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Abstract 

Accurate multi-region load forecasting (MRLF) can effectively ensure the stable operation of the power system and is 
essential for the economic dispatch of the power system. However, with the gradual deepening of the dynamic spatial 
dependence among multi-region loads and the unmeasured nature of loads, the challenge is posed to MRLF. To address this 
challenge, a graph attention learning-based load forecasting model for multi-region considering dynamic spatial correlations 
aggregation is presented in this paper. Firstly, the regional load series is decomposed into a trend component and a fluctuation 
component through the discrete wavelet transform. Secondly, a generative adversarial network with the concept of zero-sum 
game is proposed for adversarial training of spatio-temporal prediction models. Furthermore, reasonable future multi-
regional load forecasting values are obtained through a aggregation module that aggregate the trend component and the 
fluctuation component. Finally, the multi-regional load data of the New York Independent System Operator (NYISO) is 
used as a case. Compared with the evaluation metrics of mainstream models, the model presented in this paper is effective 
and superior in MRLF. 
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1. Introduction

With the rapid development of the global economy and
sustained population growth, electricity demand has 
exhibited a rapid upward trend. Coupled with the rapid 
advancement of technology and shifts in lifestyle, electricity 
consumption patterns have become increasingly complex and 
diverse. Meanwhile, load forms have grown more diversified, 
with enhanced volatility.  

However, accurate load forecasting is beneficial for 
maintaining the stable operation of the power system. 
Reasonably adjust the power supply by forecasting changes 
in load. Thus, it achieves the purpose of maintaining the 
stable operation of the power system and realizing the balance 

*Corresponding author. Email: 2125786732@qq.com 

between the supply and demand of the power system. 
Accurate load forecasting can help power companies 
formulate scheduling programs in advance to ensure the 
stable and reliable operation of the power system. It can also 
help to rationally regulate generator power, enhance the 
economic effectiveness of the power system, and decrease the 
influence on environmental pollution. Therefore, accurate 
load forecasting is an indispensable part of ensuring the stable 
operation of the power system. 

Short-term load forecasting (STLF) methods include 
traditional methods and artificial intelligence methods. 
Traditional STLF models include regression models[1], 
Autoregressive Integrated Moving Average (ARIMA) 
models[2][3], grey relational degree models[4], and 
exponential smoothing models[5]. However, most traditional 
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models cannot effectively forecast nonlinear load series due 
to their simple structure[6]. With the continuous development 
of computing power and artificial intelligence algorithms, 
artificial intelligence models are gradually being applied in 
the field of STLF[7].  

As a subset of machine learning, deep learning utilizes 
multi-layer neural networks to capture intricate mappings 
between inputs and outputs, while also mitigating the gradient 
vanishing problem commonly encountered in shallower 
models[8]. Currently, many scholars have applied deep 
learning models to load forecasting. Özüpak et al. [9] 
proposed a hybrid deep learning model for predicting short-
term load demand by combining recurrent neural networks 
and long short term memory network (LSTM). Sun et al. [10] 
proposed a short-term load forecasting method based on 
gated recurrent units (GRU) and stochastic configuration 
network (SCN). This method achieves multi-scale power load 
forecasting by adaptively capturing high-frequency intrinsic 
mode functions through GRU and processing low-frequency 
IMF through SCN. Han et al. [11] proposed a short-term load 
forecasting model that combines an improved sand cat swarm 
algorithm (MSCSO) with a self attention time convolutional 
network. MSCSO effectively optimized the key parameters 
of the model. This significantly improves the accuracy and 
robustness of the model.  

The methods described above primarily model the 
temporal dependencies in load series to improve forecasting 
accuracy. However, power load also exhibits significant 
spatial dependencies[12]. Therefore, to enhance load 
prediction accuracy, the spatial dependencies among loads 
should not be neglected. Scholars are increasingly focusing 
on this aspect to improve the precision of load forecasts. 
Vieira et al.[13] proposed to apply spatial convolution to the 
load forecasting problem to capture the spatial dependencies 
between neighboring load nodes through spatial convolution. 
This method significantly improves forecasting performance 
compared to autoregressive methods. Lin et al. [14] used 
graph neural networks to capture hidden spatial dependencies 
between different houses. Compared with the baseline, the 
accuracy of residential load forecasting has been significantly 
improved. Liu et al. [15] proposed a short-term load 
forecasting model based on dynamic adaptive adversarial 
graph convolutional network. It generates a dynamic adaptive 
graph through node embedding method for the spatio-
temporal relationship between loads. 

