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Abstract 

With the rapid development of human society, resource shortages and environmental degradation have become increasingly 
pressing issues. To address these challenges, solar energy has garnered significant attention due to its high efficiency, safety, 
and pollution-free nature. This paper proposes a novel short-term photovoltaic power prediction framework based on an 
integrated LMD-IPSO-LSVM approach. The model's key innovation lies in its hierarchical decomposition-optimization 
architecture: First, Local Mean Decomposition (LMD) addresses the non-stationary and nonlinear characteristics of PV 
power data by decomposing original signals into physically meaningful Product Functions (PFs). Second, an Improved 
Particle Swarm Optimization (IPSO) algorithm featuring an adaptive inertia weight mechanism is developed to optimize 
LSVM hyperparameters for each PF component. This strategic integration enables the model to simultaneously capture 
complex temporal patterns while maintaining superior generalization capability. Experimental validation demonstrates that 
our IPSO achieves significantly faster convergence (46.3% improvement in convergence speed) and enhanced optimization 
precision compared to standard PSO, providing a solid foundation for accurate power forecasting. In order to evaluate the 
proposed methodology, comparative models including standalone LSVM and PSO-LSVM are also established and tested 
on the same dataset. Experimental results demonstrate that the proposed hybrid model called LMD-IPSO-LSVM achieves 
high prediction accuracy and better performance compared with other algorithms. 
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1. Introduction

With the continuous advancement of society, electricity 
consumption has risen significantly. In light of both green 
environmental protection and economic development needs, 
the adoption of green energy has become a prevailing trend. 
Among various renewable sources, solar energy stands out 
for being inexhaustible and readily available. For example, 
employing solar energy systems enables the operation of 
police facilities and specialized equipment with a renewable 
power source, which makes photovoltaic (PV) power 
generation forecasting a focus of grid management. However, 

*Corresponding ahthor. Email: myj_2016@163.com 

its inherent intermittency and instability pose challenges to 
grid security and operation. Therefore, improving the 
accuracy of PV power prediction is of significant importance 
for the safe and stable operation of power systems[1]. 
At present, numerous studies have been conducted on PV 
power forecasting, which can be broadly categorized into 
direct prediction methods[2] and indirect prediction 
methods[3]. Indirect prediction relies on physical models, 
such as all-sky imaging and satellite-based weather 
prediction. Under ideal weather conditions, physical models 
can yield satisfactory results; however, their application in 
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real-world scenarios tends to be complex. In contrast, direct 
prediction methods utilize historical data combined with 
artificial intelligence algorithms to build neural network 
models for forecasting. Due to their lower cost and higher 
practicality, these approaches are more widely adopted in the 
field. Common techniques include time series analysis[4], BP 
neural networks[5], support vector machines (SVM)[6], and 
so on. 
Although the quality of historical data is a critical determinant 
of PV power forecasting accuracy, data preprocessing can 
effectively mitigate the impact of outliers. This, in turn, 
allows machine learning models to more precisely analyze 
influencing factors and improve prediction performance. In 
recent years, common outlier detection methods include the 
optimal variance algorithm[7], the interquartile range (IQR) 
[8], and Isolation Forest (iForest)[9]. While the optimal 
variance algorithm can identify abnormal operation data of 
wind turbines, its detection efficiency is relatively low. The 
IQR method involves statistical analysis of historical data and 
can effectively detect anomalies, but the process is 
computationally intensive. Among various anomaly detection 
algorithms, iForest stands out for its simplicity, high 
detection efficiency, and accuracy, making it widely 
applicable. 
Data clustering and analysis methods include the grey 
correlation coefficient method, K-means algorithm[10], 
fuzzy C-means clustering[11], among others. The grey 
correlation method tends to be subjective and struggles to 
objectively reflect the influence of different weather factors 
on PV output. The K-means algorithm relies on random initial 
selection of K values, which may lead to inaccurate data 
partitioning. In contrast, fuzzy C-means clustering optimizes 
an objective function to automatically classify data, offering 
more adaptive performance[12]. 
Traditional PV prediction methods often focus on optimizing 
algorithms without adequately considering the varying 
importance of different samples during model training, 
leading to limited accuracy. Moreover, the typical time 
interval for PV power prediction is one hour, which falls short 
of meeting higher grid scheduling requirements. To address 
these issues, this paper proposes a weighted support vector 
machine model based on the fuzzy C-means learning 
algorithm, designed to fully account for the similarity 
between historical and forecast power data[13]. 
 

