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Abstract

Accurate wind power prediction is essential for enhancing the dispatchability of wind power and the stability of power grid
operation. However, traditional single-group intelligent algorithms for optimizing BP neural network modeling often suffer
from large result fluctuations and poor stability. To address this, this paper proposes a wind power prediction model based
on BP neural network optimized by a particle swarm—neighborhood gravitation—cuckoo collaborative optimization algorithm
(PSGC). PSGC integrates the fast global convergence of particle swarm optimization (PSO), the Lévy flight characteristic
of cuckoo search (CS), and the neighborhood gravitation mechanism of gravitational search algorithm (GSA) to maximize

the advantages of each algorithm and overcome the limitations of single algorithms. This integration is applied to the initial
optimization of the BP neural network’s weights and thresholds, followed by secondary optimization through the BP network
algorithm, ultimately for wind power prediction. Results show that the PSGC-BP model performs well in prediction accuracy
and stability. In the testing phase, the model’s root mean square error (RMSE) is 22.0127, mean absolute error (MAE) is
17.1045, and correlation coefficient (R) is 0.7903; in the prediction phase, RMSE is 45.2569, MAE is 27.9380, and R is
0.8408, with the smallest operating fluctuation, highest stability, and best comprehensive performance. This model provides
a feasible method for wind power prediction, contributing to improved dispatchability of wind power and grid stability.
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1. Introduction power prediction model has become one of the most

. . concerned issues for wind farms and dispatch departments.
With the advancement of the dual-carbon strategy, wind  Typgitional physical models rely on numerical weather

power has become. one of the key forms of energy in the prediction (NWP) and unit power curves, making it difficult
global energy transition and the process of achieving carbon capture the nonlinear mapping between wind speed and
neutrality goals. However, its inherent randomness, power [3]. Statistical methods such as ARMA and its

iptermit'tenc.y, and volatility pose severe challenges to real- improved algorithms, although computationally efficient, are
time grid dispatch and power balance [1]. Research shows prone to feature loss when dealing with multi-source
that by the end of 2024, the global installed capacity of wind heterogeneous meteorological data [4].

power has exceeded 1136 GW. It is predicted that by 2030, Artificial neural networks are widely used due to their

this figure will rise to about 2 TW; by 2050, it is expected to oy cejlent nonlinear approximation capabilities. Among them,
break through 6 TW, and the proportion of wind power inthe 4,0 Bp peural network, with its simple structure and ease of

global total power generation will approach 28% [2].  jjyplementation, has become a baseline model for wind power
Therefore, constructing a high-precision and robust wind
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prediction [5]. However, the BP network initializes weights
and thresholds randomly, making it prone to falling into local
minima, resulting in large prediction fluctuations and poor
stability [6].To overcome these defects, swarm intelligence
optimization algorithms have been introduced to improve the
quality of the network's initial parameters. While each
individual algorithm has its own advantages, they also have
issues such as premature convergence or high computational
costs: Genetic algorithms have strong global search
capabilities but converge slowly in the Ilater stages
[7,8].Particle swarm optimization algorithms converge
quickly but are prone to falling into local optima [9].Cuckoo
search algorithms, with their Lévy flight characteristics, can
effectively escape local traps but are sensitive to parameter
settings [10].In addition, novel algorithms such as beetle
antennae search, sparrow search, and scarab search have also
shown good potential in hyperparameter optimization [11-
14].

