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Abstract 

In the evolution of energy systems, investigations into distribution networks have concentrated on enhancing reliability and 
optimizing performance. Distribution networks with distributed energy resources are expected to significantly enhance 
power accommodation capacity, but load flow distribution and network optimization remain key challenges. This study aims 
to develop an improved dung beetle optimization (IDBO) algorithm to minimize active power losses and node voltage 
deviations in distribution networks, while validating its superiority over existing algorithms across different network 
configurations. The IDBO algorithm is enhanced through three key strategies: (i) A variable spiral search strategy is 
employed to improve search efficiency and global exploration. (ii) A levy flight strategy is introduced to prevent algorithm 
premature convergence. (iii) A t-distribution adjustment strategy based on iteration count is adopted to strengthen local 
search capability. To verify whether the IDBO algorithm can achieve the optimal load flow distribution that meets the 
reliability requirements of distribution network operation, relevant validations have been conducted. Experimental results 
demonstrate that IDBO achieves faster convergence and superior performance on classical test functions. In practical 
applications to IEEE 33-bus and 69-bus distribution systems, it significantly reduces power losses and improves voltage 
profiles compared to other algorithms. The proposed IDBO algorithm provides an effective solution for distribution network 
reconfiguration, demonstrating enhanced optimization capability, improved convergence characteristics, and reliable 
performance across various operating conditions. 
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1. Introduction

To achieve secure and reliable power supply and facilitate a 
clean low-carbon transition, further enhancement and 
upgrading of the distribution network are necessary. On 
March 1, 2024, the National Development and Reform 
Commission and the National Energy Administration[1] 
issued the "Guiding Opinions on the High-Quality 
Development of Distribution Networks in the New 
Situation," proposing the establishment of a novel type of 
distribution system that was safe, efficient, clean, low-carbon, 
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flexible, adaptive, and intelligent. [2] The incorporation of 
renewable energy sources significantly enhances the supply 
capacity, distribution capacity, resilience, and flexibility of 
the new distribution system. However, instability poses a key 
obstacle limiting its widespread application[3]. In this 
context, optimizing and restructuring distribution networks 
have become the mainstream trend to support the 
transformation of the grid. [4] 

Distribution network reconfiguration (DNR) involves 
optimizing the flow paths of electric currents, thereby 
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improving the performance and reliability of the grid. [5] 
Losses in distribution networks primarily arise from the 
resistance and reactance encountered by electric currents 
during transmission, which lead to energy conversion into 
heat and subsequent loss. Measures such as restructuring 
network topology and integrating distributed energy 
resources can effectively reduce the losses of energy caused 
by resistance and reactance. By DNR and careful 
consideration of the locations and capacities of distributed 
energy resource connections, not only can power supply 
reliability be enhanced, but it can also contribute to promote 
the widespread application of clean energy, which can serve 
as a good corresponding to the "dual carbon" objectives. [6] 