2. Basic theory 

2.1. Local Mean Decomposition 

Basic principles 
For ( )tx , the specific decomposition process is as follows: 

1) Select each local extreme point in  in the original signal 

( )tx , and use in  and 1+in  to calculate the average value 

of adjacent local extreme points im . 

2
1++

= ii
i

nnm                 (1) 

The corresponding time of each extreme point is nit   and 

1+nit . The obtained im  is connected and extended between 
the corresponding time of each extreme point. The extended 
straight line is processed by the moving average method to 
obtain the local mean function ( )tm11  

2) Calculate the local amplitude ia   according to the 
absolute value of the difference between adjacent extreme 
points in  and 1+in : 
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The moving average method is used to process the straight 
line ia   extending between the corresponding times nit  

and 1+nit  of each extreme point, and the local mean function 

( )ta11  can be obtained. 

3) Separate the local mean function ( )tm11   from the 

original signal ( )tx , and demodulate the separated function 

with ( )ta11 : 
 

( ) ( ) ( )tmtxth 1111 −=               (3) 
 

( ) ( )
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Since the decomposed pf component is the product of the 
envelope function and pure frequency modulation function, it 
is necessary to judge whether ( )ts11   is pure frequency 
modulation function. Through the above steps, the envelope 
function ( )ta12   of ( )ts11   is obtained and judged 
according to the following formula: 
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If Eq. (5) is satisfied, it is a pure FM function. If not, repeat 
the above iteration for ( )ts11  until a pure FM signal ( )ts n1  
satisfying the conditions is obtained: 
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4) Multiply all envelope functions in the iterative process to
obtain envelope signal ( )ta1 : 

( ) ( ) ( ) ( ) ( )∏
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5) The first pf component of the original signal ( )tx  can be

obtained by multiplying ( )ta1 and ( )ts n1 : 

( ) ( ) ( )tstatPF n111 =    (8) 

6) Separate ( )tPF1 from the original signal ( )tx  to obtain 

a new signal ( )tu1 , repeat the above steps as a new original

signal and cycle for k   times until ( )tuk   is a monotonic
function: 
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The original signal will be decomposed into multiple pf 
components and a sum of ( )tuk : 

( ) ( ) ( )∑
=

+=
k

p
kp tutPFtx

1
 (10) 

LMD simulation signal test and comparative 
analysis 
Traditional signal processing methods, such as the Fourier 
transform and wavelet transform, use kernel functions to 
locally transform the original signal to obtain the 
corresponding local fluctuation characteristics [14]. According 
to the basic principles and characteristics of the above LMD 
method, the LMD method separates, recombines, and 
integrates the amplitude and frequency of the original signal 
into an overall time spectrum through the characteristic scale 
of the signal, reflecting the local fluctuation characteristic 
information contained in the original signal. Give a 
simulation signal for testing, and compare the influence of the 
Fourier transform method, wavelet transform method, 
wavelet transform method and LMD method on signal 
processing, signal ( )tx .

( ) ( )( ) ( ) ( )( ) ( )tttttx ππππ 600cos40cos110200cos40cos12 +++=  
(11) 

Among them, [ ]1,0∈t   and ( )tx   are composed of six
different frequency signals, namely 80Hz, 100Hz, 120Hz, 
280Hz, 300Hz and 320Hz. The simulation signal has six 
fluctuation characteristic scales. The waveform diagram of 
( )tx   is shown in Figure 1, and the spectrum diagram of

( )tx  is shown in Figure 2.

Figure 1. Simulation signal waveform 

Figure 2. Spectrum diagram of simulation signal 

The signals are processed by the wavelet transform method, 
the Fourier transform method, and the LMD method, 
respectively. The results are shown in Figure 3, Figure 4, and 
Figure 5. 

