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Abstract

With the rapid development of human society, resource shortages and environmental degradation have become increasingly
pressing issues. To address these challenges, solar energy has garnered significant attention due to its high efficiency, safety,
and pollution-free nature. This paper proposes a novel short-term photovoltaic power prediction framework based on an
integrated LMD-IPSO-LSVM approach. The model's key innovation lies in its hierarchical decomposition-optimization
architecture: First, Local Mean Decomposition (LMD) addresses the non-stationary and nonlinear characteristics of PV
power data by decomposing original signals into physically meaningful Product Functions (PFs). Second, an Improved
Particle Swarm Optimization (IPSO) algorithm featuring an adaptive inertia weight mechanism is developed to optimize

LSVM hyperparameters for each PF component. This strategic integration enables the model to simultaneously capture
complex temporal patterns while maintaining superior generalization capability. Experimental validation demonstrates that
our IPSO achieves significantly faster convergence (46.3% improvement in convergence speed) and enhanced optimization
precision compared to standard PSO, providing a solid foundation for accurate power forecasting. In order to evaluate the
proposed methodology, comparative models including standalone LSVM and PSO-LSVM are also established and tested
on the same dataset. Experimental results demonstrate that the proposed hybrid model called LMD-IPSO-LSVM achieves
high prediction accuracy and better performance compared with other algorithms.
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1. Introduction
its inherent intermittency and instability pose challenges to
With the continuous advancement of society, electricity  grid security and operation. Therefore, improving the
consumption has risen significantly. In light of both green  accuracy of PV power prediction is of significant importance
environmental protection and economic development needs,  for the safe and stable operation of power systems[1].
the adoption of green energy has become a prevailing trend. At present, numerous studies have been conducted on PV
Among various renewable sources, solar energy stands out  power forecasting, which can be broadly categorized into
for being inexhaustible and readily available. For example,  girect prediction methods[2] and indirect prediction
employing solar energy systems enables the operation of
police facilities and specialized equipment with a renewable
power source, which makes photovoltaic (PV) power
generation forecasting a focus of grid management. However,

methods[3]. Indirect prediction relies on physical models,
such as all-sky imaging and satellite-based weather
prediction. Under ideal weather conditions, physical models
can yield satisfactory results; however, their application in

"Corresponding ahthor. Email: myj 2016@163.com

EAI Endorsed Transactions on
| Energy Web
1 | Volume 12| 2025 |


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Y.Ma, M. Jiang and L. Zhang

real-world scenarios tends to be complex. In contrast, direct
prediction methods utilize historical data combined with
artificial intelligence algorithms to build neural network
models for forecasting. Due to their lower cost and higher
practicality, these approaches are more widely adopted in the
field. Common techniques include time series analysis[4], BP
neural networks[5], support vector machines (SVM)[6], and
SO on.

Although the quality of historical data is a critical determinant
of PV power forecasting accuracy, data preprocessing can
effectively mitigate the impact of outliers. This, in turn,
allows machine learning models to more precisely analyze
influencing factors and improve prediction performance. In
recent years, common outlier detection methods include the
optimal variance algorithm[7], the interquartile range (IQR)
8 and Isolation Forest (iForest)[9]. While the optimal
variance algorithm can identify abnormal operation data of
wind turbines, its detection efficiency is relatively low. The
IQR method involves statistical analysis of historical data and
can effectively detect anomalies, but the process is
computationally intensive. Among various anomaly detection
algorithms, iForest stands out for its simplicity, high
detection efficiency, and accuracy, making it widely
applicable.

Data clustering and analysis methods include the grey
correlation coefficient method, K-means algorithm[10],
fuzzy C-means clustering[11], among others. The grey
correlation method tends to be subjective and struggles to
objectively reflect the influence of different weather factors
on PV output. The K-means algorithm relies on random initial
selection of K values, which may lead to inaccurate data
partitioning. In contrast, fuzzy C-means clustering optimizes
an objective function to automatically classify data, offering
more adaptive performance[12].

Traditional PV prediction methods often focus on optimizing
algorithms without adequately considering the varying
importance of different samples during model training,
leading to limited accuracy. Moreover, the typical time
interval for PV power prediction is one hour, which falls short
of meeting higher grid scheduling requirements. To address
these issues, this paper proposes a weighted support vector
machine model based on the fuzzy C-means learning
algorithm, designed to fully account for the similarity
between historical and forecast power data[13].