Although the above methods have improved prediction 
accuracy to some extent, previous work has overlooked some 
problems. Firstly, the spatial dependencies among loads are 
dynamically changing, and most existing methods are unable 
to capture these dynamic spatial dependencies[16][17]. As 
shown in Figure 1, edges represent the spatial dependencies 
among nodes. The Figure 1 shows that the spatial 
dependencies of nodes exhibit dynamic variations over time. 
Secondly, as a type of time series data, load data can be 
decomposed into various components, including trend, 
seasonality, and residuals, each exhibiting distinct 
characteristics[18][19]. However, most existing methods 
overlook this characteristic. There is no specific network 
designed for different components to capture features, which 

seriously affects the prediction accuracy. In addition, most 
previous load forecasting models simply aimed to minimize 
L1 loss or L2 loss. However, overly simplified loss functions 
may not be sufficient to improve some of the model 
parameters, which affecting the improvement of model 
prediction performance[20][21]. 

2T − 1T − T  
 

Figure 1. Dynamic spatial dependencies 

To address the above problems, a hybrid model with 
temporal mechanism and LSTM graph attention network 
(TLGAT) is presented in this paper. This model not only 
effectively decouples the multi-regional load series into trend 
component and fluctuation component, but also captures the 
dynamic temporal and spatial dependencies among regional 
loads through specific spatio-temporal networks, improving 
forecast accuracy. The main work of this paper is summarized 
as follows: 

(i) A MRLF model based on graph attention learning is 
proposed, which is able to learn the interactions among 
nodes at different moments and effectively extracts the 
dynamic spatial correlations among multi-region loads, 
thus improving the load forecasting accuracy; 

(ii) Discrete Wavelet Transform (DWT) is employed as a 
method to decouple multi-region load series. The 
original region load series are decoupled into low-
frequency and high-frequency series by the DWT, which 
clearly represents the changing features of the region 
load series. Subsequently, temporal convolution and 
LSTM are leveraged to capture more accurate and 
effective temporal dependencies in each series;  

(iii) Generative adversarial networks(GAN) are harnessed 
for adversarial training of models. The model obtains 
adversarial losses through adversarial training, and 
combines adversarial loss with L1 loss as the training 
objective to optimize model parameters and improve 
model prediction performance; 

(iv) The multi-regional load data of the NYISO is used to 
validate the performance of the TLGAT. Compared with 
several advanced models, the case study results 
demonstrate that the TLGAT has superiority in MRLF. 

2. Problem Description 

Accurate regional load forecasting can balance the 
relationship between power supply-demand and improve the 
efficiency of power dispatch. The problem of MRLF aims to 
predict the regional load in the future by studying the 
potential relationships among historical multi-regional load 
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data and relevant influencing factors such as geographical 
location, meteorological conditions, and economy. 
Specifically, i

tx ∈  denotes the multi-regional load of the i
th regional load node at time step t . denotes the regional load 
of all regional load nodes at time step t  . 

1
1 1: 1{ , } T N

T TX X X ×= ∈   signifies the regional load of all 

regional load nodes in time slice 1T . The aim of this paper is 

to learn a mapping function θF  based on historical regional 

load data from the past 1T   steps and use this mapping 

function θF  to map the regional load for the future 2T  steps. 
The problem of MRLF can be summarized as: 
 

2 1 11 2 1 2{ , , , }= { , , , }t t t T t T t T tX X X X X Xθ+ + + − + − + F        (1) 
 
where θ  represents the learnable parameters. 