Figure 3. Wavelet transform time-frequency diagram 
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Figure 4. Fourier transform time-frequency diagram 

Figure 5. LMD time-frequency diagram 

While all three methods are applicable to signal processing 
and represent basic signal characteristics, their outcomes 
exhibit considerable divergence. The wavelet transform 
provides superior frequency resolution for lower bands (80–
120 Hz) compared to higher bands (280–320 Hz), yet its 
overall limited resolution and inability to maintain 
consistency across the spectrum restrict its effectiveness. The 
Fourier transform yields a stable but low-resolution time-
frequency distribution due to fixed windowing and 
uncertainties, which poorly discriminates between fluctuation 
features. Conversely, the adaptive and independent 
decomposition of the LMD method enables high resolution 
across frequencies, delivering a clear separation of each 
fluctuation mode in the time-frequency representation with 
negligible cross-interference. 

2.2. PSO and its related improvements 

Improved PSO algorithm 
In n-dimensional space, initialize the particle population [15-

16]. The number of particles is m  . Define the position 
( )idiii xxxx ,,, 21 =   and velocity ( )idiii vvvv ,,, 21 =

of the ith particle in the population, including mi ,,2,1 =
. The optimal positions of individual and group of particles 
are ( )idiii pppp ,,, 21 =   and

( )gdggg pppp ,,, 21 =   respectively. Update the 

population. In iteration 1+k , update the position and speed 
of particles according to the following formula: 

( )k
ij

k
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k
ij

k
ij

k
ij

k
ij xprcxprcvwv −+−+⋅=+

2211
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11 ++ += k
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Where, 1+k
ijv  represents the velocity of particle in the j-th 

dimension in the 1+k  iteration; 1+k
ijx  represents the 

position of particle in the j-th dimension in the 1+k  
iteration; w  is inertia weight 21, rr  represents a random

number between [ ]1,0 21,cc  is the learning factor; k
ijp

represents the individual extreme value of particle in the J-
dimension in the 1+k  iteration; k

gjp  represents the global 
extremum of the j-th dimension of particle in the 1+k  
iteration. 
When PSO algorithm reaches local optimization. The update 
of particle velocity is entirely determined by. Because the 
inertia weight of the traditional fixed parameter PSO 
algorithm is usually smaller than 1, the particle velocity will 
update with an attenuation trend and may stop moving. That 
is, the algorithm will have premature convergence. If the 
attenuation trend is reduced, the convergence speed of the 
algorithm will be affected. Therefore, we can see that how to 
correctly evaluate the premature convergence is particularly 
important for the improvement of the next algorithm. 
If the objective function value corresponding to particle 
position iX  in the population is the particle fitness value 

if , the overall average fitness value of the population is: 

∑
=

=
n

i
iavg f

n
f

1

1
  (13) 

If the fitness value of particles in the population is higher 
than avgf , '

avgf  is obtained by averaging, which is defined
as follows: 

'
avgm ff −=∆  (14) 

Among them, ∆   can be used as the criterion to evaluate 
premature convergence. If it is smaller, it can show that the 
whole population is closer to premature convergence. 

According to the above analysis, the inertia weight should 
be adjusted adaptively according to the level of premature 
convergence of the group. In the initial stage of the  
Algorithm, the inertia weight should be reduced, and particles 
should be used for local optimization to speed up the 
convergence speed of the whole algorithm. In the later stage 
of the algorithm, the inertia weight should be increased to 
enable the particles to conduct global optimization. A large 
inertia weight is conducive to jumping out of the local 
optimization in the later stage and avoiding premature 
convergence as much as possible. The specific adjustment of 
inertia weight is as follows: 
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The steps of the improved PSO algorithm are as follows, and 
the flow chart is shown in Figure 6: 

Initialize particle swarm 
parameters

Calculate particle fitness

 fitness value compares the current optimal 
ition with the global optimal position

Update particle swarm 
velocity and position

Whether the termination 
conditions are met

Record the optimization 
results

Yes

No

start

End

According to different 
fitness values, adopt 

corresponding adaptive 
strategies and adjust the 

weight

Figure 6. Improved PSO algorithm flow 

1) Initialize particle swarm optimization and parameters;
2) Calculate the fitness value of each particle in the
population;
3) If the fitness value is better than the current optimal
position and the global optimal position, update the particle 
speed and position; 
4) Judge whether the termination conditions are met. If step 6
is met, if step 5 is not met; 
5) Adopt corresponding adaptive strategies according to
different fitness values, adjust the weight, and turn to step 2;
6) Record the optimization results.

