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Abstract 

Accurate wind power prediction is essential for enhancing the dispatchability of wind power and the stability of power grid 
operation. However, traditional single-group intelligent algorithms for optimizing BP neural network modeling often suffer 
from large result fluctuations and poor stability. To address this, this paper proposes a wind power prediction model based 
on BP neural network optimized by a particle swarm–neighborhood gravitation–cuckoo collaborative optimization algorithm 
(PSGC). PSGC integrates the fast global convergence of particle swarm optimization (PSO), the Lévy flight characteristic 
of cuckoo search (CS), and the neighborhood gravitation mechanism of gravitational search algorithm (GSA) to maximize 
the advantages of each algorithm and overcome the limitations of single algorithms. This integration is applied to the initial 
optimization of the BP neural network’s weights and thresholds, followed by secondary optimization through the BP network 
algorithm, ultimately for wind power prediction. Results show that the PSGC-BP model performs well in prediction accuracy 
and stability. In the testing phase, the model’s root mean square error (RMSE) is 22.0127, mean absolute error (MAE) is 
17.1045, and correlation coefficient (R) is 0.7903; in the prediction phase, RMSE is 45.2569, MAE is 27.9380, and R is 
0.8408, with the smallest operating fluctuation, highest stability, and best comprehensive performance. This model provides 
a feasible method for wind power prediction, contributing to improved dispatchability of wind power and grid stability. 
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1. Introduction

With the advancement of the dual-carbon strategy, wind 
power has become one of the key forms of energy in the 
global energy transition and the process of achieving carbon 
neutrality goals. However, its inherent randomness, 
intermittency, and volatility pose severe challenges to real-
time grid dispatch and power balance [1]. Research shows 
that by the end of 2024, the global installed capacity of wind 
power has exceeded 1136 GW. It is predicted that by 2030, 
this figure will rise to about 2 TW; by 2050, it is expected to 
break through 6 TW, and the proportion of wind power in the 
global total power generation will approach 28% [2]. 
Therefore, constructing a high-precision and robust wind  
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power prediction model has become one of the most 
concerned issues for wind farms and dispatch departments. 
Traditional physical models rely on numerical weather 
prediction (NWP) and unit power curves, making it difficult 
to capture the nonlinear mapping between wind speed and 
power [3]. Statistical methods such as ARMA and its 
improved algorithms, although computationally efficient, are 
prone to feature loss when dealing with multi-source 
heterogeneous meteorological data [4]. 

Artificial neural networks are widely used due to their 
excellent nonlinear approximation capabilities. Among them, 
the BP neural network, with its simple structure and ease of 
implementation, has become a baseline model for wind power 
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prediction [5]. However, the BP network initializes weights 
and thresholds randomly, making it prone to falling into local 
minima, resulting in large prediction fluctuations and poor 
stability [6].To overcome these defects, swarm intelligence 
optimization algorithms have been introduced to improve the 
quality of the network's initial parameters. While each 
individual algorithm has its own advantages, they also have 
issues such as premature convergence or high computational 
costs: Genetic algorithms have strong global search 
capabilities but converge slowly in the later stages 
[7,8].Particle swarm optimization algorithms converge 
quickly but are prone to falling into local optima [9].Cuckoo 
search algorithms, with their Lévy flight characteristics, can 
effectively escape local traps but are sensitive to parameter 
settings [10].In addition, novel algorithms such as beetle 
antennae search, sparrow search, and scarab search have also 
shown good potential in hyperparameter optimization [11-
14]. 

However, most existing studies remain within the single 
algorithm +BP framework, neglecting the complementary 
advantages brought by the collaboration of multiple 
algorithms. Inspired by the idea of multi-agent collaboration, 
this paper proposes a tri-mechanism collaborative 
optimization algorithm of  Particle Swarm-Neighborhood 
Gravity-Cuckoo Search,which deeply integrates the rapid 
global convergence ability of Particle Swarm Optimization 
(PSO), the Lévy flight characteristic of Cuckoo Search (CS), 
and the neighborhood gravity mechanism of Gravitational 
Search Algorithm (GSA). This integration forms an efficient 
improved PSO, GSA, and CS collaborative optimization 
algorithm (PSGC), which is applied to the initial optimization 
selection of weights and thresholds in BP neural networks. 
Subsequently, BP neural networks are utilized to conduct a 
secondary optimization of these weights and thresholds. 
Finally, the optimized BP neural network model is applied to 
wind power prediction research. The results indicate that 
compared with the optimization of the BP neural network 
model by individual algorithms such as PSO, GSA, and CS, 
the PSGC algorithm proposed in this paper achieves higher 
prediction accuracy and better stability in wind power 
prediction. 