However, in addition to temporal dependencies, spatial 
dependencies are also present in multi-regional load series. 
Therefore, it is necessary to construct a power system 
topology graph ( , , )G V E A=   to summarize the spatial 
dependencies among regional loads. V  represents the set of 
regional load nodes, E  denotes the set of busbars connecting 
two regional load nodes, and the graph adjacency matrix A  
is utilized to describe the spatial dependencies between any 
two regional load nodes. Therefore, the problem of MRLF 
will be redefined as: 

 

2 1 11 2 1 2{ , , , }= ({ , , , }, )t t t T t T t T tX X X X X X Gθ+ + + − + − + F     (2) 
 
Model Overview: The Figure 2 shows the structure of the 

TLGAT, which mainly includes three main parts: 
1) Decoupling module: Firstly, the decoupling module 

consists of a multi-level DWT, an inverse discrete wavelet 
transform (IDWT), and fully connected layers (FC). The 
multi-historical regional load series is decoupled into a low-
frequency series and several high-frequency series by the 
multi-level DWT. Subsequently, the trend and fluctuation are 
derived through the IDWT and FC. 

2) Dual channel Spatio-temporal Module: Due to the 
different characteristics between trend and fluctuation, 
temporal attention and causal convolution are employed to 
capture the temporal features of trend and fluctuation, 
respectively. The graph attention networks (GAT) is 
leveraged to capture the dynamic spatial dependencies among 
multi-regional loads.  

3) Fusion and Adversarial Training Module: Based on the 
spatio-temporal features learned by the dual channel spatio-
temporal module, future trends and fluctuations can be 
predicted by two predictors. Then, the adaptive fusion 
module is employed to fuse future trend and fluctuation to 
obtain future regional loads. Subsequently, the GAN is 
introduced for adversarial training. 

3. Methodology 

3.1. Decoupling Module 

The complex data from the real world typically consists of 
multiple components[22][23]. To clearly represent the data, 
it can be decomposed into various components. Therefore, in 
order to clearly represent the load data for capturing the 
feature of load series, the regional load series is decomposed 
into trends and fluctuations. Furthermore, there is no mutual 
influence between trends and fluctuations. In other words, 
when a component of the regional load series changes, other 
components will not be affected [24]. 

To decompose the regional load series, the DWT is applied 
in this paper to decompose the load series in the framework 
of MRLF. The reason for choosing the DWT is that the load 
series is similar to the wind power series, both of which are 
discrete series[25]. The DWT is designed specifically for 
processing discrete series [26]. Figure 3 shows an example of 
a simple DWT. In the Figure 3, the first level DWT decouples 
the input series 1

1:
T

TX ∈   into a low-frequency series 
1

1
2
T

LX ∈  and a high-frequency series 
1

1
2
T

HX ∈  through a 

low-pass filter LPf  and a high-pass filter HPf . Similarly, the 

second level DWT decomposes 
1

1
2
T

LX ∈   into 
1

2
4
T

LX ∈  

and 
1

2
4
T

HX ∈ .The process can be depicted as: 
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where, ⊗   represents convolution calculation, 2↓  
represents reducing the sampling rate by 2. 

According to (4), in the process of the DWT, the time 
series length of low-frequency and high-frequency series will 
become shorter. To ensure consistent series length, it is 
necessary to perform recovery sampling operations on 

2LX , 

2HX   and 
1HX  . Then, an inverse low-pass filter and an 

inverse high-pass filter are used to implement the IDWT. 
Finally, a FC is employed to obtain trend 1T N d

trendX × ×∈  

and fluctuation 1T N d
flucX × ×∈ . The IDWT can be described 

as: 
 

2 2 2( ( ) )LP T T
trend LP LP

P
L

LX W f f X b↑ ↑= ⊗ ⊗ +              (4) 

 

2 2 2
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HP T T
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              (5) 
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where, T
LPf   and T

HPf   respectively denotes an inverse low-
pass filter and an inverse high-pass filter, 2↑  represents the 
recovery sampling operation, ,LP HP dW W ∈   and 

,LP HP db b ∈  represent learnable parameters. 
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Figure 2. The structure of the TLGAT 
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Figure 3. Two level discrete wavelet transform 

3.2. LSTM and Temporal Convolution 

The trend and fluctuation obtained through decoupling 
module decomposition have completely opposite temporal 
features. The change in trend lasts for a long time and has a 
relatively small amplitude, while the change in fluctuation is 
usually sudden and has a short duration and a large amplitude.  