In DNR, the objective functions and constraints often 
involve nonlinear power flow equations, power balance 
equations, which are typically non-convex. Furthermore, the 
inclusion of discrete and integer variables in distribution 
network problems further exacerbates the non-convex nature 
of the problem. This discretization and non-convexity make 
the DNR problem more closely aligned with the practical 
functioning of power systems, thereby adding intricacy and 
challenge to the issue. To address this issue, traditional 
mathematical methods, heuristic algorithms, and artificial 
intelligence algorithms can be employed. These methods can 
effectively optimize the DNR's results, enhancing system 
efficiency and stability. By reviewing the literature, it was 
discovered that when a problem has a very large exploration 
space or it is challenging to establish precise mathematical 
models, traditional mathematical algorithms reveal the 
drawback of low computational efficiency. And the heuristic 
algorithms in current literature cannot guarantee finding the 
global optimal solution and may sometimes converge to local 
optima. In contrast, artificial intelligence algorithms are 
evolving towards increased adaptability, integrating the 
strengths of multiple heuristic algorithms to enhance 
algorithm robustness and search capabilities. Ref. [7] 
provided a detailed explanation of the Dragonfly Algorithm 
(DA), elucidating its principles of separation, alignment, 
cohesion, attraction, and distraction, then simulated on an 
enhanced IEEE 16-bus network to validate its effectiveness 
in losses reduction and network performance enhancement. 
Ref. [8] devised switching functions incorporating 
instantaneous operational cost variations and integrates a 
trained LSTM model for grid reconfiguration. Case studies 
showcase the effectiveness and robustness of this approach. 
Ref. [9] introduced a multi-objective approach which 
considered both the aggregate active power losses and the 
comprehensive network voltage stability. The optimization 
function was assessed using load flow methods, and the 
proposed Enhanced Sine-Cosine Algorithm (ESCA) was 
benchmarked against other established algorithms, 
showcasing its superiority. Ref. [10] applied the Harris 
Hawks Optimization (HHO) to solve optimization issues and 
successfully minimizes total network losses by 21.428% in a 
case study on an 83-node distribution system. In aiming to 
reduce active power losses, enhance voltage magnitude, and 
improve reliability metrics, Ref. [11] contrasted Evolutionary 
Optimization (EO) with ten alternative meta-heuristic search 
methods when tackling the reconfiguration issue in four 

distinct distribution test systems. Ref. [12] introduced a novel 
DNR method to enhance reliability metrics and lower 
operational costs. It applies an Improved Genetic Algorithm 
(IGA) to address the nonlinearity of the issue and decrease 
computation time. Ref. [13] discussed DNR considering 
electric vehicles and DGs, and proposed a hybrid algorithm 
named IPSO-ABCO to tackle the complexity of the 
optimization issue. These researches on DNR using meta-
heuristic algorithms mentioned above have certain 
limitations, including insufficient global search capability, 
poor convergence or limited universality. 

To address the shortcomings identified in the previous 
research, this study considers minimizing active power 
dissipation and reducing node voltage deviations as objective 
functions. It introduces adaptive parameters and applies 
variable spiral search strategy, levy flight strategy, and t-
distribution variation based on the number of iterations to 
optimize and enhance the DBO. To validate the algorithm's 
universality more effectively, variations in the type, 
parameters, locations, and quantities of the connected DG 
units are made, and validation is conducted on the IEEE 33-
bus and IEEE 69-bus systems. The primary contributions of 
this study are as follows: 

• Proposing the IDBO algorithm to tackle DNR problem.
• Performing experiments on two distribution network

configurations, IEEE 33-bus and IEEE 69-bus, to
confirm the algorithm's applicability across different
setups.

• Comparing the DNR results with other algorithms to
verify the algorithm's performance.

In this study, the second part of paper introduces the model 
of DNR. In the third part, the IDBO algorithm is proposed 
and its performance is tested. The fourth part discusses the 
experimental setup and results. The fifth part summarizes the 
results of current research. 

2. Problem definition

2.1. Objective function 

Reducing active power losses[14] and voltage 
deviations[15,16] not only enhances the efficiency and 
stability of distribution networks but also lowers operational 
costs while ensuring user electricity demands are met. Based 
on this, in the process of DNR, this study sets these two 
objective functions. 
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Where, Ploss, Rn and N is the active power dissipation, 
resistance of n-th branch, and total number of branches, 
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respectively. Vn, Pn, and Qn represent the voltage level, active 
power, and reactive power at the end of the n-th branch. Vdev 
and M represent voltage deviation and sum of all nodes. Vi 
and VN denote the voltage level at i-th node and the reference 
voltage. 