IPSO algorithm performance test 
In order to better observe the optimization capability of the 
improved PSO algorithm, it was tested against a set of 
benchmark functions listed in Table 1. In order to highlight 
the advantages of the improved PSO algorithm, these test 
functions are used to test the standard PSO algorithm at the 
same time. 

Table 1. Two test functions 

Function 
name 

Function form Domain 
definition 

optima
l value

Sphere ∑
=

=
n

i
ixf

1

2
1

( )100,100−  0 

Girewan
k 

∑ ∏
= =

+ +






−=
n

i

n

i

i
i i

xxf
1 1

14 1cos4000/1
( )600,600−  0 

Each of the above test functions is tested 30 times, 
respectively, and the parameters of the standard PSO 
algorithm and the improved PSO algorithm are set as follows: 
the number of population 20=m  , the dimension of 
particles 30=n  , and the maximum number of iterations 

150max =gen . 
1) Sphere function
The image of the sphere function is shown in Figure 7, the
optimization process of the two algorithms tested is shown in
Figure 8, and the final results are shown in Table 2.

Figure 7. Sphere function image 

Table 2. Sphere function test results 

Function 
name 

Test 
algorithm 

Average 
convergence 
value 

Optimal 
convergence 
value 

Number 
of 
iterations 

Sphere PSO 0.5307 0.0185 134 
IPSO 0.0054 0.0053 24 

2) Girewank function

The image of the girewank function is shown in Figure 9, the 
optimization process of the two algorithms tested is shown in 
Figure 10, and the final results are shown in Table 3. 
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Figure 8. Comparison of Sphere function optimization 

Figure 9. Girewank function image 

Figure 10. Comparison of Girewank function 
optimization 

Table 3. Girewank function test results 

Function 
name 

Test 
algorithm 

Average 
convergence 
value 

Optimal 
convergence 
value 

Number 
of 
iterations 

Girewank PSO 0.2641 0.0070 78 
IPSO 0.0046 0.0020 65 

As evidenced by the results across various test functions, the 
proposed PSO algorithm achieves convergence values that 
exhibit a higher degree of proximity to the theoretical 
optimum. This capability notably prevents premature 
convergence by facilitating escape from local optima. 
Moreover, a marked reduction in the number of iterations 
required to attain the optimum, relative to the standard 
algorithm, validates the improved PSO's robust optimization 
capability and accelerated convergence speed. 

2.3. Least Squares Support Vector Machine 

Basic principles 
LSVM transforms inequality constraints in SVM into 
equality constraints. Based on the quadratic programming 
method using the sum of error squares loss function instead 
of SVM, the quadratic programming problem is transformed 
into a linear matrix problem. The specific principle is as 
follows: 
Given a set of data sets, ( ) Niii yx ,,2,1,

= and jx  are the

input vector of the thj  sample, jy   is the corresponding 
output, and N is the number of samples contained in the data 
set through nonlinear mapping ( )xϕ  samples to high-
dimensional space. 

( ) ( ) bxwxy +⋅= ϕ    (16) 

Where w  is the weight vector and b  is the offset vector. 
According to the principle of structural minimization, the 
LSVM model can be expressed as: 
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22 
   (17) 

Where γ  is the penalty coefficient greater than 0 and jξ  
is the errorness. When solving the minimization problem, a 
Lagrange multiplier iλ   is added to form the Lagrange 
function, and the KKT condition is used. The LSVM model 
is transformed into: 

( ) ( )∑
=

+=
N

j
ji bxxKxy

1
,λ        (18) 

Where ( ) ( ) ( )j
T

iji xxxxK ϕϕ ⋅=,   is the kernel function 
satisfying Mercer condition. 