Due to the rapid and significant fluctuations trend, 
temporal convolution is used to capture temporal 
characteristics. Temporal convolution is a method 
specifically designed for processing time series data within 
CNNs, characterized by the fact that the output at the current 
time step depends only on the current and a limited number 
of previous time steps of input. This structure enables it to 
effectively capture the short-term dependencies that change 
over time within the load series. The temporal convolution 
structure is shown in Figure 4. 

Temporal convolution can be described as: 
 

0
( * )( ) ( ) ( ),C C

K
X f t f X t

τ
τ τ

=

= −∑              (6) 

 
where, 1TX ∈  represents time series, K

Cf ∈  denotes 

the filter, and K  indicates the size of the convolution kernel 

for temporal convolution. Therefore, the temporal 
representation of fluctuation convX  as: 
 

( * ),conv
flucX ReLU Xθ=   (7) 

 
where, θ  signifies the learnable parameters of the model, 
and ( )ReLU ⋅  denotes the linear rectification function. 

After LSTM and Temporal Convolution to extract 
temporal dependencies, 1, T N datt conv

trend flucX X × ×∈  are obtained. 

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
Input

Hidden 
Layer

Output

1d =

2d =

 
 

Figure 4. Temporal convolution network 

Therefore, for trend, there is a strong correlation between 
any two time slices of the trend. For fluctuation, time slices 
that are strongly correlated are often adjacent time slices, and 
in comparison, those with time intervals further apart have 
relatively weaker correlations. Based on trend characteristics, 
LSTM is selected to capture the temporal features of the 
trend. The LSTM is shown in Figure 5. 
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Figure 5. The sstructure of LSTM 

As a powerful sequence modeling unit, LSTM 's gating 
mechanism can dynamically adjust the information flow and 
determine when to update and retain what information. This 
enables LSTM to effectively capture the importance 
differences of different time steps in the input sequence, 
thereby focusing on key information and improving the 
performance and efficiency of the model. Therefore, the 
characteristics of LSTM enable it to reasonably solve the 
problem of capturing the temporal features of trends. It can 
not only realize the interaction of all historical information 
through its circular connection, but also selectively retain 
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more important historical information and integrate new 
information through the forgetting gate and the input gate. 
The process of obtaining the trend output on the time slice 
can be described as: 

 
( 1)

( 1)

( 1)

( 1)

),

( ),

( ),

tanh(

( ),

* tanh(
*

)
c = *c +

t ii t ii hi t hi

t if t if hf t hf

t ig t ig hg t hg

t io t io ho t ho

t t

t t

t t t

t

i W x b W h b

f W x b W h b

g W x b W h b

o W x b W h b

f i g
h o c

σ

σ

σ

−

−

−

−

= + + +


= + + +
 = + + +


= + + +


 =

         (8) 

where, th  signifies the output of trend of node at time slice 
t , W and b denotes learnable parameters, σ  represents the 
exponential function, tf , ti and to indicates the temporal 
correlation between the time slices t  and i  of node n  on the 
trend. 

3.3. Graph Attention Networks 

In fact, the future regional load not only depends on its own 
historical load data, but also closely related to the historical 
load status of other regions. Therefore, the spatial correlation 
characteristics should be regarded as the intrinsic attributes in 
the regional load sequence. However, the load nodes are often 
non-uniform and irregularly distributed in space, which 
constitutes non-Euclidean structural data. Obviously, it is 
difficult for traditional neural networks to effectively extract 
spatial features from such data with complex topological 
relationships. Graph neural network is designed to deal with 
the data of irregular topology, which can mine the implicit 
spatial correlation between regional loads. In addition, the 
interaction between load nodes in different regions is not 
static and fixed, but dynamically evolves with time and 
external conditions. These dynamic interactions often contain 
key information. Therefore, the GAT can effectively capture 
the potential dynamic spatial dependencies between regional 
loads. 