2. BP Model Analysis and Problem
Discussion

The BP neural network is a type of multi-layer feedforward 
neural network, trained through the back propagation of 
errors. Its structure includes m input nodes, z hidden nodes, 
and n output nodes. The optimization process of the BP neural 
network essentially seeks the solution that minimizes the 
error for the problem at hand, as mathematically modeled in 
equation (1) below. 
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Where ky is the actual output of the k-th sample, kt  is the
expected output of the k-th sample, N is the number of 
samples, and Ω  denotes the real number space. The final 
solution obtained from the mathematical model 

),,,(min γθqwE corresponds to the optimal parameter 
combination of γθ ,,,qw  for the model. 

The choice of initial weights w, q, and learning rates θ, γ
is crucial for the training of a BP  neural network. 
Inappropriate initial values may lead to convergence to local 
minima or slow down the convergence rate, affecting the 
model's performance and generalization ability. The BP 
algorithm uses gradient descent to solve for the weights and 
thresholds[15], and the update of these weights follows the 
rule shown in equation (2). 
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In this context, η represents the learning rate, and
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function E with respect to the weights w, q, and the thresholds 
θ, γ , respectively. 

These update rules illustrate that the gradient descent 
method has limited capability to adjust weights and 
thresholds during the training process, especially when the 
initial weights and thresholds are poorly chosen, which may 
lead the algorithm to become trapped in local minima or slow 
down the convergence rate. Therefore, selecting appropriate 
initial values is crucial to ensure the effectiveness of BP 
neural network training, especially given the limited capacity 
for adjustment of initial weights and thresholds throughout 
the execution of the gradient descent algorithm. 

3. Introduction of Collaborative
Optimization Strategy

To overcome the limitations of initial weight and threshold 
selection in BP neural networks and enhance their global 
search ability and convergence speed, this study proposes a 
collaborative optimization PSGC algorithm, which is a 
hybrid method of PSO, GSA, and CS. By integrating the 
advantages of multiple optimization algorithms, this method 
aims to provide better initial weights and thresholds for the 
BP neural network wind power prediction model, thereby 
improving its training performance and generalization ability. 

3.1. Particle Swarm Optimization Theory 

PSO is a swarm intelligence-based optimization algorithm 
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that simulates the foraging behavior of bird flocks. Each 
particle represents a potential solution in the solution space, 
updating its own position and velocity through individual 
experience and swarm experience. In the actual algorithm 
implementation process, the inertia weight pw , individual 

learning factor 1c , and social learning factor 2c are 
dynamically adjusted to balance global search and local 
search capabilities. The specific velocity update formula and 
position update formula of the algorithm are shown in 
Equations (3) and (4) respectively[16]. 
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In which, iv  and ix  represent the velocity and position of 

the particle, respectively, pBest  is the optimal individual 
position of the particle, gBest  is the global optimal position, 

and 1r  and 2r  are random numbers.

3.2. Gravitational Search Algorithm Theory 

The GSA simulates the gravitational interactions between 
celestial bodies, where each solution is considered a celestial 
body with a mass proportional to its fitness. The algorithm 
dynamically adjusts the positions of particles through 
gravitational interactions. In the GSA algorithm, the 
gravitational constant G gradually decreases as the number of 
iterations increases, simulating the attenuation of gravity and 
enhancing the algorithm's local search capability. The 
specific calculations involved in the mass computation, 
gravitational force computation, and acceleration 
computation during the operation are shown in Equations (5), 
(6), and (7) respectively[17]. 
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In which, im  is the mass of the particle, ijd  is the distance
between particles, G is the gravitational constant, and ε  is a 
small constant to prevent division by zero. 

3.3. Cuckoo Search Theory 

The CS algorithm utilizes the characteristics of Lévy flights 
to enhance global search capabilities through long-distance 
random jumps. Lévy flights are a type of random walk with a 
long-tailed distribution, effectively avoiding local optima. 
The step size of Lévy flights is shown in Equation (8). 

β

µ
/1|| v

L =  (8) 

In which, μ and ν are random variables following a normal 
distribution, β is the parameter of the Lévy distribution, 
typically ranging between (0,2), used to control the 
distribution characteristics of the step size, and L is the 
generated Lévy step size. 

3.4. Collaborative Optimization Algorithm 
Process 

The PSGC algorithm achieves a dynamic balance between 
global exploration and local exploitation by integrating three 
optimization mechanisms in each generation of iteration. The 
process of optimizing the BP neural network with the PSGC 
algorithm is divided into three stages, each containing several 
steps, as shown in Figure 1. 

