonality, and residuals, each exhibiting distinct
characteristics[18][19]. However, most existing methods
overlook this characteristic. There is no specific network
designed for different components to capture features, which

seriously affects the prediction accuracy. In addition, most
previous load forecasting models simply aimed to minimize
L1 loss or L2 loss. However, overly simplified loss functions
may not be sufficient to improve some of the model
parameters, which affecting the improvement of model

prediction performance[20][21].
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Figure 1. Dynamic spatial dependencies

To address the above problems, a hybrid model with
temporal mechanism and LSTM graph attention network
(TLGAT) is presented in this paper. This model not only
effectively decouples the multi-regional load series into trend
component and fluctuation component, but also captures the
dynamic temporal and spatial dependencies among regional
loads through specific spatio-temporal networks, improving
forecast accuracy. The main work of this paper is summarized
as follows:

(i) A MRLF model based on graph attention learning is
proposed, which is able to learn the interactions among
nodes at different moments and effectively extracts the
dynamic spatial correlations among multi-region loads,
thus improving the load forecasting accuracy;

(i) Discrete Wavelet Transform (DWT) is employed as a
method to decouple multi-region load series. The
original region load series are decoupled into low-
frequency and high-frequency series by the DWT, which
clearly represents the changing features of the region
load series. Subsequently, temporal convolution and
LSTM are leveraged to capture more accurate and
effective temporal dependencies in each series;
Generative adversarial networks(GAN) are harnessed
for adversarial training of models. The model obtains
adversarial losses through adversarial training, and
combines adversarial loss with L1 loss as the training
objective to optimize model parameters and improve
model prediction performance;

The multi-regional load data of the NYISO is used to

validate the performance of the TLGAT. Compared with

several advanced models, the case study results
demonstrate that the TLGAT has superiority in MRLF.

(iii)

(iv)

2. Problem Description

Accurate regional load forecasting can balance the
relationship between power supply-demand and improve the
efficiency of power dispatch. The problem of MRLF aims to
predict the regional load in the future by studying the
potential relationships among historical multi-regional load
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data and relevant influencing factors such as geographical
location, meteorological conditions, and economy.

Specifically, xti ell denotes the multi-regional load of the i

th regional load node at time step ¢ . denotes the regional load
of all regional load nodes at time step ¢

Xp={X,,.. Xy} el "N signifies the regional load of all
regional load nodes in time slice T} . The aim of this paper is
to learn a mapping function F, based on historical regional
load data from the past 7; steps and use this mapping

function F, to map the regional load for the future 7, steps.
The problem of MRLF can be summarized as:

X t+2""’Xt+T2}:F9 {Xt—T1+1 t—Tl+2"">Xt} (1)

where 0 represents the learnable parameters.

However, in addition to temporal dependencies, spatial
dependencies are also present in multi-regional load series.
Therefore, it is necessary to construct a power system
topology graph G=(V,E,A) to summarize the spatial

dependencies among regional loads. V' represents the set of

regional load nodes, E denotes the set of busbars connecting

two regional load nodes, and the graph adjacency matrix A
is utilized to describe the spatial dependencies between any
two regional load nodes. Therefore, the problem of MRLF
will be redefined as:

X t+25""Xt+T2}:F€({Xt—T]+I t—T]+2"-'7Xt}5G) (2)

Model Overview: The Figure 2 shows the structure of the
TLGAT, which mainly includes three main parts:

1) Decoupling module: Firstly, the decoupling module
consists of a multi-level DWT, an inverse discrete wavelet
transform (IDWT), and fully connected layers (FC). The
multi-historical regional load series is decoupled into a low-
frequency series and several high-frequency series by the
multi-level DWT. Subsequently, the trend and fluctuation are
derived through the IDWT and FC.

2) Dual channel Spatio-temporal Module: Due to the
different characteristics between trend and fluctuation,
temporal attention and causal convolution are employed to
capture the temporal features of trend and fluctuation,
respectively. The graph attention networks (GAT) is
leveraged to capture the dynamic spatial dependencies among
multi-regional loads.

3) Fusion and Adversarial Training Module: Based on the
spatio-temporal features learned by the dual channel spatio-
temporal module, future trends and fluctuations can be
predicted by two predictors. Then, the adaptive fusion
module is employed to fuse future trend and fluctuation to
obtain future regional loads. Subsequently, the GAN is
introduced for adversarial training.