Unlike the traditional GCN, the GAT employs an attention 
mechanism to adaptively determine the weights between 
neighboring nodes, enabling weighted aggregation of 
neighborhood information. Moreover, this mechanism can 
capture time-varying weights of neighbors across different 
time steps, thereby dynamically modeling the spatial 
dependencies among nodes. In contrast, the GCN relies on 
fixed weights for neighborhood aggregation, which limits its 
ability to represent dynamic spatial interactions. For this 
reason, the GAT is adopted in this study to effectively capture 
the spatial dependencies across regional load data. The spatial 
correlation ,n i

tβ  between node n  and node i  in time slice t  
can be described as: 

 

,

1

( ) ,
( )

,

,

K n Q i
n i S t S t
t N

K n Q i
S t S t

j

exp W x W x

exp W x W x
β

=

=

∑
  (9) 

 
where, ,Q K d d

S SW W ×∈  indicates learnable parameters. The 
output of node n  in time slice t  can be described as: 
 

,

1
( )

N
n n i V n
t t S t

i
x W xβ

=

=∑                         (10) 

 
where, dV

S
dW ×∈  denotes learnable parameters. att

trendX  and 
conv
flucX  can be represented as 1, T N dgat gat

trend flucX X × ×∈  after 
passing through the GAT. 

By overlaying carefully designed dual channel spatio-
temporal modules L   times, different spatio-temporal 
features in trend and fluctuation can be obtained. 
Subsequently, future regional load values can be inferred 
through Aggregation module. 

3.4. Aggregation and Adversarial Training 

The predictor composed of two FC converts ,gat gat
trend flucX X  

into the predicted representation 2ˆ ˆ,trend fl
Tf

uc
N dfy y × ×∈  of 

trend and fluctuation. To obtain the representation 
 2

f T N dy × ×∈  of future regional load values, it is necessary 

to Aggregation ˆ f
trendy  and ˆ f

flucy . The changes in regional load 
are always frequent, leading to the problem of distribution 
shift in the fluctuating components of regional load. To 
address distribution bias and obtain more accurate prediction 
values. It is necessary to sum the fluctuations within time 
slice t  with weights, which are calculated by LSTM. It 
effectively solves the problem of regional distribution offset 
and obtains more accurate future regional load values. The 
entire process of Aggregation can be described as: 

 
1

1

1

1

,
1

,

1

ˆ ˆ ˆ( )

ˆ ˆ(( ) ( ))
,

ˆ ˆ(( ) ( ))

n n n

t i
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n n
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Q f
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K f T Q
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trend fluc
f

F F
j T

y y W y

exp W y W y
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η

η

+

= +

+

= +


= +





=



∑

∑

        (11) 

 
where, , ,Q K V

F F FW W W  signifies learnable parameters. After 

obtaining the future regional load representation 
f

y , the 

future regional load values  2T Ny ×∈  can be obtained 
through a FC. Subsequently, the GAN is introduced for 
adversarial training to further optimize the parameters of the 
model. 
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The basic construction of the GAN is illustrated in Figure 
6. The GAN consist of a generator and a discriminator, which 
continuously compete to optimize their parameters. To obtain 
more appropriate parameters for the model, adversarial 
training is performed based on future regional load values. 
Firstly, the discriminator judges the future regional load 
values and returns a discrimination result. Then, based on the 
discrimination results, the model parameters of the generator 
are further optimized to enable the generator to forecast more 
accurate future regional load values. However, more accurate 
future regional load values will also make the discriminator 
more rigorous. Therefore, in the process of the generator and 
discriminator playing against each other. Appropriate 
parameters can be obtained by the model to accurately predict 
future regional loads. 

G

D
Raw Data

Y

 

 

ŷ

 
Figure 6. The structure of GAN 

For the GAN, the judgment result of the discriminator can 
be expressed through a binary cross entropy, which can be 
expressed as: 

 

1

1( , ) [log ( ) log(1 ( ( )))]
m

i
V y X

n =

= + −∑G D D D G       (12) 

 
Equation (12) denotes the average expression of binary 

cross entropy for n  samples, where ( ( ))XD G  is denoted as 
the probability of determining the generated data to be true, 
X  represents random data, and yy  denotes real data, ( )yG y  

signifies the data generated by the generator, ( )yD  indicates 
the probability that the discriminator judges the real data y  
as true. 