2. Basic theory

2.1. Local Mean Decomposition

Basic principles
For x(t ), the specific decomposition process is as follows:

1) Select each local extreme point 7, in the original signal
x(t ), and use #;, and 7., to calculate the average value
of adjacent local extreme points 1,
mi — ni + ni+1
2
The corresponding time of each extreme point is £, and

t

the corresponding time of each extreme point. The extended
straight line is processed by the moving average method to

(1

i - The obtained m1; is connected and extended between

obtain the local mean function m, ¢

2) Calculate the local amplitude a,
absolute value of the difference between adjacent extreme

according to the
points 7, and n,,:

n —n.
a, = M )
2
The moving average method is used to process the straight
line a; extending between the corresponding times 7,
and f,,,, ofeachextreme point, and the local mean function

all(t) can be obtained.
3) Separate the local mean function m“(l‘ ) from the
original signal X (t ) , and demodulate the separated function

with a,,(t):
hll(t):x(t)_mll(t) 3)

s (1)= %8 @

Since the decomposed pf component is the product of the
envelope function and pure frequency modulation function, it

is necessary to judge whether 511(t ) is pure frequency
modulation function. Through the above steps, the envelope
function alz(t) of S“(t) is obtained and judged
according to the following formula:

~1<s, (<1

(%)
A1(ns1) (t) =1

If Eq. (5) is satisfied, it is a pure FM function. If not, repeat
the above iteration for §;, (t ) until a pure FM signal s,, (t)

satisfying the conditions is obtained:
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hll(t):x(t)_mll(t)

Iy (8) = s, (1) = my, (1) (6)

hln(t) = Sl(n—l)(t)_mln(t)

4) Multiply all envelope functions in the iterative process to
obtain envelope signal @, (l‘ ):

a(0)=a,0)a,()-a,0)=[Ja,0) )

5) The first pf component of the original signal x(t ) can be
obtained by multiplying al(t ) and s, (t ):

PF,(t)=a,(1)s,,(¢) @®)

6) Separate PF (l‘ ) from the original signal x(t ) to obtain
anew signal 1, (l‘ ), repeat the above steps as a new original

signal and cycle for & times until u, (t ) is a monotonic

function:

u,(t)=x(t)- PF,(1)
“2(t):u1(t)—PF2(t) )

uk(t):uk—l(t)_PF}c(t)

The original signal will be decomposed into multiple pf
components and a sum of (t) :

k

x(t)=>_PF,(t)+u,(t) (10)

p=1

LMD simulation signal
analysis

Traditional signal processing methods, such as the Fourier
transform and wavelet transform, use kernel functions to
locally transform the original signal to obtain the
corresponding local fluctuation characteristics ['* According
to the basic principles and characteristics of the above LMD
method, the LMD method separates, recombines, and
integrates the amplitude and frequency of the original signal
into an overall time spectrum through the characteristic scale
of the signal, reflecting the local fluctuation characteristic
information contained in the original signal. Give a
simulation signal for testing, and compare the influence of the
Fourier transform method, wavelet transform method,
wavelet transform method and LMD method on signal

test and comparative

processing, signal x(t )

< EAI

x(¢) = 2(1+ cos(407z)) cos(2007z )+ 10(1 + cos(407z ))cos(600z )
(11)

Among them, f¢€ [0,1] and x(t ) are composed of six

different frequency signals, namely 80Hz, 100Hz, 120Hz,
280Hz, 300Hz and 320Hz. The simulation signal has six
fluctuation characteristic scales. The waveform diagram of

x(l‘ ) is shown in Figure 1, and the spectrum diagram of
x(t ) is shown in Figure 2.