2 EA

3. Methodology

3.1. Decoupling Module

The complex data from the real world typically consists of
multiple components[22][23]. To clearly represent the data,
it can be decomposed into various components. Therefore, in
order to clearly represent the load data for capturing the
feature of load series, the regional load series is decomposed
into trends and fluctuations. Furthermore, there is no mutual
influence between trends and fluctuations. In other words,
when a component of the regional load series changes, other
components will not be affected [24].

To decompose the regional load series, the DWT is applied
in this paper to decompose the load series in the framework
of MRLF. The reason for choosing the DWT is that the load
series is similar to the wind power series, both of which are
discrete series[25]. The DWT is designed specifically for
processing discrete series [26]. Figure 3 shows an example of
asimple DWT. In the Figure 3, the first level DWT decouples

the input series XIT1 e’ into a low-frequency series
n n

X, ell? and a high-frequency series X m €02 through a

low-pass filter f;, and a high-pass filter f,,,. Similarly, the

h i

second level DWT decomposes X, e[l 2 into X, e[] *

L
and X w, €0 % .The process can be depicted as:

XHI = (fHP ® X;TI )(iz)’
XL2 = (fLP ® (fLP ®)‘X:T1 )(u))(iz) ’ 3)
XH2 = (fHP ® (fLP ® X:T1 )(iz))(iz) ’

where, & represents convolution calculation, |2
represents reducing the sampling rate by 2.

According to (4), in the process of the DWT, the time
series length of low-frequency and high-frequency series will
become shorter. To ensure consistent series length, it is
necessary to perform recovery sampling operations on X 1

Xy, and X, . Then, an inverse low-pass filter and an

inverse high-pass filter are used to implement the IDWT.

Finally, a FC is employed to obtain trend X TixNxd

tren

and fluctuation X ;. €[l M@ The IDWT can be described

g €l

as:

Xy =W Fp @ (fp @ (X,)5,)p, + 5" )

Wl ® e ® (X, n s
X, = _ )
+fHTP ® (Xl,h )Tz) + bHP
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where, f;, and f, respectively denotes an inverse low-
pass filter and an inverse high-pass filter, T 2 represents the
W wir en?  and

b"" b"™ €1 represent learnable parameters.

recovery sampling operation,

Figure 2. The structure of the TLGAT

’—' S = 2—X,

S

S ==X,

Figure 3. Two level discrete wavelet transform

X:T,' Jir @

3.2. LSTM and Temporal Convolution

The trend and fluctuation obtained through decoupling
module decomposition have completely opposite temporal
features. The change in trend lasts for a long time and has a
relatively small amplitude, while the change in fluctuation is
usually sudden and has a short duration and a large amplitude.

Due to the rapid and significant fluctuations trend,
temporal convolution is used to capture temporal
characteristics. Temporal convolution is a method
specifically designed for processing time series data within
CNNS, characterized by the fact that the output at the current
time step depends only on the current and a limited number
of previous time steps of input. This structure enables it to
effectively capture the short-term dependencies that change
over time within the load series. The temporal convolution
structure is shown in Figure 4.

Temporal convolution can be described as:

X* f)0) =2 fe (@)X (t-7), (6)

n : : K
where, X ell ! represents time series, f. €U~ denotes

the filter, and K indicates the size of the convolution kernel

for temporal convolution. Therefore, the temporal
representation of fluctuation X" as:
X" =ReLU(6* X e )s (7

where, 6 signifies the learnable parameters of the model,
and ReLU(:) denotes the linear rectification function.
After LSTM and Temporal Convolution to extract

. it : TixNxd .
temporal dependencies, X, ,, X g €)™ are obtained.

Output

| | d=2
‘ / ‘ Hidden
Layer

d=1
B Input

Xy Xpo

XX, Xy Xy Xg Xg Xy X

Figure 4. Temporal convolution network

Therefore, for trend, there is a strong correlation between
any two time slices of the trend. For fluctuation, time slices
that are strongly correlated are often adjacent time slices, and
in comparison, those with time intervals further apart have
relatively weaker correlations. Based on trend characteristics,
LSTM is selected to capture the temporal features of the
trend. The LSTM is shown in Figure 5.