For the discriminator, it aims to maximize the loss. For the 
generator, it seeks to minimize the loss. The discriminator and 
generator always play against each other during the training 
process, alternating to become stronger. Finally, both will 
only tend towards a balance point. Therefore, the adversarial 
training process can be described as: 

 
[ ]
[ ]

~ ( )

~ ( )

log ( )
min max ( , )

log(1 ( ( )))
da

X

tay P y

X P X

y
V

X

= 
+ −

G D

D
D

x
G

D G

E

E
 (13) 

 

where, [ ]~ ( ) log ( )
datay P y yDE  denotes the expectation of 

log ( )yD  when y  is the real data, 
[ ]~ ( ) log(1 ( ( )))

XX P X X−D GEx  denotes the expectation of 

log(1 ( ( )))X−D G  when X  is the random data. 

3.5. Objective Function 

The process of obtaining an accurate short-term regional load 
forecasting model is the process of minimizing the objective 
function. The entire objective function is mainly composed of 
two parts, one is the L1 loss: 

 
1 2

1 1 1
ˆ| |

T T N
n n
t t

t T
Load

n
L x y

+

= + =

= −∑ ∑                       (14) 

 
The other part is the adversarial loss of the GAN. The 

model task is to generate regional load values that are close 
to the actual values. This is equivalent to the discriminator in 
the GAN being unable to distinguish the authenticity of the 
regional load predicted by the model. Adversarial losses can 
be described as: 

 
log(1 ( ( )))L X= − −D D G                       (15) 

 
Therefore, the goal of the regional load forecasting model 

is to minimize the objective functions: 
 

LoadL LL λ= + D                             (16) 
 
where λ  is the weight. 

4. Experiment Analysis 

4.1. Dataset Preprocessing 

The regional load data of 11 load areas in New York for the 
whole year of 2022 are used to validate the performance of 
the TLGAT proposed in this paper. The load profile of area 
N.Y.C is shown in Figure 7. 

The load data sampling interval is 1 hour with 8760 data 
points per regional load node data. The detailed descriptive 
statistical data of the dataset is shown in Table 1.  

Table 1. The statistical data of the dataset 

Nodes Time Range Granularity Time 
steps Unit 

11 January 1, 2022- 
December 31, 2022 1hour 8760 MW 

The hyperparameters (including GAN) of each module are 
shown in Table 2. 
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The Z-score method is employed to normalize the dataset 
in this paper. The dataset is split across a training, validation, 
and test set with a proportion of 6:2:2. The normalization 
process can be described as: 

 
mean

norm
std

x xx
x
−

=                              (17) 

 
where, meanx   represents the average value of all regional 
loads, stdx   denotes the standard deviation of all regional 
loads, x  signifies the true value of regional loads, and normx  
indicates the normalized values. In this paper, the regional 
load values of historical 1 12T =  hours are used to forecast the 
regional load values of future 2 12T =  hours. 

Table 2. The hyperparameters of each module 

Name Value Name Value 
Batch-size 64 DWT level 1 
Input-dim 1 Output-dim 1 
Features 128 Kernel-size 2 

Num-layer 2 Enpoch 100 
Wavelet Coiflets Learning rate 0.001 

Weight( λ ) 1 Dropout 0.2 

4.2. Model parameter setting and evaluation 
metrics 

The Mean Absolute Error (MAE), Mean Absolute Percentage 
Error (MAPE) and Root Mean Square Error (RMSE) are 
utilized to evaluate the predictive performance of the 
TLGAT. The three evaluation metrics can be described as: 
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where, n  denotes the prediction step size, ˆiy  represents the 
future regional load values, and iy  signifies the regional 
load real values. 

4.3. Case Results and Discussion 

To validate the performance of the TLGAT, various 
mainstream models such as Informer, LSTM, STGCN, 
AGCRN, GWNet, etc. are selected in this paper to compare 
their predictive performance. All comparison models and the 
TLGAT evaluation metrics are shown in Table 3 and Figure 
8. The evaluation metrics obtained are the average of three 
experiments. 
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Figure 7. The load profile of region N.Y.C 