Figure 1. Operation Flow of the PSGC-BP Algorithm 
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The specific steps of the PSGC algorithm for optimizing 
the BP neural network are as follows. 

Stage1.All parameters of the operation process are 
initialized, where the weights and thresholds are initialized 
using Equations (9) and (10) for the particle velocities. Based 
on this initialization, the individual best position pBest  and 
the global best position gBest  are calculated. 

lowlowupnumrandcurr +−×= )(dim),(pos   (9) 

dim),(3.0 numrandnvel ×=   (10) 

Stage2.Determine whether the maximum number of 
iterations has been reached. If so, proceed to Stage3 for 
decoding and modeling to conduct secondary optimization. 
Otherwise, execute the main loop—repeatedly performing 
Step1 to Step6 until the maximum iteration count maxiter   is 
achieved. 

Step1.Update the inertia weight and learning factors using 
Equations (11) and (12). 
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Step2.Calculate the fitness value of each particle. In the 
optimization of BP neural networks, fitness is usually related 
to the prediction error of the network. Considering that a 
smaller fitness value in this study indicates a smaller 
prediction error and higher solution quality of the particle, 
solving for the minimum fitness value essentially involves 
finding the optimal solution of Equation (1). Therefore, the 
fitness function is represented as shown in Equation (13). 
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Step3.Update the individual best position pBest  and the 
global best position gBest for each particle based on 
Equation (13). For each particle i, if curr_fitness(i)< 
pBestScore(i), then pBestScore(i)=curr_fitness(i), and 
pBest(i)=currpos(i). For each particle i, if curr_fitness(i) 
<gBestScore(i), then gBestScore(i)=curr_ fitness(i), and 
gBest(i)=currpos(i). 

Step4.Update the velocity and position using Equations (3) 
and (4) to generate new vel and currpos. 

Step5. According to formulas (5), (6), and (7) in the GSA 
algorithm, calculate the new acceleration ia  to generate
candidate particles, and update the velocity and position of 
the candidate particles as shown in equations (14) and (15). 

ielel aiviv += )()(  (14) 
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Step6. For the candidate particle positions generated in 
Step5, use the new positions newpos generated by the Lévy 
flight to update the particle positions, as shown in equation 
(16). According to the random substitution mechanism of the 
cuckoo search algorithm, replace the positions of some 
particles with a certain probability pa to introduce new 
solutions and enhance global search capability. 

Lrcurrnew pospos ⋅⋅+= 3α   (16) 

In which, α  is the step size factor, and 3r  is a random
number from a standard normal distribution. 

Stage3. After the completion of Stage2, the obtained 
weights w, q, and thresholds θ, γ  are combined to assign 
initial values to the BP neural network. Then, the BP 
algorithm is used to perform a secondary optimization on this 
initial solution until the end to construct the corresponding 
wind power prediction model. 

4. Experiment

4.1. Data Acquisition 

In this study, we used the wind power dataset from the 
Alibaba Cloud Tianchi public dataset as the source of 
experimental data. This dataset contains a total of 3,648 
records, each with 12 attributes, including wind speed and 
direction at four different heights (10m, 30m, 50m, and 70m), 
as well as temperature, air pressure, humidity, and wind 
power information. These rich multidimensional data provide 
comprehensive and detailed support for the study. Figure 2 
shows the curve of wind power in the dataset as it changes 
with sample points, from which the volatility of the data can 
be observed, reflecting the instability of wind power and 
possible periodic changes. Given the BP neural network's 
capability in handling nonlinear relationships and capturing 
complex patterns in data, it is well-suited for predicting the 
trend of wind power data. 
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Figure 2. Original Wind Power Trend Curve 

4.2. Data Analysis 

To accurately select the correlation between data and 
eliminate redundant features, this study employs Pearson 
correlation coefficients for correlation analysis. The core 
principle of Pearson correlation analysis is to calculate the 
degree of correlation between two different variables to 
assess the strength of their linear relationship. The calculation 
of the Pearson correlation coefficient is shown in Equation 
(17). 
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In the formula, ui and vi are the i-th observed values of

variables u and v, respectively. u and vi are the mean values
of variables u and v, respectively. The coefficient R ranges 
between [-1, +1], where values closer to 0 indicate weaker 
correlation, and values closer to -1 or +1 indicate stronger 
correlation. Factors with high correlation are selected as 
model inputs. The relationship between the absolute value of 
the Pearson correlation coefficient and the degree of 
correlation is shown in Table 1[18]. 