Figure 5. The sstructure of LSTM

As a powerful sequence modeling unit, LSTM 's gating
mechanism can dynamically adjust the information flow and
determine when to update and retain what information. This
enables LSTM to effectively capture the importance
differences of different time steps in the input sequence,
thereby focusing on key information and improving the
performance and efficiency of the model. Therefore, the
characteristics of LSTM enable it to reasonably solve the
problem of capturing the temporal features of trends. It can
not only realize the interaction of all historical information
through its circular connection, but also selectively retain
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more important historical information and integrate new
information through the forgetting gate and the input gate.
The process of obtaining the trend output on the time slice
can be described as:

i, =c(Wx,+b,+W,h, , +b,),

f = o-(Wl,.x + b,,f + thh(,fl) + bhf),

t

g = tanh(Wigxt + big + Whgh(H) + b,lg ), ®)
0, = O-(VVioxl + bio + I/Vhoh(l—l) + bho )’

Ct :f; *Ct +lt *gt

h, =0, * tanh(c,)

where, /, signifies the output of trend of node at time slice

t, W and b denotes learnable parameters, o represents the
exponential function, f,, i and o, indicates the temporal

correlation between the time slices ¢ and i of node n on the
trend.

3.3. Graph Attention Networks

In fact, the future regional load not only depends on its own
historical load data, but also closely related to the historical
load status of other regions. Therefore, the spatial correlation
characteristics should be regarded as the intrinsic attributes in
the regional load sequence. However, the load nodes are often
non-uniform and irregularly distributed in space, which
constitutes non-Euclidean structural data. Obviously, it is
difficult for traditional neural networks to effectively extract
spatial features from such data with complex topological
relationships. Graph neural network is designed to deal with
the data of irregular topology, which can mine the implicit
spatial correlation between regional loads. In addition, the
interaction between load nodes in different regions is not
static and fixed, but dynamically evolves with time and
external conditions. These dynamic interactions often contain
key information. Therefore, the GAT can effectively capture
the potential dynamic spatial dependencies between regional
loads.

Unlike the traditional GCN, the GAT employs an attention
mechanism to adaptively determine the weights between
neighboring nodes, enabling weighted aggregation of
neighborhood information. Moreover, this mechanism can
capture time-varying weights of neighbors across different
time steps, thereby dynamically modeling the spatial
dependencies among nodes. In contrast, the GCN relies on
fixed weights for neighborhood aggregation, which limits its
ability to represent dynamic spatial interactions. For this
reason, the GAT is adopted in this study to effectively capture
the spatial dependencies across regional load data. The spatial

n,i

correlation S between node n and node I in time slice ¢

can be described as:

2 EA

i ex (WKx",WQxi)
R — 9)
Zexp(WS x[",WSQx,')

J=1

where, WSQ,WSK el ” indicates learnable parameters. The
output of node n in time slice ¢ can be described as:

n _
X, =

USSR (10)

M-

i=1

Vo dxd
where, Wy €[] ““ denotes learnable parameters. X, , and

0 t t
X can be represented as X, X7 €

0 TixNxd
trend > <™ fluc

after

passing through the GAT.

By overlaying carefully designed dual channel spatio-
temporal modules L times, different spatio-temporal
features in trend and fluctuation can be obtained.
Subsequently, future regional load values can be inferred
through Aggregation module.

3.4. Aggregation and Adversarial Training

The predictor composed of two FC converts X5 X"

trend > <> fluc
into the predicted representation 3/, )A/f,m, el M of

trend and fluctuation. To obtain the representation

~f
y €
to Aggregation f/t);end and ﬁ};w . The changes in regional load

[ N of future regional load values, it is necessary

are always frequent, leading to the problem of distribution
shift in the fluctuating components of regional load. To
address distribution bias and obtain more accurate prediction
values. It is necessary to sum the fluctuations within time
slice + with weights, which are calculated by LSTM. It
effectively solves the problem of regional distribution offset
and obtains more accurate future regional load values. The
entire process of Aggregation can be described as:

i+t
AT s V"
yt - ytrendt + Z U;TI(WF yﬂucl-)
i=Tj+1
KA~f® \T A"
_ exp((WF yi‘{end, ) (WFQy/éml )) (1 1)
i T T+t >

2 (W5 ya) VE D ue,)

J=Nh+1

where, W, WX W/ signifies learnable parameters. After
.. . . ~f
obtaining the future regional load representation y , the

future regional load values y €[l N can be obtained

through a FC. Subsequently, the GAN is introduced for
adversarial training to further optimize the parameters of the
model.
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The basic construction of the GAN is illustrated in Figure
6. The GAN consist of a generator and a discriminator, which
continuously compete to optimize their parameters. To obtain
more appropriate parameters for the model, adversarial
training is performed based on future regional load values.
Firstly, the discriminator judges the future regional load
values and returns a discrimination result. Then, based on the
discrimination results, the model parameters of the generator
are further optimized to enable the generator to forecast more
accurate future regional load values. However, more accurate
future regional load values will also make the discriminator
more rigorous. Therefore, in the process of the generator and
discriminator playing against each other. Appropriate
parameters can be obtained by the model to accurately predict
future regional loads.