It can be inferred from Table 2 and Figure 8. Firstly, the 
SVR model has the worst predictive performance because it 
can only predict based on linear features in regional load 
series. Secondly, TLGAT is compared to models such as 
Dlinear, LSTM, and Informer which only capture temporal 
features. TLGAT can more accurately predict future regional 
load values. Compared to SVR, the MAE of TLGAT has 
reduced by 46.87, RMSE by 76.22 and MAPE by 3.68%. 
Compared to LSTM, the evaluation metrics for TLGAT were 
reduced by 13.98, 17.07, and 0.84%, respectively. 
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Figure 8. The performance comparison of models 

Furthermore, models capable of capturing spatial 
dependencies between regional loads—such as GWNet 
outperform those like LSTM which only capture temporal 
dependencies within individual regional load series. This 
highlights that regional loads exhibit not only strong temporal 
autocorrelation but also significant spatial interdependencies. 
In this context, the proposed TLGAT employs GAT to 
explicitly model the spatial relationships between regional 
loads, thereby further enhancing forecasting accuracy. 
Compared to STGCN the TLGAT model achieves reductions 
in MAE RMSE and MAPE of 0.249, 0.216, and 0.87% 
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respectively. This improvement can be attributed to the 
adaptive weighting mechanism of GAT which aggregates 
information from neighboring nodes in a learned manner, 
unlike STGCN which applies fixed and uniform weights 
during feature aggregation.  

In the TLGAT model, the GAT module assigns distinct 
aggregation weights to neighboring nodes via an attention 
mechanism, thereby highlighting the relative importance of 
information from different neighbors. This weighting strategy 
not only enhances the representation of significant neighbor 
features but also facilitates the effective capture of spatial 
dependencies across regional loads. Moreover, these 
aggregation weights are computed per time slice and adapt 
dynamically over time. As a result, the model is able to 
capture dynamic spatial dependencies that evolve across time 
steps 

The regional load sequence is decomposed into trend and 
fluctuation components via DWT. This decomposition makes 
the underlying patterns within the load series more 
distinguishable, thereby facilitating the tailored design of a 
subsequent dual-channel spatio-temporal module. Each 
channel is specifically adapted to the distinct characteristics 
of the trend and fluctuation components, leading to more 
accurate predictions. Furthermore, adversarial training 
contributes to parameter optimization, which enhances the 
overall predictive performance of the model. 

Table 3. The performance comparison of models 

Models MAE RMSE MAPE 
SVR 100.32 162.57 7.88% 

Informer 88.40 152.77 6.10% 
Dlinear 80.95 135.11 5.75% 
LSTM 67.43 103.42 5.04% 

STGCN 59.60 94.00 4.76% 
AGCRN 57.42 91.10 4.64% 
GWNet 55.94 88.51 4.60% 
TLGAT 53.45 86.35 4.20% 

 
To further evaluate the contributions of adversarial 

training and the GAT, ablation studies were conducted on 
both components. The baseline model, referred to as DCA, 
employs DWT to decompose the regional load series but 
incorporates neither GAT nor adversarial training. 
Subsequently, the temporal dependencies of each component 
are captured through temporal convolution and LSTM. To 
further assess the impact of each component, we denote the 
model without adversarial training as TCN, which is trained 
to minimize the L1 loss. First, as shown in Table 3, the TCN 
achieves reductions of 7.1774, 3.3358, and 0.24% across the 
evaluation metrics compared to LSTM, indicating that the 
GAT effectively captures dynamic spatial dependencies 
among regional loads. Second, by integrating GAT and 
Discrete DWT with adversarial training, we obtain the 
complete TLGAT model. The evaluation metrics of TLGAT 
further decrease relative to those of TCN—by 1.7482, 
1.0021, and 0.26%, respectively. These results demonstrate 

that adversarial training facilitates a competitive process 
between the prediction network and the adversarial network, 
continuously optimizing the parameters of the prediction 
model. As a result, the prediction network learns underlying 
features of regional loads more effectively, leading to more 
accurate forecasts. 