2.2. Constraints 

To ensure the feasibility of the optimization scheme and align 
with actual operation needs, voltage constraints, current 
constraints, DG output constraints, branch capacity 
constraints, operation constraints, and power flow balancing 
constraints are introduced into the DNR model. [17,18]

,min ,max≤ ≤ii iV V V (2) 
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Equation (2) indicates that the voltage Vi at i-th node is 
constrained within the range of Vi,min and Vi,max; Equation (3) 
specifies that the current In flowing through n-th branch is 
constrained within the range of In,min and In,max; Equation (4) 
constrains the DG output power PDG,i and QDG,i at i-th node 
within the ranges of PDG,min, QDG,min and PDG,max, QDG,max 
respectively; Equation (5) ensures that the capacity Sn of n-th 
branch does not exceed Sn,max; In Equation (6), g represents 
the reconfigured structure, and G denotes the set of all 
feasible topologies; In Equation (7): Pi and Qi is the active and 
reactive power; PDGi and PLi is the active power of DG and 
load injection at i-th node, respectively;  QDGi and QLi 
represent the reactive power of DG and load injection at i-th 
node, respectively; Gij, Bij and θ denotes the conductance, 
susceptance and impedance angle between i-th node and j-th 
node. 

3. Algorithm improvements

3.1. DBO algorithm 

The design of DBO algorithm draws inspiration from the 

rolling behavior of dung beetles[19]. The algorithmic 
population comprises four types of individuals performing 
distinct roles: rolling beetles, breeding beetles, larvae beetles, 
and thief beetles, with population ratios of 6:6:7:11. During 
algorithm iterations, the position of the rolling beetles are 
updated according to Equation (8) [20]. 

( 1) ( ) ( 1) ( ) ( )W
i i i iX t X t kX t b X t X tα+ = + − + − (8) 
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Where, i = 1, 2, 3, … , NP; The position of individual i 
within the population at iteration t is denoted by ( )i tX . The
value of the direction control parameter α  is jointly 
determined by constant λ  and a random variableη  . When

1α =  , the individual moves along the intended direction. 
When 1α = − , it signifies adeviation from the original path. 
The parameter ( ]0,0.2k ∈   controls the magnitude of

deviation, ( )0,1b∈   is a natural coefficient, and ( )W tX
denotes the position with the poorest fitness value in the entire 
population. 

When roling beetles encounters an obstacle during its 
movement, its position is updated according to Equation (10): 

( 1) ( ) tan ( ) ( 1)i i i iX t X t X t X tθ+ = + − −  (10) 

Where, ]0,θ π∈   .The spawning boundary for the
breeding beetle and the subsequent update of the egg's 
position are determined by Equation (11) to (13): 

{ }* *

max
max 1 1 ,i

tLb X LbT
  = × − −    

            (11) 

{ }* *

max
max 1 1 ,i

tUb X UbT
  = × − −    

     (11) 

* * *
1 2( 1) ( ( ) ) ( ( ) )i i i iB t X b B t Lb b B t Ub+ = + − + −  (12) 

Where, Ub*and Lb* define the edges of the area where eggs 
are laid, with Xi

* representing the position currently 
determined as the most favorable within this area during the 
search process. Tmax represents the maximum number of 
iterations, while Ub and Lb denote the upper and lower 
bounds of the optimization problem, Bi(t) represents the 
position information of the i-th egg at iteration t, b1and b2 are 
two mutually independent vectors, each with a norm of 1× D, 
where D represents the dimension. 

The positions of larval beetles in the population also 
change during foraging, with their foraging behavior and 
optimal foraging boundaries simulated by Equation (14) to 
(16). 
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i
tUb X UbT

  = × − −    
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*
1 2( 1) ( ) ( ( ) ) ( ( ) )b

i i i iX t X t C X t Lb C X t Ub+ = + − + − (15) 

Where, bX  is the global best position. bUb  and bLb  define 
the edges of the optimal foraging area. ( )iX t  is the location of 
the i larval beetle during the t step. iC represents a stochastic 
value following a normal distribution. iC is a random value 
within the range (0,1). 

During the iteration process, Equation (17) provides the 
position update formula for the dung beetle to simulate its 
theft behavior. 

*( 1) ( ) ( ( ) ( ) ( ) )b b
i i i i i iX t X t X t X X t X tγω+ = + − + −   (16) 

Where, γ  is a constant, set to 1/2 in this study. A vector ω  
of size 1×D is initialized, and its values evolve throughout the 
iteration process according to a normal distribution. 