= @7}
- =
|

Figure 6. The structure of GAN

For the GAN, the judgment result of the discriminator can
be expressed through a binary cross entropy, which can be
expressed as:

m

V(G.D)= %Z[logD(y) +log1-D@GY))]  (12)

i=1

Equation (12) denotes the average expression of binary
cross entropy for n samples, where D(G(X)) is denoted as
the probability of determining the generated data to be true,
X represents random data, and Y denotes real data, G(y)

signifies the data generated by the generator, D(y) indicates
the probability that the discriminator judges the real data y

as true.

For the discriminator, it aims to maximize the loss. For the
generator, it seeks to minimize the loss. The discriminator and
generator always play against each other during the training
process, alternating to become stronger. Finally, both will
only tend towards a balance point. Therefore, the adversarial
training process can be described as:

E,VNPduta(y) [logD(y)]

(13)
+E)§'NPX(X)[10g(1 - D(G(X)))]

ming maxp V' (D,G) = {

2 EA

where, E
logD(y) data,
EX_p,(x)[l0g(1-D(G(X)))] denotes the expectation of
log(1-D(G(X))) when X is the random data.

ywpdm(y)[logD(y)] denotes the expectation of

when y is the real

3.5. Objective Function

The process of obtaining an accurate short-term regional load
forecasting model is the process of minimizing the objective
function. The entire objective function is mainly composed of
two parts, one is the L1 loss:

h+hh N

Ly = 2, 20 =P/ (14)

t=T{+1 n=1

The other part is the adversarial loss of the GAN. The
model task is to generate regional load values that are close
to the actual values. This is equivalent to the discriminator in
the GAN being unable to distinguish the authenticity of the
regional load predicted by the model. Adversarial losses can
be described as:

Ly =~log(1-D(G(X)) (15)

Therefore, the goal of the regional load forecasting model
is to minimize the objective functions:

L=L, ,+L (16)

where A is the weight.

4. Experiment Analysis

4.1. Dataset Preprocessing

The regional load data of 11 load areas in New York for the
whole year of 2022 are used to validate the performance of
the TLGAT proposed in this paper. The load profile of area
N.Y.C is shown in Figure 7.

The load data sampling interval is 1 hour with 8760 data
points per regional load node data. The detailed descriptive
statistical data of the dataset is shown in Table 1.

Table 1. The statistical data of the dataset

Nodes Time Range Granularity Time Unit
steps
11 January 1, 2022- Thour 8760 MW

December 31, 2022

The hyperparameters (including GAN) of each module are
shown in Table 2.
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The Z-score method is employed to normalize the dataset
in this paper. The dataset is split across a training, validation,
and test set with a proportion of 6:2:2. The normalization
process can be described as:

— - mean (17)

where, x represents the average value of all regional

mean

loads, x,, denotes the standard deviation of all regional

loads, x signifies the true value of regional loads, and x

norm
indicates the normalized values. In this paper, the regional
load values of historical 7; =12 hours are used to forecast the

regional load values of future 7, =12 hours.

Table 2. The hyperparameters of each module

Name Value Name Value
Batch-size 64 DWT level 1
Input-dim 1 Output-dim 1

Features 128 Kernel-size 2
Num-layer 2 Enpoch 100

Wavelet Coiflets Learning rate 0.001
Weight( 4 ) 1 Dropout 0.2

4.2. Model parameter setting and evaluation
metrics

The Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) and Root Mean Square Error (RMSE) are
utilized to evaluate the predictive performance of the
TLGAT. The three evaluation metrics can be described as:

1.
MAE =—3 | = | (18)
1<,
RMSE=,/(;Z(yi—yi)2) (19)
MAPE = 12 i Vi 100% (20)
n-; Yi

where, n denotes the prediction step size, p, represents the

future regional load values, and y, signifies the regional
load real values.

4 3. Case Results and Discussion

To wvalidate the performance of the TLGAT, various
mainstream models such as Informer, LSTM, STGCN,
AGCRN, GWNet, etc. are selected in this paper to compare
their predictive performance. All comparison models and the
TLGAT evaluation metrics are shown in Table 3 and Figure
8. The evaluation metrics obtained are the average of three
experiments.