However, most existing studies remain within the single
algorithm +BP framework, neglecting the complementary
advantages brought by the collaboration of multiple
algorithms. Inspired by the idea of multi-agent collaboration,
this paper proposes a tri-mechanism collaborative
optimization algorithm of Particle Swarm-Neighborhood
Gravity-Cuckoo Search,which deeply integrates the rapid
global convergence ability of Particle Swarm Optimization
(PSO), the Lévy flight characteristic of Cuckoo Search (CS),
and the neighborhood gravity mechanism of Gravitational
Search Algorithm (GSA). This integration forms an efficient
improved PSO, GSA, and CS collaborative optimization
algorithm (PSGC), which is applied to the initial optimization
selection of weights and thresholds in BP neural networks.
Subsequently, BP neural networks are utilized to conduct a
secondary optimization of these weights and thresholds.
Finally, the optimized BP neural network model is applied to
wind power prediction research. The results indicate that
compared with the optimization of the BP neural network
model by individual algorithms such as PSO, GSA, and CS,
the PSGC algorithm proposed in this paper achieves higher
prediction accuracy and better stability in wind power
prediction.

2. BP Model Analysis and Problem
Discussion

The BP neural network is a type of multi-layer feedforward
neural network, trained through the back propagation of
errors. Its structure includes m input nodes, z hidden nodes,
and # output nodes. The optimization process of the BP neural
network essentially seeks the solution that minimizes the
error for the problem at hand, as mathematically modeled in
equation (1) below.

N
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Where y, is the actual output of the k-th sample, £, is the

expected output of the k-th sample, N is the number of
samples, and () denotes the real number space. The final
solution obtained from the mathematical model
min E(w,q,0,7) corresponds to the optimal parameter

combination of W, g, 68,y for the model.
The choice of initial weights w, ¢, and learning rates 6, ¥

is crucial for the training of a BP neural network.
Inappropriate initial values may lead to convergence to local
minima or slow down the convergence rate, affecting the
model's performance and generalization ability. The BP
algorithm uses gradient descent to solve for the weights and
thresholds[15], and the update of these weights follows the
rule shown in equation (2).
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In this context, n represents the learning rate, and
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function E with respect to the weights w, ¢, and the thresholds
0, y , respectively.

are the partial derivatives of the error

These update rules illustrate that the gradient descent
method has limited capability to adjust weights and
thresholds during the training process, especially when the
initial weights and thresholds are poorly chosen, which may
lead the algorithm to become trapped in local minima or slow
down the convergence rate. Therefore, selecting appropriate
initial values is crucial to ensure the effectiveness of BP
neural network training, especially given the limited capacity
for adjustment of initial weights and thresholds throughout
the execution of the gradient descent algorithm.

3. Introduction of Collaborative
Optimization Strategy

To overcome the limitations of initial weight and threshold
selection in BP neural networks and enhance their global
search ability and convergence speed, this study proposes a
collaborative optimization PSGC algorithm, which is a
hybrid method of PSO, GSA, and CS. By integrating the
advantages of multiple optimization algorithms, this method
aims to provide better initial weights and thresholds for the
BP neural network wind power prediction model, thereby
improving its training performance and generalization ability.

3.1. Particle Swarm Optimization Theory

PSO is a swarm intelligence-based optimization algorithm
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that simulates the foraging behavior of bird flocks. Each
particle represents a potential solution in the solution space,
updating its own position and velocity through individual
experience and swarm experience. In the actual algorithm

implementation process, the inertia weight w,, individual

learning factor ¢, , and social learning factor ¢, are

dynamically adjusted to balance global search and local
search capabilities. The specific velocity update formula and
position update formula of the algorithm are shown in
Equations (3) and (4) respectively[16].

vit+)=w, v () +c n-(pBest,—x,(1))+
3
¢, 1, - (gBest, — x,(1)) ©

x,(t+)=x(t)+v,(t+1) 4)

In which, v, and X, represent the velocity and position of
the particle, respectively, pBest is the optimal individual
position of the particle, gBest is the global optimal position,

and 7; and 7, are random numbers.