)
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Figure 1. Simulation signal waveform
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Figure 2. Spectrum diagram of simulation signal

The signals are processed by the wavelet transform method,
the Fourier transform method, and the LMD method,
respectively. The results are shown in Figure 3, Figure 4, and
Figure 5.

frequency/Hz
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time/s

Figure 3. Wavelet transform time-frequency diagram
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Figure 4. Fourier transform time-frequency diagram
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Figure 5. LMD time-frequency diagram

While all three methods are applicable to signal processing
and represent basic signal characteristics, their outcomes
exhibit considerable divergence. The wavelet transform
provides superior frequency resolution for lower bands (80—
120 Hz) compared to higher bands (280-320 Hz), yet its
overall limited resolution and inability to maintain
consistency across the spectrum restrict its effectiveness. The
Fourier transform yields a stable but low-resolution time-
frequency distribution due to fixed windowing and
uncertainties, which poorly discriminates between fluctuation
features. Conversely, the adaptive and independent
decomposition of the LMD method enables high resolution
across frequencies, delivering a clear separation of each
fluctuation mode in the time-frequency representation with
negligible cross-interference.

2.2. PSO and its related improvements

Improved PSO algorithm
In n-dimensional space, initialize the particle population ['>-
161 The number of particles is m . Define the position

X = (xilaxiza"'axid) and velocity v, = (vilaviz""avid)
of the ith particle in the population, including i =1,2,---,m
. The optimal positions of individual and group of particles
are P = (Pmpiza' e pid) and
D, = (pgl,pgz,---,pgd) respectively.  Update  the

population. In iteration k + 1, update the position and speed
of particles according to the following formula:

k+l k k k k k

p —w-vij+cliq(py.—xy)+czr2(pgj—xg) (12)
k+1
p

\%

_ kK k+1
X —xij +vij

Where, v;“ represents the velocity of particle in the j-th

dimension in the k+1 iteration; x;‘,” represents the

position of particle in the j-th dimension in the k+1
iteration; W is inertia weight 7,7, represents a random

number between [0,1] ¢,,C, is the learning factor; pl.l;

represents the individual extreme value of particle in the J-
dimension in the k+1 iteration; p; represents the global

extremum of the j-th dimension of particle in the k+1
iteration.

When PSO algorithm reaches local optimization. The update
of particle velocity is entirely determined by. Because the
inertia weight of the traditional fixed parameter PSO
algorithm is usually smaller than 1, the particle velocity will
update with an attenuation trend and may stop moving. That
is, the algorithm will have premature convergence. If the
attenuation trend is reduced, the convergence speed of the
algorithm will be affected. Therefore, we can see that how to
correctly evaluate the premature convergence is particularly
important for the improvement of the next algorithm.

If the objective function value corresponding to particle

position X, in the population is the particle fitness value

fl. , the overall average fitness value of the population is:

1 n
Fe =;;fi (13)

If the fitness value of particles in the population is higher
than f - fa v is obtained by averaging, which is defined

as follows:

A=f, = fog

(14)

Among them, A can be used as the criterion to evaluate
premature convergence. If it is smaller, it can show that the
whole population is closer to premature convergence.

According to the above analysis, the inertia weight should
be adjusted adaptively according to the level of premature
convergence of the group. In the initial stage of the
Algorithm, the inertia weight should be reduced, and particles
should be used for local optimization to speed up the
convergence speed of the whole algorithm. In the later stage
of the algorithm, the inertia weight should be increased to
enable the particles to conduct global optimization. A large
inertia weight is conducive to jumping out of the local
optimization in the later stage and avoiding premature
convergence as much as possible. The specific adjustment of
inertia weight is as follows:
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e w_(w_wm).[M}ﬁ > 1o

w’falvg Sﬁ S](.max

T
1+k, -exp(=k, - A)

(15)
.fi Sj;wg

The steps of the improved PSO algorithm are as follows, and
the flow chart is shown in Figure 6:

Initialize particle swarm
parameters

Calculate particle fitness

fitness value compares the current optimal
tion with the global optimal position

According to different
fitness values, adopt
corresponding adaptive
strategies and adjust the
weight

Update particle swarm

velocity and position

Whether the terminatio
conditions are met

No

Yes

Record the optimization
results

Figure 6. Improved PSO algorithm flow

1) Initialize particle swarm optimization and parameters;

2) Calculate the fitness value of each particle in the
population;

3) If the fitness value is better than the current optimal
position and the global optimal position, update the particle
speed and position;

4) Judge whether the termination conditions are met. If step 6
is met, if step 5 is not met;

5) Adopt corresponding adaptive strategies according to
different fitness values, adjust the weight, and turn to step 2;
6) Record the optimization results.