11000
10000 NY.C

9000
= 8000
Z 7000
g 6000
2 5000

4000 ‘
3000 1 L L I I 1 L L L 1 1 L
11 21 n an 51 6/1 mn 8/1 91 10/1 11 121

Figure 7. The load profile of region N.Y.C

It can be inferred from Table 2 and Figure 8. Firstly, the
SVR model has the worst predictive performance because it
can only predict based on linear features in regional load
series. Secondly, TLGAT is compared to models such as
Dlinear, LSTM, and Informer which only capture temporal
features. TLGAT can more accurately predict future regional
load values. Compared to SVR, the MAE of TLGAT has
reduced by 46.87, RMSE by 76.22 and MAPE by 3.68%.
Compared to LSTM, the evaluation metrics for TLGAT were
reduced by 13.98, 17.07, and 0.84%, respectively.

100 - pme—s [ MAE L 160
_ RMSE
] - I 140
80 —
k120
L

060 — 100 &4
< [ IR 2
= 80 R

10 4

T T T T T T
SVR Informer Dlinear LSTM STGCN AGCRN GWNet DAGAT
Models

Figure 8. The performance comparison of models

Furthermore, models capable of capturing spatial
dependencies between regional loads—such as GWNet
outperform those like LSTM which only capture temporal
dependencies within individual regional load series. This
highlights that regional loads exhibit not only strong temporal
autocorrelation but also significant spatial interdependencies.
In this context, the proposed TLGAT employs GAT to
explicitly model the spatial relationships between regional
loads, thereby further enhancing forecasting accuracy.
Compared to STGCN the TLGAT model achieves reductions
in MAE RMSE and MAPE of 0.249, 0.216, and 0.87%
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respectively. This improvement can be attributed to the
adaptive weighting mechanism of GAT which aggregates
information from neighboring nodes in a learned manner,
unlike STGCN which applies fixed and uniform weights
during feature aggregation.

In the TLGAT model, the GAT module assigns distinct
aggregation weights to neighboring nodes via an attention
mechanism, thereby highlighting the relative importance of
information from different neighbors. This weighting strategy
not only enhances the representation of significant neighbor
features but also facilitates the effective capture of spatial
dependencies across regional loads. Moreover, these
aggregation weights are computed per time slice and adapt
dynamically over time. As a result, the model is able to
capture dynamic spatial dependencies that evolve across time
steps

The regional load sequence is decomposed into trend and
fluctuation components via DWT. This decomposition makes
the underlying patterns within the load series more
distinguishable, thereby facilitating the tailored design of a
subsequent dual-channel spatio-temporal module. Each
channel is specifically adapted to the distinct characteristics
of the trend and fluctuation components, leading to more
accurate predictions. Furthermore, adversarial training
contributes to parameter optimization, which enhances the
overall predictive performance of the model.

Table 3. The performance comparison of models

Models MAE RMSE MAPE
SVR 100.32 162.57 7.88%
Informer 88.40 152.77 6.10%
Dlinear 80.95 135.11 5.75%
LSTM 67.43 103.42 5.04%
STGCN 59.60 94.00 4.76%
AGCRN 57.42 91.10 4.64%
GWNet 55.94 88.51 4.60%
TLGAT 53.45 86.35 4.20%

To further evaluate the contributions of adversarial
training and the GAT, ablation studies were conducted on
both components. The baseline model, referred to as DCA,
employs DWT to decompose the regional load series but
incorporates neither GAT nor adversarial training.
Subsequently, the temporal dependencies of each component
are captured through temporal convolution and LSTM. To
further assess the impact of each component, we denote the
model without adversarial training as TCN, which is trained
to minimize the L1 loss. First, as shown in Table 3, the TCN
achieves reductions of 7.1774, 3.3358, and 0.24% across the
evaluation metrics compared to LSTM, indicating that the
GAT effectively captures dynamic spatial dependencies
among regional loads. Second, by integrating GAT and
Discrete DWT with adversarial training, we obtain the
complete TLGAT model. The evaluation metrics of TLGAT
further decrease relative to those of TCN—by 1.7482,
1.0021, and 0.26%, respectively. These results demonstrate

2 EA

that adversarial training facilitates a competitive process
between the prediction network and the adversarial network,
continuously optimizing the parameters of the prediction
model. As a result, the prediction network learns underlying
features of regional loads more effectively, leading to more
accurate forecasts.