3.2. IDBO algorithm 

Variable spiral search strategy 
In the dung beetle optimization algorithm, during the process 
of updating the positions of followers and discoverers, the 
position of the followers changes in accordance with the 
position of the discoverers. This results in a blind and 
monotonous change in the position of the followers. Professor 
Mirjalili from Torrens University in Australia proposed two 
algorithms: WOA[21] and MFO[22]. Both of these algorithms 
update positions using a spiral search method during the 
optimization process. This approach, based on prior 
information, adds a spiral update direction to more 
comprehensively search the entire problem space. It 
effectively improves search efficiency and avoids omissions. 
By integrating the variable spiral search strategy into the 
position update stage of breeding and foraging dung 
beetles[23], the original linear approach path is transformed 
into a spiral trajectory. This guides individuals to explore the 
region surrounding the optimal solution more thoroughly, 
effectively enhancing the algorithm's global search capability, 

as shown in Equation (18), where, 
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Where, the shape of the spiral search is controlled by 
parameter Z; k is a variable coefficient which is set to 5 in this 

study. l is a random number uniformly sampled from [-1, 1]. 
The position update formula for the modified dung beetle 
reproduction behavior is shown in Equation (19). 

* *
1 2( 1) cos(2 ) cos(2 ) ( ( ) )zl zl

i iB t X e l b C e l b B t Ubπ π+ = + + −  (18) 

The position update formula for the dung beetle foraging 
behavior is shown in Equation (20). 

* *
1 2( 1) cos(2 ) ( ) ( ( ) ) ( ( ) )zl

i i i ix t e l x t C x t Lb C x t Ubπ+ = + × − + × −    (19) 

Levy flight strategy 
In the DBO algorithm, the dung beetle treats the globally 
optimal position as its primary food source. The tendency for 
the entire DBO population to migrate toward the global 
optimum may lead to premature convergence. Incorporating 
the levy walk strategy characterized by its random movement 
into the position update mechanism simulates natural random 
phenomena. This enables population members to explore 
more extensively, avoiding local convergence while 
maximizing search efficiency. The step size formula is 
detailed in Equation (21). 

1is =
β

µ

ν
(21) 

Where, the levy flight path is denoted by is ; 𝜇𝜇 and v are
random numbers that follow a normal distribution, μ~N(0,

2
µσ  ), ν  ~N(0, 2

νσ  ). µσ  and νσ  are obtained from Equation 
(22).  
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where, Γis the gamma coefficient, the range of values for β  
is 0< β <2, and in this paper β =1. 

The improved position update method for the dung beetle's 
stealing behavior is shown in Equation (23). 

*( 1) ( ) ( ) ( ( ) ( ) ( ) )b b
i i i i i iX t levy X t X t X X t X tλ γω+ = + − + −  (20) 

T-distribution variation based on the number of
iterations
The core of the t-distribution position perturbation strategy
lies in linking the degrees of freedom parameter n of the t-
distribution to the iterative process, thereby achieving
adaptive variation: t-distribution perturbations are introduced
as mutation operators to apply perturbations to the positions
of dung beetle individuals as shown in Equation (24),
achieving population variation, and updating the objective
function values of the perturbed individuals. If the new value
exceeds the optimal value of the previous generation, the
update is executed.
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( )t
i i ix x x iter= +  (24) 

Where, t
ix  is the new position of a randomly selected 

individual after the global t-distribution perturbation; ix is the 
position before the variation; t (iter) is the value of the t- 
distribution, and iter is the degree of freedom in terms of the 
number of iterations. In the early stages of algorithm iteration, 
the t-distribution exhibits a flat shape resembling a Cauchy 
distribution, readily generating large-step perturbations that 
facilitate global exploration. In the later stages of iteration, 
the t-distribution takes on a tall shape approaching a Gaussian 
distribution, tending to produce small-step perturbations that 
enhance local exploitation. This promotes a balance between 
global exploration and local exploitation within the algorithm. 

The algorithm flowchart for IDBO is shown in Figure 1. 