3.2. Gravitational Search Algorithm Theory

The GSA simulates the gravitational interactions between
celestial bodies, where each solution is considered a celestial
body with a mass proportional to its fitness. The algorithm
dynamically adjusts the positions of particles through
gravitational interactions. In the GSA algorithm, the
gravitational constant G gradually decreases as the number of
iterations increases, simulating the attenuation of gravity and
enhancing the algorithm's local search capability. The
specific calculations involved in the mass computation,
gravitational  force  computation, and acceleration
computation during the operation are shown in Equations (5),
(6), and (7) respectively[17].

fitness, —worst

(5
best —worst
m;-m;
Fy=G-——= (6)
d,,j +&
F,
_ Z ’ (M
ai' =
om+e

In which, m, is the mass of the particle, d i is the distance

between particles, G is the gravitational constant, and & is a
small constant to prevent division by zero.

2 EA

3.3. Cuckoo Search Theory

The CS algorithm utilizes the characteristics of Lévy flights
to enhance global search capabilities through long-distance
random jumps. Lévy flights are a type of random walk with a
long-tailed distribution, effectively avoiding local optima.
The step size of Lévy flights is shown in Equation (8).

y7,
L=—|v|l/ﬁ ®)

In which, 4 and v are random variables following a normal
distribution, f is the parameter of the Lévy distribution,
typically ranging between (0,2), used to control the
distribution characteristics of the step size, and L is the
generated Lévy step size.

3.4. Collaborative Optimization Algorithm
Process

The PSGC algorithm achieves a dynamic balance between
global exploration and local exploitation by integrating three
optimization mechanisms in each generation of iteration. The
process of optimizing the BP neural network with the PSGC
algorithm is divided into three stages, each containing several
steps, as shown in Figure 1.

Enport data and preprocess

| Initialize PSGC-BP algorithm parameters

|

‘ Initialize local and global optima

Yes, Assign the optimal solution
to the BP network:

if the maximum nunber
ofiterations is reached

BP network secondary training

| Update weights and gravity constants ‘

l

| Calculate the fitness of each particle

Update local and global optima

Generate candidate particles by gravitational field ‘

|

Generate new patticles using Lévy fight ‘

|

Replace particles with probability zz
and calculate global optimal selution

Figure 1. Operation Flow of the PSGC-BP Algorithm
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The specific steps of the PSGC algorithm for optimizing
the BP neural network are as follows.

Stagel.All parameters of the operation process are
initialized, where the weights and thresholds are initialized
using Equations (9) and (10) for the particle velocities. Based

on this initialization, the individual best position pBest and

the global best position gBest are calculated.

CUrr,

pos

= rand (num,dim) x (up —low)+low  (9)

(10)

v,, = 0.3x randn(num,dim)

Stage2.Determine whether the maximum number of
iterations has been reached. If so, proceed to Stage3 for
decoding and modeling to conduct secondary optimization.
Otherwise, execute the main loop—repeatedly performing

Step1 to Step6 until the maximum iteration countiter, is

achieved.
Step1.Update the inertia weight and learning factors using
Equations (11) and (12).

iter
Wp = Wmax _(wmax _Wmin)' (11)
max
iter
¢ =1.5--

iter

. max (12)

iter

c, =1+-
iter.

Step2.Calculate the fitness value of each particle. In the
optimization of BP neural networks, fitness is usually related
to the prediction error of the network. Considering that a
smaller fitness value in this study indicates a smaller
prediction error and higher solution quality of the particle,
solving for the minimum fitness value essentially involves
finding the optimal solution of Equation (1). Therefore, the
fitness function is represented as shown in Equation (13).

N
ﬁtness:E(w,q,H,y)Z%Z(yk—tk)2 (13)
k=1

Step3.Update the individual best position pBest and the

global best position gBest for each particle based on

Equation (13). For each particle i, if curr fitness(i)<
pBestScore(i), then pBestScore(i)y=curr_fitness(i), and
pBest(i)y=currpos(i). For each particle i, if curr fitness(i)
<gBestScore(i), then gBestScore(i)=curr_ fitness(i), and
gBest(i)=currpos(i).

Step4.Update the velocity and position using Equations (3)
and (4) to generate new vy and currpos.