Selection of kernel function and optimization of its 
parameters 
The choice of kernel function plays a crucial role in ensuring 
the correct classification performance of the LSVM. An 
appropriate kernel function is fundamental to building an 
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effective prediction model. In this paper, the radial basis 
function (RBF) is adopted, which is expressed as follows: 

( )












 −
−= 2

2

2
exp,

σ
yx

yxK       (19) 

Where σ  is the core radius, 0>σ . For any position of 
the basis function, there is a unique corresponding support 
vector; the size of the parameters is determined by the 
algorithm, and the radius is symmetrical and smooth. 
Therefore, this paper selects the radial basis function as the 
kernel function of LSVM. 
Due to the size of the parameters of the SVM, the accuracy of 
the final prediction rate will be affected. Kernel radius σ  
and penalty factor C  are variables in radial basis function 
kernel function. The size of kernel radius σ  will directly 
affect the operation efficiency of LSVM. The size of penalty 
factor C  will affect the error of LSVM. If the value is small, 
the error will increase. And if it is too large, the adaptability 
of LSVM will become weak. Therefore, it is necessary to 
select appropriate optimization means to optimize these two 
parameters. In this paper, the IPSO algorithm verified and 
analyzed above is used to optimize the parameters of kernel 
radius σ  and penalty factor C  in LSVM. 

3. LMD-IPSO-LSVM short-term
photovoltaic power prediction model

3.1. Construction of model 

According to different types of weather, the original 
meteorological data are divided into three types: sunny day, 
cloudy day, rain, and snow. From the four seasons of spring, 
summer, autumn and winter, the day with the same weather 
type as the day to be predicted and the closest daily maximum 
and minimum temperature, irradiance and air humidity are 
selected as similar days in each quarter. Using similar days to 
train the model can improve the accuracy of the prediction. 
According to the actual situation of the photovoltaic power 
station. The data that will be used when building the model 
include: 49-point power data, temperature data, irradiance 
data, and humidity data collected every 15 minutes from 6:00 
am to 6:00 pm. The specific steps of building the model are 
as follows: 
1) Use the following Eq. (20) to normalize and inverse
normalize the data:

minmax

min

xx
xxx i

i −
−

=∗  (20) 

Where ∗
ix  is the normalized data; ix is the first data input;

minx   is the minimum value in the input data; maxx  is the 
maximum value in the input data. 

The inverse normalization formula is as follows: 

( )( )
min

minmax

2
ppppp i

i +
−

=
∗

   (21) 

Where, ip  is the output power of the photovoltaic system 

after inverse normalization; ∗
ip  is the normalized 

photovoltaic system output power at the second time point; 

maxp  is the maximum output power of photovoltaic system; 

minp is the minimum value of output power of photovoltaic 
system. 
2) For the same weather type in spring, summer, autumn and
winter, Euclidean distance is used to select similar daily data.

( ) [ ] iknkixxd
j

kjijik ≠∈−= ∑
=

,,1,
4

1

2   (22) 

4321 ,,, iiii XXXX   represents the daily maximum and 
minimum temperature, irradiance and air humidity of the day 
to be predicted; 4321 ,,, kkkk XXXX  represent the daily 
maximum and minimum temperature, irradiance and air 
humidity on the day of the data set. 
The normalized similar daily data are decomposed by LMD. 
Taking the output power of the photovoltaic system on cloudy 
days as an example, there are 196 points in four seasons of 
the year. The decomposition results are shown in Figure 11, 
Figure 12, Figure 13, and Figure 14. 

Figure 11. Similar day data on cloudy days 

Figure 12. PF1 component on cloudy days 
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Figure 13. PF2 component on cloudy days 

Figure 14. Cloudy residual component 

4) The multi-input and multi-output mode is adopted to
establish a model for each component for training. The
temperature, irradiance, and humidity data at each time point
on similar days are taken as inputs. The IPSO-LSVM model
is established to predict the value of PF1 at each time point.
The model training process is depicted in Figure 15.

Figure 15. Model training 

By analogy, the prediction models of each component under 
other weather types can be obtained. 
5) The trained model is used to predict it, and the predicted
values of each component at each time point are obtained.
Then, it is equivalently weighted and inverse normalized by
Eq. (21). The power prediction results for the day to be
predicted can be obtained. The prediction process is shown in
Figure 16.