Table 4. The performance comparison of each module

Methods MAE RMSE MAPE
w/o LSTM 62.9756 90.6879 4.70%
w/o TCN 55.1982 87.3521 4.46%
w/o Temporal 60.725 88.472 4.80%
w/o GAN 61.439 87.542 4.83%
TLGAT 53.45 86.35 4.20%

The LSTM denotes the model that does not introduce the
GAT and adversarial training and only uses the LSTM to
extract the regional load series. The temporal dependencies
within each decomposed component are captured using
temporal convolution This model is trained with the objective
of minimizing the L1 loss function. As summarized in Table
4, the TCN model shows notable improvements over the
LSTM baseline, with evaluation metrics decreasing by
7.1774, 3.3358, and 1.04%, respectively. These results
indicate that the integration of GAT effectively captures
dynamic spatial dependencies among regional loads,
contributing significantly to forecasting accuracy. the
complete TLGAT model is constructed by further
incorporating adversarial training alongside GAT and DWT.
The evaluation metrics of TLGAT experience additional
reductions of 1.7482, 1.0021, and 0.26% compared to TCN,
highlighting the benefit of adversarial training. This outcome
demonstrates that the adversarial mechanism facilitates a
competitive learning process between the prediction network
and the adversarial network. leading to enhanced model
robustness and refined parameter optimization.

This process continuously optimizes the parameters of the
predictive network model. Ultimately, the prediction network
can accurately learn the potential feature of regional loads to
obtain accurate future regional load values.

The predictive performance of the model can be intuitively
seen from the error distribution diagram. The Figure 9 clearly
shows the distribution of prediction errors between the
TLGAT and multiple comparison models.
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Figure 9. The error distribution comparison of models

From the graph, it can be seen that models with poor
predictive performance, such as ARIMA, have dispersed
error distributions. Or like Autoformer, the error is mainly
distributed far away from 0. It is not difficult to see that the
error distribution of the TLGAT is relatively concentrated,
mainly around 0. This situation demonstrates that compared
to other forecasting models, the TLGAT can achieve smaller
prediction errors in most cases and demonstrate its enormous
potential in regional load forecasting.

The Figure 10 shows the comparative analysis among the
predicted and real values of the TLGAT. As can be seen in
the Figure 10, in most cases the predicted curves always
overlap with the actual curves and change accordingly as the
actual values change. To further analyze the predictive
performance of the TLGAT, four prediction windows are
randomly selected, as shown in the Figure 11. The left part of
the reference line in the figure presents the historical values
of regional load, while the right part shows the predicted
values and corresponding real values. Compared to other
models, the TLGAT model has a smaller deviation between
its predicted values and the real values. Several results
indicate the superiority of the TLGAT in solving the regional
load forecasting problem been effectively improved.

2 EA

5200

—— Load CENTRL
—— TLGAT
—— AGCRN

4800

4400

Y.C Load (MW)

N,

= 4000 4
1200

11004

3600

T T T T
3 19 25 1 6 11 16 21
Time step (hour) Time step (hour)

1

Figure 10. The comparison of real and predicted
values in different sliding windows

1450

) [—— Load CAPITL|
1400 = TLGA |

i \ I
1350 ‘ I\ ‘
1300 n ‘ A V
il
| |
| |
||
\

1250

e

—

1200 \V

1150

\
\
||
1100 \ ’
1050 \ [
\/
\

Load(MW)

1000

950 J

900

Day
Figure 11. The comparison of true and predicted
values for a week

5. Conclusion

Considering the dynamic spatial dependencies among
regional loads and the difficulty in characterizing load time
series features. A short-term regional load forecasting model
based on decoupling mechanism and the GAT is presented in
this paper. It is intended to solve the problem of difficulty in
capturing the dynamically changing spatial dependencies
among regional loads. The DWT is introduced by models to
decompose regional load series into the trend and the
fluctuation. The decoupling mechanism based on the DWT
makes the temporal and spatial dependencies captured by
spatio-temporal networks more accurate. Secondly, the time-
varying aggregation weights between nodes can be learned by
the GAT in the model. Dynamic aggregation weights solve
the problem of difficulty in capturing dynamic spatial
dependencies among regional loads. The prediction accuracy
of the model has In addition, adversarial training based on
GAN optimized model parameters and improved model
prediction performance. The calculation results on the dataset
of the NYISO show that compared with other mainstream
models. The model proposed in this paper has effectiveness
and superiority in short-term regional load forecasting, and
the predicted values are closer to the real values. It effectively
helps to clearly represent the feature of regional load series
and solves the problem of previous methods being unable to
capture dynamic spatial dependencies among loads. In
summary, this model not only improves the accuracy of
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