2 EA

Step5. According to formulas (5), (6), and (7) in the GSA
algorithm, calculate the new acceleration a; to generate

candidate particles, and update the velocity and position of
the candidate particles as shown in equations (14) and (15).

(14)
(15)

v, () =v,@{@)+aq,

curr,, (i) = curr,, (i) + v, (i)

Step6. For the candidate particle positions generated in
Step5, use the new positions new,s generated by the Lévy
flight to update the particle positions, as shown in equation
(16). According to the random substitution mechanism of the
cuckoo search algorithm, replace the positions of some
particles with a certain probability p. to introduce new
solutions and enhance global search capability.

new,,. =curr,, +a-r;-L

(16)

In which, & is the step size factor, and 7; is a random

number from a standard normal distribution.
Stage3. After the completion of Stage2, the obtained
weights w, ¢, and thresholds 6, y are combined to assign

initial values to the BP neural network. Then, the BP
algorithm is used to perform a secondary optimization on this
initial solution until the end to construct the corresponding
wind power prediction model.

4. Experiment

4.1. Data Acquisition

In this study, we used the wind power dataset from the
Alibaba Cloud Tianchi public dataset as the source of
experimental data. This dataset contains a total of 3,648
records, each with 12 attributes, including wind speed and
direction at four different heights (10m, 30m, 50m, and 70m),
as well as temperature, air pressure, humidity, and wind
power information. These rich multidimensional data provide
comprehensive and detailed support for the study. Figure 2
shows the curve of wind power in the dataset as it changes
with sample points, from which the volatility of the data can
be observed, reflecting the instability of wind power and
possible periodic changes. Given the BP neural network's
capability in handling nonlinear relationships and capturing
complex patterns in data, it is well-suited for predicting the
trend of wind power data.
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Figure 2. Original Wind Power Trend Curve

4.2. Data Analysis

To accurately select the correlation between data and
eliminate redundant features, this study employs Pearson
correlation coefficients for correlation analysis. The core
principle of Pearson correlation analysis is to calculate the
degree of correlation between two different variables to
assess the strength of their linear relationship. The calculation
of the Pearson correlation coefficient is shown in Equation

(17).

! _ _
Z(ui —u)(v,—v)
R= L (17)

\/Z(”z _;‘)2\/2("} _;)2

In the formula, #; and v, are the i-th observed values of

variables u and v, respectively. # and v, are the mean values

of variables u and v, respectively. The coefficient R ranges
between [-1, +1], where values closer to 0 indicate weaker
correlation, and values closer to -1 or +1 indicate stronger
correlation. Factors with high correlation are selected as
model inputs. The relationship between the absolute value of
the Pearson correlation coefficient and the degree of
correlation is shown in Table 1[18].

Table 1. Relationship Between the Absolute Value of
the Correlation Coefficient and the Degree of
Correlation

Absolute
Value Range  (0.8,1] (0.6,0.8] (0.4,0.6] (0.2,0.4] (0,0.2]
of|R|
Very Very
R Strong Strong Moderate Weak Weak

Using Pearson's formula, we calculated the correlation
between wind speed (at 10m, 30m, 50m, and 70m), wind
direction (at 10m, 30m, 50m, and 70m), air pressure(AP),
temperature(Temp), relative humidity(RH), and wind power.
In this experiment, the 3,648 samples were divided into 3,000
training samples, 48 testing samples, and 600 prediction
samples. The correlation coefficient R was calculated using
the training samples, and the results are shown in Table 2.
From the table, it can be observed that humidity, air pressure,
and temperature have a very weak correlation with wind
power and can be neglected. Therefore, the final selection of
input variables for the BP neural network includes the 8
attributes of wind speed (at 10m, 30m, 50m, and 70m) and
wind direction (at 10m, 30m, 50m, and 70m).