Similar daily 
data

Normalization 
processing

LMD 
decomposition

Input meteorological 
data

Decompose into pf component 
and residual component

Training IPSO-LSSVM 
model

Daily data to be 
predicted

Normalization 
processing

Input meteorological 
data

IPSO-LSSVM model after 
training

Power 
prediction

Actual 
power

Inverse normalization 
processing

error 
analysis

Figure 16. Overall forecasting process 

3.2. LMD-IPSO-LSVM photovoltaic power 
prediction model 

The involved principles and improved methods are 
synthesized, and the photovoltaic power prediction model 
based on LMD-IPSO-LSVM is built. The overall structure of 
the model is shown in Figure 17. 

Figure 17. Structure diagram of prediction model 
based on LMD-IPSO-LSVM 

The overall prediction model is divided into four parts, 
including the data processing part, the improved PSO 
algorithm optimization part, the training part, and the 
prediction part. The data processing part uses normalization 
to process the original meteorological data and photovoltaic 
power data. It can avoid large errors caused by input and 
output in terms of order of magnitude. The similar day data 
of the day to be predicted are selected by using the Euclidean 
distance, and then the prediction model is trained. Improve 
the accuracy of the overall prediction from the basic data. The 
improved PSO algorithm is verified by using the improved 
PSO kernel optimization algorithm. The optimized results are 
used in the LSVM algorithm for final prediction. In the 
training part, LMD is used to decompose the similar day data 
of the day to be predicted, processed by the data processing 
part, to train the model. An Ipso-LSVM prediction model is 
established for each component to train the model. In the 
prediction part, the trained improved PSO-LSVM prediction 
models are used to predict it. Finally, the photovoltaic 
predicted power of the day to be predicted can be obtained by 
equivalent weighting and inverse normalization of the results. 
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3.3. Error evaluation index 

Normalized relative error (RE) and normalized mean relative 
error (MRE) are used to evaluate the predicted results. The 
smaller the value, the better the accuracy of the prediction 
model. The relevant formula is as follows: 

%100×
−

=
total

truegforecastin

W
WW

RE      (23) 

∑
=

×
−

=
N

t total

truegforecastin

W
WW

N
MRE

1
%1001      (24) 

Where gforecastinW  is the predicted value; trueW  is the tru3

value; totalW  is the total installed capacity of photovoltaic; 

t  is the time variable; N  is the number of samples. 

4. Experimental simulation

4.1. Original data 

The proposed LMD-IPSO-LSVM-based photovoltaic power 
prediction model requires validation and analysis using actual 
data from a photovoltaic power plant. The experimental data 
are from some photovoltaic modules of a photovoltaic power 
station in Liaoning, China.Data including photovoltaic 
power, solar irradiance, temperature, humidity, and weather 
type were collected at 15-minute intervals. The acquisition 
period spanned from 6:00 AM to 6:00 PM daily, covering the 
entire year of 2020. According to different weather types, the 
sample data are divided into sunny days, cloudy days, rainy 
days, and snowy days. To enhance prediction accuracy, we 
explored the model's performance under different weather 
types; for each type, the evaluation was conducted as follows. 
one day is selected from the four quarters of spring, summer, 
autumn, and winter as the day to be predicted, and the four 
quarters are predicted at the same time. 

4.2. Photovoltaic power prediction example 

In order to compare and verify the performance and 
advantages of the model, standard PSO-LSVM and LSVM 
models are established respectively, and the samples are also 
simulated and tested. The results are compared with the 
model proposed in this paper. The results are as follows. 
1) Sunny day
When the weather type is sunny, the prediction results
obtained by the three prediction methods are shown in Figure
18, and the error results are shown in Figure 19.

Figure 18. Photovoltaic power prediction curve under 
sunny weather in four quarters 

Figure 19. Photovoltaic power prediction error curve 
under sunny weather in four quarters 

2) Cloudy day
When the weather type is sunny, the prediction results
obtained by the three prediction methods are shown in Figure
20, and the error results are shown in Figure 21.

Figure 20. Photovoltaic power prediction curve under 
overcast weather in four quarters 
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Figure 21. Photovoltaic power prediction error curve 
under overcast weather in four quarters 

5) Rain and snow
When the weather type is rain and snow, the results predicted
by the three methods are shown in Figure 22, and the error
results are shown in Figure 23.