Table 1. Relationship Between the Absolute Value of 
the Correlation Coefficient and the Degree of 

Correlation 

Absolute 
Value Range 

of|R| 
(0.8,1] (0.6,0.8] (0.4,0.6] (0.2,0.4] (0,0.2] 

R Very 
Strong Strong Moderate Weak Very 

Weak

Using Pearson's formula, we calculated the correlation 
between wind speed (at 10m, 30m, 50m, and 70m), wind 
direction (at 10m, 30m, 50m, and 70m), air pressure(AP), 
temperature(Temp), relative humidity(RH), and wind power. 
In this experiment, the 3,648 samples were divided into 3,000 
training samples, 48 testing samples, and 600 prediction 
samples. The correlation coefficient R was calculated using 
the training samples, and the results are shown in Table 2. 
From the table, it can be observed that humidity, air pressure, 
and temperature have a very weak correlation with wind 
power and can be neglected. Therefore, the final selection of 
input variables for the BP neural network includes the 8 
attributes of wind speed (at 10m, 30m, 50m, and 70m) and 
wind direction (at 10m, 30m, 50m, and 70m). 

Table 2. Correlation Coefficients of Various Factors with Wind Power 

Prop 
Wind Speed Wind Direction 

Temp AP RH 
10m 30m 50m 70m 10m 30m 50m 70m 

R 0.8313 0.8720 0.8988 0.9123 -0.3776 -0.3908 -0.4055 -0.4164 -0.0004 0.0109 0.0749 

4.3. Determination of BP Network Structure 

Existing research indicates that determining the optimal 
number of nodes in the hidden layer is a core issue in the 
design of the network structure, given the a priori dimensions 
of the input and output layers. In this paper, we employ the 
golden section search strategy[19]to determine the number 
of nodes z in the hidden layer, with the feasible domain for 
the number of nodes in the hidden layer defined by Equation 
(18). Here, m and n correspond to the number of input and 
output neurons in Equation (1), respectively, with 8 and 1 
being the counts for input and output neurons. a and b 
represent the left and right boundaries of the search interval 

during the iteration process. The Pearson correlation 
coefficient R between the test samples and the actual samples 
is used as the objective function. We sequentially evaluate 
the generalization performance at the 0.618 and 0.382 
quantiles, iteratively narrowing the search interval until the 
final number of nodes in the hidden layer is determined. 
Table 3 shows the correlation values for each number of 
nodes in the feasible domain. Therefore, the final number of 
nodes selected for the hidden layer is 15, and the structure of 
the BP model is as shown in Figure 3. 

a = 
n + m 

≤ z ≤ (n + m) +10 =b 2
 (18) 
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Figure 3. Structure of the BP Model 

Table 3 Calculation Results of Correlation Coefficients 
for Each Hidden Layer Node in the Feasible Domain 

z 13 14 15 16 17 
R 0.5525 0.5939 0.6614 0.6129 0.4931 

4.4. Experiment and Result Analysis 

Wind power prediction models were established and tested 
using GSA-BP, PSO-BP, CS-BP, and PSGC-BP algorithms. 
Considering that both BP algorithms and PSO, GSA, and CS 
optimization algorithms involve a large number of random 
parameters, the results of the algorithmic models are highly 
stochastic. Therefore, in this experiment, the comparison was 
made based on the output results of each model run 10 times 
to reduce the impact of random fluctuations in the output 
results on the analysis. Figure 4 and Figure 5 show the 
comparison of output results for the testing and prediction 
segments, respectively. It can be intuitively seen from the 
figures that, in the testing segment, except for the GSA-BP 
model which has some output points that clearly do not 
follow the actual value trend, the outputs of the other models 
are in line with the actual value trend. In the prediction 
segment, the PSGC-BP model performs the best, with its 
prediction results being closer to the original values at most 
sample points, demonstrating higher prediction accuracy. 

Figure 4. Comparison of Output Results from 
Various Algorithmic Models in the Testing Segment 

Figure 5. Comparison of Output Results from Various 
Algorithmic Models in the Prediction Segment 

To further compare the algorithmic models, the Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), 
and Pearson correlation coefficient R were used to evaluate 
the model results. Table 4 presents the mean comparison of 
the results from 10 runs of different algorithmic models. 
From Table 4, it can be seen that the PSGC-BP algorithmic 
model demonstrates good performance in most key 
performance indicators. During the testing phase, the RMSE 
of the PSGC-BP algorithmic model's output results is 
22.0127, the MAE is 17.1045, and the correlation coefficient 
R is 0.7903, all of which show its advantage in predictive 
accuracy. Although during the prediction phase, the MAE of 
the PSGC-BP algorithmic model is 27.9380, slightly higher 
than that of CS-BP's 27.9189, its RMSE is 45.2569, and the 
correlation coefficient R is 0.8408, still significantly 
outperforming other algorithms, demonstrating the excellent 
comprehensive predictive performance of PSGC-BP. 