Table 4. The performance comparison of each module 

Methods MAE RMSE MAPE 
w/o LSTM 62.9756 90.6879 4.70% 
w/o TCN 55.1982 87.3521 4.46% 

w/o Temporal 60.725 88.472 4.80% 
w/o GAN 61.439 87.542 4.83% 
TLGAT 53.45 86.35 4.20% 

 
The LSTM denotes the model that does not introduce the 

GAT and adversarial training and only uses the LSTM to 
extract the regional load series. The temporal dependencies 
within each decomposed component are captured using 
temporal convolution This model is trained with the objective 
of minimizing the L1 loss function. As summarized in Table 
4, the TCN model shows notable improvements over the 
LSTM baseline, with evaluation metrics decreasing by 
7.1774, 3.3358, and 1.04%, respectively. These results 
indicate that the integration of GAT effectively captures 
dynamic spatial dependencies among regional loads, 
contributing significantly to forecasting accuracy. the 
complete TLGAT model is constructed by further 
incorporating adversarial training alongside GAT and DWT. 
The evaluation metrics of TLGAT experience additional 
reductions of 1.7482, 1.0021, and 0.26% compared to TCN, 
highlighting the benefit of adversarial training. This outcome 
demonstrates that the adversarial mechanism facilitates a 
competitive learning process between the prediction network 
and the adversarial network. leading to enhanced model 
robustness and refined parameter optimization. 

This process continuously optimizes the parameters of the 
predictive network model. Ultimately, the prediction network 
can accurately learn the potential feature of regional loads to 
obtain accurate future regional load values. 

The predictive performance of the model can be intuitively 
seen from the error distribution diagram. The Figure 9 clearly 
shows the distribution of prediction errors between the 
TLGAT and multiple comparison models. 
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Figure 9. The error distribution comparison of models 

From the graph, it can be seen that models with poor 
predictive performance, such as ARIMA, have dispersed 
error distributions. Or like Autoformer, the error is mainly 
distributed far away from 0. It is not difficult to see that the 
error distribution of the TLGAT is relatively concentrated, 
mainly around 0. This situation demonstrates that compared 
to other forecasting models, the TLGAT can achieve smaller 
prediction errors in most cases and demonstrate its enormous 
potential in regional load forecasting. 

The Figure 10 shows the comparative analysis among the 
predicted and real values of the TLGAT. As can be seen in 
the Figure 10, in most cases the predicted curves always 
overlap with the actual curves and change accordingly as the 
actual values change. To further analyze the predictive 
performance of the TLGAT, four prediction windows are 
randomly selected, as shown in the Figure 11. The left part of 
the reference line in the figure presents the historical values 
of regional load, while the right part shows the predicted 
values and corresponding real values. Compared to other 
models, the TLGAT model has a smaller deviation between 
its predicted values and the real values. Several results 
indicate the superiority of the TLGAT in solving the regional 
load forecasting problem been effectively improved. 

 
Figure 10. The comparison of real and predicted 

values in different sliding windows 

 
Figure 11. The comparison of true and predicted 

values for a week 

5. Conclusion 

Considering the dynamic spatial dependencies among 
regional loads and the difficulty in characterizing load time 
series features. A short-term regional load forecasting model 
based on decoupling mechanism and the GAT is presented in 
this paper. It is intended to solve the problem of difficulty in 
capturing the dynamically changing spatial dependencies 
among regional loads. The DWT is introduced by models to 
decompose regional load series into the trend and the 
fluctuation. The decoupling mechanism based on the DWT 
makes the temporal and spatial dependencies captured by 
spatio-temporal networks more accurate. Secondly, the time-
varying aggregation weights between nodes can be learned by 
the GAT in the model. Dynamic aggregation weights solve 
the problem of difficulty in capturing dynamic spatial 
dependencies among regional loads. The prediction accuracy 
of the model has In addition, adversarial training based on 
GAN optimized model parameters and improved model 
prediction performance. The calculation results on the dataset 
of the NYISO show that compared with other mainstream 
models. The model proposed in this paper has effectiveness 
and superiority in short-term regional load forecasting, and 
the predicted values are closer to the real values. It effectively 
helps to clearly represent the feature of regional load series 
and solves the problem of previous methods being unable to 
capture dynamic spatial dependencies among loads. In 
summary, this model not only improves the accuracy of 
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regional load forecasting but also provides a basis for 
capturing the dynamically varying spatial dependencies 
among regional loads, thereby enhancing its effectiveness 
and credibility in engineering applications. 
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