Figure 22. Photovoltaic power prediction curve in rainy 
and snowy weather in four quarters 

Figure 23. Photovoltaic power prediction error curve 
under rainy and snowy weather in four quarters 

The analysis of the above results demonstrates that, 
regardless of weather conditions or season, the model 
consistently exhibits robust performance. The prediction 
results of the short-term photovoltaic power prediction model 
based on LMD-IPSO-LSVM proposed in this paper can fit 
the test data well, the error fluctuation is small, and the 

predicted value is also in perfect agreement with the real 
value. Compared with the other two methods, there is a large 
error. It shows that the method proposed in this paper can 
accurately predict the output power of a photovoltaic system 
under different weather types, and the range of error 
fluctuation is also small. 

4.3. Comparison with the deep learning 
models 

In order to testify to the effectiveness of LMD-IPSO-LSVM, 
Several experiments were carried out in this paper. Figure 24 
is the Comparison with the Deep Learning Model. This figure 
presents a multi-perspective performance comparison 
between the proposed LMD-IPSO-LSVM model and 
mainstream deep learning methods: 

Figure 24. Comparison with Deep Learning Model 

(i) Top-left: Comparison of prediction results for the first
12 hours, showing that the proposed model most closely
matches the true values.

(ii) Top-right: Box plot of prediction error distribution,
indicating that the proposed model achieves the smallest
errors with the most concentrated distribution.

(iii) Bottom-left: Full-day prediction comparison for the
second day, validating the model's adaptability under
different weather conditions.

(iv) Bottom-right: Radar chart of performance metrics,
demonstrating the superior performance of the proposed
model across all three metrics: RMSE, MAE, and
MAPE.

The results demonstrate that the LMD-IPSO-LSVM model 
outperforms the compared deep learning methods in both 
prediction accuracy and stability. 
Figure 25 presents a comparative analysis of the proposed 
model against representative deep learning models (LSTM, 
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Transformer) across the entire prediction horizon. The 
following key observations can be made: 

Figure 25. Comparison of Prediction Results from 
Main Models 

(i) The prediction trajectory of the LMD-IPSO-LSVM
model demonstrates near-perfect alignment with the
ground truth values (black line).

(ii) The LSTM model exhibits significant temporal lag
during periods of abrupt power fluctuations.

(iii) The Transformer model shows substantial deviations at
specific time intervals.

(iv) The proposed model effectively captures rapid transient
characteristics in photovoltaic power generation.

These findings validate the efficacy of integrating Local 
Mean Decomposition (LMD) and Improved Particle Swarm 
Optimization (IPSO) in enhancing forecasting precision. 
Figure 26 illustrates the performance comparison between the 
proposed model and representative deep learning models 
(LSTM, Transformer) across the entire prediction horizon. 
The following observations can be clearly made. 

(i) The forecast curve of the LMD-IPSO-LSVM model (red 
line) demonstrates near-perfect alignment with the
actual values (black line).

(ii) The LSTM model (blue dashed line) exhibits significant
lag during periods of sharp power fluctuations.

(iii) The Transformer model (purple dotted line) shows
substantial deviations at certain time points.

(iv) The proposed model more effectively captures the rapid
variation characteristics of photovoltaic power.

These results validate the effectiveness of Local Mean 
Decomposition (LMD) and Improved Particle Swarm 
Optimization (IPSO) in enhancing prediction accuracy. 

Figure 26. A Comparative Analysis of Cumulative 
Prediction Error Distributions 

4.4. Error evaluation 

The effectiveness of the proposed method was further verified 
by evaluating the prediction results for the three weather 
types against the normalized RE and MRE metrics (Eqs. 23 
and 24). The evaluation results are shown graphically in 
Figures 27–29 and tabulated in Table 4. 