IPSO algorithm performance test

In order to better observe the optimization capability of the
improved PSO algorithm, it was tested against a set of
benchmark functions listed in Table 1. In order to highlight
the advantages of the improved PSO algorithm, these test
functions are used to test the standard PSO algorithm at the
same time.

Table 1. Two test functions

Function  Function form Domain optima
name definition 1 value
n -100,100) 0
¥ (~100,
Sphere fi= ZI: Xi

2 EA

fi= 1/40002%1 —li[cos[ j‘[j+ (~600,600) 0
i=1 1

Girewan
k

i=l

Each of the above test functions is tested 30 times,
respectively, and the parameters of the standard PSO
algorithm and the improved PSO algorithm are set as follows:
the number of population m =20 , the dimension of
particles n =30, and the maximum number of iterations
max gen =150.

1) Sphere function

The image of the sphere function is shown in Figure 7, the

optimization process of the two algorithms tested is shown in
Figure 8, and the final results are shown in Table 2.

A

&
g

Figure 7. Sphere function image

Table 2. Sphere function test results

Function Test Average Optimal Number
name algorithm convergence convergence of
value value iterations
Sphere PSO 0.5307 0.0185 134
IPSO 0.0054 0.0053 24

2) Girewank function

The image of the girewank function is shown in Figure 9, the
optimization process of the two algorithms tested is shown in
Figure 10, and the final results are shown in Table 3.
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Figure 8. Comparison of Sphere function optimization
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Figure 9. Girewank function image
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Figure 10. Comparison of Girewank function
optimization

Table 3. Girewank function test results

Function Test Average Optimal Number
name algorithm convergence convergence  of
value value iterations
Girewank PSO 0.2641 0.0070 78
IPSO 0.0046 0.0020 65

As evidenced by the results across various test functions, the
proposed PSO algorithm achieves convergence values that
exhibit a higher degree of proximity to the theoretical
optimum. This capability notably prevents premature
convergence by facilitating escape from local optima.
Moreover, a marked reduction in the number of iterations
required to attain the optimum, relative to the standard
algorithm, validates the improved PSO's robust optimization
capability and accelerated convergence speed.

2.3. Least Squares Support Vector Machine

Basic principles

LSVM transforms inequality constraints in SVM into
equality constraints. Based on the quadratic programming
method using the sum of error squares loss function instead
of SVM, the quadratic programming problem is transformed
into a linear matrix problem. The specific principle is as
follows:

Given a set of data sets, (xi, Y, )i:1,2,-~-,N and x; are the

input vector of the j, sample, y J is the corresponding

output, and N is the number of samples contained in the data
set through nonlinear mapping (D(X) samples to high-
dimensional space.

yx)=w-plx)+b (16)
Where W is the weight vector and b is the offset vector.

According to the principle of structural minimization, the
LSVM model can be expressed as:

mmJ w, é‘ —Hw H+ ;/Z; ,j= N

¢(xj)+b+§i

7
sty =

Where J is the penalty coefficient greater than 0 and § i

is the errorness. When solving the minimization problem, a
Lagrange multiplier ﬂi is added to form the Lagrange

function, and the KKT condition is used. The LSVM model
is transformed into:

)= 4K s, )b as)

Where K (x X; ) ( =)

satisfying Mercer condition.

( _/) is the kernel function

Selection of kernel function and optimization of its
parameters

The choice of kernel function plays a crucial role in ensuring
the correct classification performance of the LSVM. An
appropriate kernel function is fundamental to building an

2 EA
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effective prediction model. In this paper, the radial basis
function (RBF) is adopted, which is expressed as follows:

of
lom

K(x,y): exp (19)

Where o is the core radius, o > (. For any position of
the basis function, there is a unique corresponding support
vector; the size of the parameters is determined by the
algorithm, and the radius is symmetrical and smooth.
Therefore, this paper selects the radial basis function as the
kernel function of LSVM.