Table 2. Correlation Coefficients of Various Factors with Wind Power

Wind Speed Wind Direction
Prop Temp AP RH
10m 30m 50m 70m 10m 30m 50m 70m
R 0.8313 0.8720 0.8988 0.9123 -0.3776 -0.3908 -0.4055 -0.4164 -0.0004 0.0109 0.0749

4 .3. Determination of BP Network Structure

Existing research indicates that determining the optimal
number of nodes in the hidden layer is a core issue in the
design of the network structure, given the a priori dimensions
of the input and output layers. In this paper, we employ the
golden section search strategy[19]to determine the number
of nodes z in the hidden layer, with the feasible domain for
the number of nodes in the hidden layer defined by Equation
(18). Here, m and n correspond to the number of input and
output neurons in Equation (1), respectively, with 8 and 1
being the counts for input and output neurons. @ and b
represent the left and right boundaries of the search interval

during the iteration process. The Pearson correlation
coefficient R between the test samples and the actual samples
is used as the objective function. We sequentially evaluate
the generalization performance at the 0.618 and 0.382
quantiles, iteratively narrowing the search interval until the
final number of nodes in the hidden layer is determined.
Table 3 shows the correlation values for each number of
nodes in the feasible domain. Therefore, the final number of
nodes selected for the hidden layer is 15, and the structure of
the BP model is as shown in Figure 3.

%:n;mﬁzﬁ(n+m)+10= (18)
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Layer
Input
v D
n b

Figure 3. Structure of the BP Model

Table 3 Calculation Results of Correlation Coefficients
for Each Hidden Layer Node in the Feasible Domain

z 13 14 15 16 17
R 0.5525 0.5939 0.6614 0.6129 0.4931

4.4. Experiment and Result Analysis

Wind power prediction models were established and tested
using GSA-BP, PSO-BP, CS-BP, and PSGC-BP algorithms.
Considering that both BP algorithms and PSO, GSA, and CS
optimization algorithms involve a large number of random
parameters, the results of the algorithmic models are highly
stochastic. Therefore, in this experiment, the comparison was
made based on the output results of each model run 10 times
to reduce the impact of random fluctuations in the output
results on the analysis. Figure 4 and Figure 5 show the
comparison of output results for the testing and prediction
segments, respectively. It can be intuitively seen from the
figures that, in the testing segment, except for the GSA-BP
model which has some output points that clearly do not
follow the actual value trend, the outputs of the other models
are in line with the actual value trend. In the prediction
segment, the PSGC-BP model performs the best, with its
prediction results being closer to the original values at most
sample points, demonstrating higher prediction accuracy.

Comparison of Output Results from Different Algorithm Models in a Test Segment
lil T T T
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350 e FRRIER
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0 5 10 15 20 25 30 3 40 45 50
Sample Points: Nurnber

Figure 4. Comparison of Output Results from
Various Algorithmic Models in the Testing Segment

Corparison of Output Results from Different Algorithrn Models in a Forecast Segment
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Figure 5. Comparison of Output Results from Various
Algorithmic Models in the Prediction Segment

To further compare the algorithmic models, the Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Pearson correlation coefficient R were used to evaluate
the model results. Table 4 presents the mean comparison of
the results from 10 runs of different algorithmic models.
From Table 4, it can be seen that the PSGC-BP algorithmic
model demonstrates good performance in most key
performance indicators. During the testing phase, the RMSE
of the PSGC-BP algorithmic model's output results is
22.0127, the MAE is 17.1045, and the correlation coefficient
R is 0.7903, all of which show its advantage in predictive
accuracy. Although during the prediction phase, the MAE of
the PSGC-BP algorithmic model is 27.9380, slightly higher
than that of CS-BP's 27.9189, its RMSE is 45.2569, and the
correlation coefficient R is 0.8408, still significantly
outperforming other algorithms, demonstrating the excellent
comprehensive predictive performance of PSGC-BP.