Figure 27. Normalized relative errors of three methods 
in sunny weather 

Figure 28. Normalized relative error of three methods 
in overcast weather 
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Figure 29. Normalized relative error of three methods 
in rainy and snowy weather 

Table 4 Comparison of prediction errors of three 
methods 

Prediction method Model MRE% 
PSO-LSVM sunny day 8.51 

overcast 6.66 
Rain and snow 2.06 
average value 5.74 

LSVM sunny day 11.46 
overcast 8.33 

Rain and snow 2.94 
average value 7.58 

LMD-IPSO-
LSVM 

sunny day 0.42 
overcast 0.16 

Rain and snow 1.04 
average value 0.54 

It can be seen that the minimum MRE error of three weather 
types predicted by this method is 0.16% and the maximum is 
1.04%. The average MRE error corresponding to the three 
weather types is 0.54%. The minimum value of the average 
MRE error predicted by the PSO-LSVM method is 2.06%, 
and the maximum value is 8.51%. The average MRE error 
corresponding to the three weather types is 5.74%. The 
minimum error of MRE predicted by the LSVM method is 
2.94% and the maximum error is 11.46%. The average MRE 
error corresponding to the three weather types is 7.58%. 
Using the method proposed in this paper, the MRE error is 
small and the error floating range is also small. It shows that 
the prediction accuracy is greatly improved compared with 
the other two methods. 
Figure 30 illustrates the three-dimensional forms of five 
standard test functions used to evaluate the performance of 
optimization algorithms. These functions include: 

(i) Sphere: A simple unimodal convex function for testing
basic convergence capability.

(ii) Rosenbrock: A function featuring a narrow parabolic
valley, used to examine algorithm performance in non-
convex regions.

(iii) Rastrigin: A multimodal function with numerous local
optima, assessing the algorithm's ability to escape local
minima.

(iv) Ackley: A complex function containing multiple local
optima, evaluating global exploration capability.

(v) Griewank: A function with regularly distributed local
optima, testing precision search ability.

Figure 30. 3D Visualization of Test Functions 

From Figure 30, it can be seen that the diverse characteristics 
of these test functions establish a solid foundation for 
comprehensively evaluating the performance of the IPSO 
algorithm. 
Figure 31 presents a comparative analysis of the convergence 
processes between standard Particle Swarm Optimization 
(PSO) and Improved PSO (IPSO) across five test functions. 
Key observations include: 

Figure 31. A Comparative Analysis of Convergence 
Curves between PSO and IPSO 

(i) IPSO (red curve) demonstrates significantly faster
convergence rates than standard PSO (blue curve) across
all test functions.

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 
Research on short-term photovoltaic power prediction based on LMD-IPSO-LSVM 

 

  13      

(ii) The improved algorithm achieves lower fitness values, 
indicating enhanced optimization precision. 

(iii) IPSO's superiority is particularly pronounced on 
multimodal functions (Rastrigin, Ackley), confirming 
that its modified mechanisms effectively strengthen the 
ability to escape local optima. 

(iv) The text annotations on the convergence curves display 
the final fitness values upon algorithm termination, 
providing visual evidence of IPSO's performance 
advantages. 

From Figure 31, it can be seen that these results validate that 
through the incorporation of linearly decreasing inertia 
weight and adaptive learning factors, IPSO successfully 
balances global exploration and local exploitation 
capabilities. 
Figure 32 presents a comparative visualization of the average 
best fitness values achieved by PSO and IPSO across five test 
functions using a bar chart format. The following conclusions 
can be drawn as follows: 

 
 

Figure 32. A Comparative Bar Chart of Performance 
between PSO and IPSO 

(i) IPSO (red bars) demonstrates superior average 
performance over standard PSO (blue bars) across all 
test functions. 

(ii) The degree of performance improvement varies with 
function characteristics, showing particularly significant 
gains on multimodal functions. 

(iii) Numerical labels atop each bar precisely indicate the 
mean fitness values for both algorithms. 

(iv) The logarithmic-scaled vertical axis effectively reveals 
performance differences across multiple orders of 
magnitude. 

These statistical results validate the superiority and 
robustness of the IPSO algorithm when applied to diverse 
optimization problems. 

5. Conclusion 

In this paper, PSO-LSVM and LSVM models are established 
to predict the same test samples. The prediction results and 
error results are compared with the model established in this 
paper. At the same time, in order to further verify the 
accuracy, a variety of error evaluation indicators are used to 
evaluate the prediction results, and the results are analyzed. 
The final results show that the model established in this paper 
has good performance in different weather types and different 
seasons. 
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