Table 4. Comparison of Final Prediction Results of 
Different Algorithm Models 

Algorithm Data Segment RMSE MAE R 

GSA-BP 
Test Segment 45.1321 27.1321 0.4041 

Prediction Segment 57.1042 30.6134 0.7918 

PSO-BP 
Test Segment 26.0500 19.7881 0.7001 

Prediction Segment 58.6479 29.8317 0.7366 

CS-BP 
Test Segment 23.4126 17.3471 0.7491 

Prediction Segment 47.6685 27.9189 0.8193 

PSGC-BP 
Test Segment 22.0127 17.1045 0.7903 

Prediction Segment 45.2569 27.9380 0.8408 
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Further analysis of the fluctuation of the 10 output results 
in Table 5 reveals the following: during the testing phase, the 
PSGC-BP algorithm model exhibited fluctuations of 10.0549 
in RMSE, 8.4257 in MAE, and 0.1847 in R. During the 
prediction phase, the fluctuations were 10.2563 in RMSE, 
3.8517 in MAE, and 0.0494 in R. It can be observed that the 
PSGC-BP algorithm model has the smallest fluctuation 
values, indicating that its predictive results are more stable 
compared to other algorithms. 

Table 5. Comparison of Output Fluctuations Over 10 
Runs for Different Algorithm Models 

Algorithm Data 
Segment 

RMSE 
Fluctuation 

Value 

MAE 
Fluctuation 

Value 

R 
Fluctuation 

Value 

GSA-BP 

Test 
Segment 297.5196 50.0854 0.6134 

Prediction 
Segment 274.4028 48.6420 0.5138 

PSO-BP 

Test 
Segment 32.7039 11.3395 0.5039 

Prediction 
Segment 381.3890 39.9263 0.7638 

CS-BP 

Test 
Segment 26.6069 11.7220 0.4938 

Prediction 
Segment 157.9730 15.3385 0.5411 

PSGC-BP 

Test 
Segment 10.0549 8.4257 0.1847 

Prediction 
Segment 10.2563 3.8517 0.0494 

Table 6 presents the average running time of 10 
optimization trials for various algorithms in the process of 
optimizing the weights and thresholds of the BP model. As 
shown in the table, the running time of the PSGC algorithm 
is only slightly longer than that of the PSO algorithm, but 
significantly shorter than that of the GSA and CS algorithms. 
Although the running time of the PSGC algorithm is slightly 
longer, it achieves a significant improvement in prediction 
accuracy and stability. Taking into account both running time 
and prediction performance, the PSGC algorithm still 
performs excellently among all algorithms and has a clear 
advantage. In addition, considering that the state of the 
computing equipment may affect the running time, we 
conducted multiple experiments for verification. The results 
show that the conclusions are basically consistent with the 
results of this experiment, further confirming the superiority 
of the PSGC algorithm. 

Table 6. Comparison of Running Times for 
Different Algorithm Optimization Phases (Unit: s) 

Algorithm GSA PSO CS PSGC 
Running Time 83.6336 65.3351 87.8780 74.2273 

5. Conclusion

This paper proposes a wind power prediction model 
optimized by a BP neural network based on the Particle 
Swarm-Neighborhood Gravity-Cuckoo collaborative 
optimization algorithm. The model integrates the particle 
swarm optimization, gravitational search algorithm, and 
cuckoo search mechanisms, fully leveraging the advantages 
of each algorithm and overcoming the limitations of 
individual algorithms. Experiments using the wind power 
dataset from Alibaba Cloud's Tianchi Lab demonstrate that 
the PSGC-BP model exhibits excellent prediction accuracy 
and stability in both the testing and prediction phases. This 
proves the necessity and effectiveness of the integrated 
optimization strategy. Although the running time of the 
PSGC algorithm is slightly longer than that of the PSO 
algorithm, its comprehensive performance remains the best, 
especially in application scenarios where high requirements 
for prediction accuracy and result stability are prioritized. 

With the advancement of the dual carbon strategy, the 
proportion of wind power in the energy structure is 
continuously increasing, and the accuracy and stability of its 
power prediction are crucial for real-time scheduling and 
power balance in the power grid. The model proposed in this 
paper provides a new and effective method for wind power 
prediction, which helps to improve the dispatchability of 
wind power and the stability of power grid operations. Future 
work will further combine more meteorological data and 
optimization algorithms to enhance the model's performance 
and generalization capabilities. 
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