Due to the size of the parameters of the SVM, the accuracy of
the final prediction rate will be affected. Kernel radius o

and penalty factor C are variables in radial basis function
kernel function. The size of kernel radius o will directly
affect the operation efficiency of LSVM. The size of penalty
factor C will affect the error of LSVM. If the value is small,
the error will increase. And if it is too large, the adaptability
of LSVM will become weak. Therefore, it is necessary to
select appropriate optimization means to optimize these two
parameters. In this paper, the IPSO algorithm verified and
analyzed above is used to optimize the parameters of kernel
radius 0 and penalty factor C' in LSVM.

3. LMD-IPSO-LSVM short-term
photovoltaic power prediction model

3.1. Construction of model

According to different types of weather, the original
meteorological data are divided into three types: sunny day,
cloudy day, rain, and snow. From the four seasons of spring,
summer, autumn and winter, the day with the same weather
type as the day to be predicted and the closest daily maximum
and minimum temperature, irradiance and air humidity are
selected as similar days in each quarter. Using similar days to
train the model can improve the accuracy of the prediction.
According to the actual situation of the photovoltaic power
station. The data that will be used when building the model
include: 49-point power data, temperature data, irradiance
data, and humidity data collected every 15 minutes from 6:00
am to 6:00 pm. The specific steps of building the model are
as follows:

1) Use the following Eq. (20) to normalize and inverse
normalize the data:

(20)

Where xi* is the normalized data; X, is the first data input;

is the

X, i, 1is the minimum value in the input data; X

min

maximum value in the input data.

2 EA

The inverse normalization formula is as follows:

(2 N P = P

5 21

pi: +pmin

Where, p; is the output power of the photovoltaic system

after inverse normalization; p; is the normalized
photovoltaic system output power at the second time point;
Pmax 18 the maximum output power of photovoltaic system;

Py 18 the minimum value of output power of photovoltaic

system.
2) For the same weather type in spring, summer, autumn and
winter, Euclidean distance is used to select similar daily data.

4
d, :\/m i,ke [l,n],k #1
j=1

XiZ’Xi3’Xi4

(22)

X,

s represents the daily maximum and

minimum temperature, irradiance and air humidity of the day
to be predicted; X, , X,,, X5, X, represent the daily

maximum and minimum temperature, irradiance and air
humidity on the day of the data set.

The normalized similar daily data are decomposed by LMD.
Taking the output power of the photovoltaic system on cloudy
days as an example, there are 196 points in four seasons of
the year. The decomposition results are shown in Figure 11,
Figure 12, Figure 13, and Figure 14.

—

o
o
T
N
S

original signal

. ‘ ‘ \ VN S AN
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

o
o

Figure 11. Similar day data on cloudy days
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Figure 12. PF1 component on cloudy days
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Figure 13. PF2 component on cloudy days

Figure 14. Cloudy residual component

4) The multi-input and multi-output mode is adopted to
establish a model for each component for training. The
temperature, irradiance, and humidity data at each time point
on similar days are taken as inputs. The IPSO-LSVM model
is established to predict the value of PF1 at each time point.
The model training process is depicted in Figure 15.

Figure 15. Model training

By analogy, the prediction models of each component under
other weather types can be obtained.

5) The trained model is used to predict it, and the predicted
values of each component at each time point are obtained.
Then, it is equivalently weighted and inverse normalized by
Eq. (21). The power prediction results for the day to be
predicted can be obtained. The prediction process is shown in
Figure 16.

Daily data to be
predicted

Normalization

processing

Input meteorological
data

IPSO-LSSVM model after
training

Similar daily
data
processing

LMD Input meteorological
decomposition data

Power

prediction

Decompose into pf component
and residual component

Actual Inverse normalization
power processing

[ I

error
analysis

Figure 16. Overall forecasting process

Training IPSO-LSSVM
model

3.2. LMD-IPSO-LSVM photovoltaic power
prediction model

The involved principles and improved methods are
synthesized, and the photovoltaic power prediction model
based on LMD-IPSO-LSVM is built. The overall structure of
the model is shown in Figure 17.