Table 4. Comparison of Final Prediction Results of
Different Algorithm Models

Algorithm Data Segment RMSE  MAE R

Test Segment 45.1321 27.1321 0.4041
GSA-BP
Prediction Segment 57.1042 30.6134 0.7918

Test Segment 26.0500 19.7881 0.7001

PSO-BP
Prediction Segment 58.6479 29.8317 0.7366
Test Segment 234126 17.3471 0.7491
CS-BP
Prediction Segment 47.6685 27.9189 0.8193
Test Segment 22.0127 17.1045 0.7903
PSGC-BP

Prediction Segment 45.2569 27.9380 0.8408
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Further analysis of the fluctuation of the 10 output results
in Table 5 reveals the following: during the testing phase, the
PSGC-BP algorithm model exhibited fluctuations of 10.0549
in RMSE, 8.4257 in MAE, and 0.1847 in R. During the
prediction phase, the fluctuations were 10.2563 in RMSE,
3.8517 in MAE, and 0.0494 in R. It can be observed that the
PSGC-BP algorithm model has the smallest fluctuation
values, indicating that its predictive results are more stable
compared to other algorithms.

Table 5. Comparison of Output Fluctuations Over 10
Runs for Different Algorithm Models

Data RMSE MAE R
Algorithm Seament Fluctuation Fluctuation Fluctuation
cgme Value Value Value
Test 2975196  50.0854 0.6134
Segment
GSA-BP -
Prediction 2 1008 48.6420 0.5138
Segment
Test 32.7039 11.3395 0.5039
Segment
PSO-BP -
Prediction 01 3000 39.0263 0.7638
Segment
Test 26.6069 11.7220 0.4938
Segment
CS-BP -
Prediction 57 o730 153385 0.5411
Segment
Test 10.0549 8.4257 0.1847
Segment
PSGC-BP -
Prediction ) 5¢4 3.8517 0.0494
Segment

Table 6 presents the average running time of 10
optimization trials for various algorithms in the process of
optimizing the weights and thresholds of the BP model. As
shown in the table, the running time of the PSGC algorithm
is only slightly longer than that of the PSO algorithm, but
significantly shorter than that of the GSA and CS algorithms.
Although the running time of the PSGC algorithm is slightly
longer, it achieves a significant improvement in prediction
accuracy and stability. Taking into account both running time
and prediction performance, the PSGC algorithm still
performs excellently among all algorithms and has a clear
advantage. In addition, considering that the state of the
computing equipment may affect the running time, we
conducted multiple experiments for verification. The results
show that the conclusions are basically consistent with the
results of this experiment, further confirming the superiority
of the PSGC algorithm.

Table 6. Comparison of Running Times for
Different Algorithm Optimization Phases (Unit: s)

Algorithm GSA PSO CS PSGC
83.6336 65.3351 87.8780 74.2273

Running Time

5. Conclusion

This paper proposes a wind power prediction model
optimized by a BP neural network based on the Particle
Swarm-Neighborhood = Gravity-Cuckoo  collaborative
optimization algorithm. The model integrates the particle
swarm optimization, gravitational search algorithm, and
cuckoo search mechanisms, fully leveraging the advantages
of each algorithm and overcoming the limitations of
individual algorithms. Experiments using the wind power
dataset from Alibaba Cloud's Tianchi Lab demonstrate that
the PSGC-BP model exhibits excellent prediction accuracy
and stability in both the testing and prediction phases. This
proves the necessity and effectiveness of the integrated
optimization strategy. Although the running time of the
PSGC algorithm is slightly longer than that of the PSO
algorithm, its comprehensive performance remains the best,
especially in application scenarios where high requirements
for prediction accuracy and result stability are prioritized.

With the advancement of the dual carbon strategy, the
proportion of wind power in the energy structure is
continuously increasing, and the accuracy and stability of its
power prediction are crucial for real-time scheduling and
power balance in the power grid. The model proposed in this
paper provides a new and effective method for wind power
prediction, which helps to improve the dispatchability of
wind power and the stability of power grid operations. Future
work will further combine more meteorological data and
optimization algorithms to enhance the model's performance
and generalization capabilities.
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