Data processing

decornposition X
______________________ Train

Ls5wh aplimised by
impraved K aarinm

P50- LESVRAD

; FFI(1)

FFLZ)

M PF1(196)

Figure 17. Structure diagram of prediction model
based on LMD-IPSO-LSVM

The overall prediction model is divided into four parts,
including the data processing part, the improved PSO
algorithm optimization part, the training part, and the
prediction part. The data processing part uses normalization
to process the original meteorological data and photovoltaic
power data. It can avoid large errors caused by input and
output in terms of order of magnitude. The similar day data
of the day to be predicted are selected by using the Euclidean
distance, and then the prediction model is trained. Improve
the accuracy of the overall prediction from the basic data. The
improved PSO algorithm is verified by using the improved
PSO kernel optimization algorithm. The optimized results are
used in the LSVM algorithm for final prediction. In the
training part, LMD is used to decompose the similar day data
of the day to be predicted, processed by the data processing
part, to train the model. An Ipso-LSVM prediction model is
established for each component to train the model. In the
prediction part, the trained improved PSO-LSVM prediction
models are used to predict it. Finally, the photovoltaic
predicted power of the day to be predicted can be obtained by
equivalent weighting and inverse normalization of the results.
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3.3. Error evaluation index

Normalized relative error (RE) and normalized mean relative
error (MRE) are used to evaluate the predicted results. The
smaller the value, the better the accuracy of the prediction
model. The relevant formula is as follows:

W easing =W,
RE = | forecasting true XIOO% (23)

total

x100% (24)

1 u ‘Wforecasting - VVlrue
MRE = — :
2

total

Where W

forecasting

is the predicted value; W, is the tru3

true
value; W, ., is the total installed capacity of photovoltaic;

t is the time variable; N is the number of samples.

4. Experimental simulation

4.1. Original data

The proposed LMD-IPSO-LSVM-based photovoltaic power
prediction model requires validation and analysis using actual
data from a photovoltaic power plant. The experimental data
are from some photovoltaic modules of a photovoltaic power
station in Liaoning, China.Data including photovoltaic
power, solar irradiance, temperature, humidity, and weather
type were collected at 15-minute intervals. The acquisition
period spanned from 6:00 AM to 6:00 PM daily, covering the
entire year of 2020. According to different weather types, the
sample data are divided into sunny days, cloudy days, rainy
days, and snowy days. To enhance prediction accuracy, we
explored the model's performance under different weather
types; for each type, the evaluation was conducted as follows.
one day is selected from the four quarters of spring, summer,
autumn, and winter as the day to be predicted, and the four
quarters are predicted at the same time.

4.2. Photovoltaic power prediction example

In order to compare and verify the performance and
advantages of the model, standard PSO-LSVM and LSVM
models are established respectively, and the samples are also
simulated and tested. The results are compared with the
model proposed in this paper. The results are as follows.

1) Sunny day

When the weather type is sunny, the prediction results
obtained by the three prediction methods are shown in Figure
18, and the error results are shown in Figure 19.

2 EA

utput power/kW

Photovoltaic o

Figure 18. Photovoltaic power prediction curve under
sunny weather in four quarters

PSO-LSSVM
LSSVM
= LMD-IPSO-LSSVM

Timex15/min

Figure 19. Photovoltaic power prediction error curve
under sunny weather in four quarters

2) Cloudy day

When the weather type is sunny, the prediction results
obtained by the three prediction methods are shown in Figure
20, and the error results are shown in Figure 21.

Test data
PSO-LSSVM
LssvI

output power/KW

ovohaic

Figure 20. Photovoltaic power prediction curve under
overcast weather in four quarters
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PSOLSSVM
LSsSVM
LMD-IPSO-LSSVM

er/kW

Figure 21. Photovoltaic power prediction error curve
under overcast weather in four quarters

5) Rain and snow

When the weather type is rain and snow, the results predicted
by the three methods are shown in Figure 22, and the error
results are shown in Figure 23.

Figure 22. Photovoltaic power prediction curve in rainy
and snowy weather in four quarters

PSO-LSSVM
LSSVM
=~ LMDPSO-LSSVM

Eror power/kW

Timex15/min

Figure 23. Photovoltaic power prediction error curve
under rainy and snowy weather in four quarters

The analysis of the above results demonstrates that,
regardless of weather conditions or season, the model
consistently exhibits robust performance. The prediction
results of the short-term photovoltaic power prediction model
based on LMD-IPSO-LSVM proposed in this paper can fit
the test data well, the error fluctuation is small, and the

predicted value is also in perfect agreement with the real
value. Compared with the other two methods, there is a large
error. It shows that the method proposed in this paper can
accurately predict the output power of a photovoltaic system
under different weather types, and the range of error
fluctuation is also small.

4.3. Comparison with the deep learning
models

In order to testify to the effectiveness of LMD-IPSO-LSVM,
Several experiments were carried out in this paper. Figure 24
is the Comparison with the Deep Learning Model. This figure
presents a multi-perspective performance comparison
between the proposed LMD-IPSO-LSVM model and
mainstream deep learning methods:

PV Power Prediction ison (First 12 Hours} Prediction Error Dit

Figure 24. Comparison with Deep Learning Model

(@)

Top-left: Comparison of prediction results for the first
12 hours, showing that the proposed model most closely
matches the true values.

Top-right: Box plot of prediction error distribution,
indicating that the proposed model achieves the smallest
errors with the most concentrated distribution.
Bottom-left: Full-day prediction comparison for the
second day, validating the model's adaptability under
different weather conditions.

Bottom-right: Radar chart of performance metrics,
demonstrating the superior performance of the proposed
model across all three metrics: RMSE, MAE, and
MAPE.

(i)

(iii)

(iv)

The results demonstrate that the LMD-IPSO-LSVM model
outperforms the compared deep learning methods in both
prediction accuracy and stability.

Figure 25 presents a comparative analysis of the proposed
model against representative deep learning models (LSTM,
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Transformer) across the entire prediction horizon. The
following key observations can be made:

Photovoltaic Power Prediction Comparison

— Truevaus

— 1T IR0 | ST (R
sy s b fing ) —-- 15TH
o Transimen

Power (ki)

Figure 25. Comparison of Prediction Results from
Main Models

(1) The prediction trajectory of the LMD-IPSO-LSVM
model demonstrates near-perfect alignment with the
ground truth values (black line).

(1)) The LSTM model exhibits significant temporal lag
during periods of abrupt power fluctuations.

(iii) The Transformer model shows substantial deviations at
specific time intervals.

(iv) The proposed model effectively captures rapid transient
characteristics in photovoltaic power generation.

These findings validate the efficacy of integrating Local
Mean Decomposition (LMD) and Improved Particle Swarm
Optimization (IPSO) in enhancing forecasting precision.
Figure 26 illustrates the performance comparison between the
proposed model and representative deep learning models
(LSTM, Transformer) across the entire prediction horizon.
The following observations can be clearly made.

(i) The forecast curve of the LMD-IPSO-LSVM model (red
line) demonstrates near-perfect alignment with the
actual values (black line).

(i) The LSTM model (blue dashed line) exhibits significant
lag during periods of sharp power fluctuations.

(iii) The Transformer model (purple dotted line) shows
substantial deviations at certain time points.

(iv) The proposed model more effectively captures the rapid
variation characteristics of photovoltaic power.

These results validate the effectiveness of Local Mean
Decomposition (LMD) and Improved Particle Swarm
Optimization (IPSO) in enhancing prediction accuracy.

2 EA

Cumulative Distribution of Prediction Errors
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Figure 26. A Comparative Analysis of Cumulative
Prediction Error Distributions

4 4. Error evaluation

The effectiveness of the proposed method was further verified
by evaluating the prediction results for the three weather
types against the normalized RE and MRE metrics (Eqgs. 23
and 24). The evaluation results are shown graphically in
Figures 27 - 29 and tabulated in Table 4.

PSO-LSSVM
LSSVM
LMD-IPSO-LSSVM

RE

Figure 27. Normalized relative errors of three methods
in sunny weather

PSO-LSSVM
LSSVM
LMD-IPSO-LSSVM

RE

Figure 28. Normalized relative error of three methods
in overcast weather
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PSO-LSSVM

LSSVM
LMD-IPSO-LSSVM

RE

Figure 29. Normalized relative error of three methods
in rainy and snowy weather

Table 4 Comparison of prediction errors of three

methods

Prediction method Model MRE%
PSO-LSVM sunny day 8.51
overcast 6.66
Rain and snow 2.06
average value 5.74
LSVM sunny day 11.46
overcast 8.33
Rain and snow 2.94
average value 7.58
LMD-IPSO- sunny day 0.42
LSVM overcast 0.16
Rain and snow 1.04
average value 0.54

It can be seen that the minimum MRE error of three weather
types predicted by this method is 0.16% and the maximum is
1.04%. The average MRE error corresponding to the three
weather types is 0.54%. The minimum value of the average
MRE error predicted by the PSO-LSVM method is 2.06%,
and the maximum value is 8.51%. The average MRE error
corresponding to the three weather types is 5.74%. The
minimum error of MRE predicted by the LSVM method is
2.94% and the maximum error is 11.46%. The average MRE
error corresponding to the three weather types is 7.58%.
Using the method proposed in this paper, the MRE error is
small and the error floating range is also small. It shows that
the prediction accuracy is greatly improved compared with
the other two methods.

Figure 30 illustrates the three-dimensional forms of five
standard test functions used to evaluate the performance of
optimization algorithms. These functions include:

(i) Sphere: A simple unimodal convex function for testing
basic convergence capability.

(ii)) Rosenbrock: A function featuring a narrow parabolic
valley, used to examine algorithm performance in non-
convex regions.

2 EA
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(iii)

(iv)

Rastrigin: A multimodal function with numerous local
optima, assessing the algorithm's ability to escape local
minima.

Ackley: A complex function containing multiple local
optima, evaluating global exploration capability.
Griewank: A function with regularly distributed local
optima, testing precision search ability.

)

Rosenbrock Funetion

Sphere Function

Rastrigin Function

Griewank Function

Figure 30. 3D Visualization of Test Functions

From Figure 30, it can be seen that the diverse characteristics
of these test functions establish a solid foundation for
comprehensively evaluating the performance of the IPSO
algorithm.

Figure 31 presents a comparative analysis of the convergence
processes between standard Particle Swarm Optimization
(PSO) and Improved PSO (IPSO) across five test functions.
Key observations include:

Sphere Function Rastrigin Function

Best Fitness (g scale)

Best Fitness (og scale)

Best Fitness (g scale)
-

o e
teration

Ackley Function

— Stngara P

Figure 31. A Comparative Analysis of Convergence
Curves between PSO and IPSO

(i) IPSO (red curve) demonstrates significantly faster
convergence rates than standard PSO (blue curve) across
all test functions.

EAI Endorsed Transactions on
Energy Web
| Volume 12| 2025 |



Research on short-term photovoltaic power prediction based on LMD-IPSO-LSVM

(il) The improved algorithm achieves lower fitness values,
indicating enhanced optimization precision.

IPSO's superiority is particularly pronounced on
multimodal functions (Rastrigin, Ackley), confirming
that its modified mechanisms effectively strengthen the
ability to escape local optima.

The text annotations on the convergence curves display
the final fitness values upon algorithm termination,
providing visual evidence of IPSO's performance
advantages.

(iif)

(iv)

From Figure 31, it can be seen that these results validate that
through the incorporation of linearly decreasing inertia
weight and adaptive learning factors, IPSO successfully
balances global exploration and local exploitation
capabilities.

Figure 32 presents a comparative visualization of the average
best fitness values achieved by PSO and IPSO across five test
functions using a bar chart format. The following conclusions
can be drawn as follows:

PS0 vs IPSO Performance Comparison

B Standard PSO
= improved PSO

(514e03) 705003

Average Best Fitness (log scale)

Rosenbrock

Ackley

Figure 32. A Comparative Bar Chart of Performance
between PSO and IPSO

(i) IPSO (red bars) demonstrates superior average
performance over standard PSO (blue bars) across all
test functions.

The degree of performance improvement varies with
function characteristics, showing particularly significant
gains on multimodal functions.

Numerical labels atop each bar precisely indicate the
mean fitness values for both algorithms.

The logarithmic-scaled vertical axis effectively reveals
performance differences across multiple orders of

magnitude.

(i1)
(iii)

(iv)

These statistical results validate the superiority and
robustness of the IPSO algorithm when applied to diverse
optimization problems.

5. Conclusion

< EAI

13

In this paper, PSO-LSVM and LSVM models are established
to predict the same test samples. The prediction results and
error results are compared with the model established in this
paper. At the same time, in order to further verify the
accuracy, a variety of error evaluation indicators are used to
evaluate the prediction results, and the results are analyzed.
The final results show that the model established in this paper
has good performance in different weather types and different
seasons.
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