3.3. Algorithm testing 

To evaluate the performance of the improved dung beetle 
optimizer (IDBO), this study assesses its effectiveness based 
on 9 classic benchmark functions. By running the IDBO 
algorithm on test functions of varying dimensions and 
complexities and comparing it with the DBO, WOA, BWO[24], 
and SOA[25], IDBO algorithms as control group algorithms, 
key performance metrics including best value (BEST), 
average value (AVG), standard deviation (STD), and 
execution times (TIMES) and are set to assess their 
performance in convergence speed, convergence accuracy, 
and stability.  

Figure 1. Flowchart for IDBO algorithm 

Table 1. Algorithm settings. 

Algorithm Parament 
DBO k=0.1;b=0.3; =0.5γ
WOA (0, 2)α ∈  

BWO ( 1,1)
n

H ∈ −  

SOA , 1; 2cu v f= =

IDBO k=0.1;b=0.3; =0.5γ  

Table 1 summarizes the specific parameter settings 
employed in this study, while Table 2 provides the relevant 
test function formulas and parameters. Set the total 
population of the five algorithms to 30, run 50 cycles, each 
cycle iteration 500 times, the test results are shown as Table 
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3. Figure 2 demonstrates the convergence performance of the
different algorithms on the 9 classical test functions.

As the test results in Table 3 suggest, the IDBO 
demonstrates faster convergence to the global optimum in 
terms of maximum value, while exhibiting better avoidance 
of local optima in terms of minimum value. Furthermore, the 
results of the IDBO algorithm show lower standard deviation, 
indicating superior stability and consistency. In Table 3, 
IDBO algorithm shows a stable average value, which 
indicates that the performance of the algorithm under 
different running instances is relatively consistent, indicating 
that the algorithm has stability. Overall, compared to DBO, 
WOA, BWO, and SOA, IDBO demonstrates superior 
optimization capabilities and higher convergence efficiency. 

Based on the evaluation results of the test function, the 
IDBO shows satisfactory optimization ability in single-peak 
functions F1 to F4. In function F5, IDBO is able to quickly 
locate the optimal solution in the feasible domain faster than 
other algorithms. In functions F6 and F7, IDBO demonstrates 
superior convergence speed and accuracy compared to other 
algorithms. In the multi-peak functions F8 and F9, it is evident 
that IDBO not only converges stably to the optimal value but 
also maintains the fastest convergence speed. Overall, 
compared to DBO, WOA, BWO, and SOA, IDBO 
demonstrates significant advantages in global search 
capability, convergence speed, and algorithmic stability. 

Table 2. Test function settings 

Function Dim Min 
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10
1

9
1

( ) [( )( ) ]−
=

= − − − +∑ T
i i i
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Table 3. Test results 

Functions Index WOA SOA BWO DBO IDBO 

F1 

BEST 1.1854e-101 5.8131e-18 0.00e+00 4.516e-205 0.00e+00 
AVG 3.4087e-90 6.073e-15 3.2477e-310 1.28e-137 0.00e+00 
STD 1.3929e-89 1.1443e-14 0.00e+00 6.9983e-137 0.00e+00 

TIMES 0.037653 0.088075 0.13769 0.083059 0.1338 

F2 

BEST 1.0512e-69 1.1649e-11 4.5512e-164 1.0731e-101 0.00e+00 
AVG 7.2165e-61 2.8274e-10 1.0171e-157 7.7335e-60 0.00e+00 
STD 2.1681e-60 2.9939e-10 4.0557e-157 4.2358e-59 0.00e+00 

TIME 0.04045 0.09347 0.14459 0.088569 0.141 
F3 BEST 9947.3829 2.6569e-09 1.3865e-307 8.548e-179 0.00e+00 
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AVG 39226.5032 1.0568e-06 2.3247e-292 2.4905e-93 7.4073e-279 
STD 13625.1038 2.9547e-06 0.00e+00 1.3641e-92 0.00e+00 

TIME 0.17407 0.22529 0.28785 0.22492 0.27844 

F4 

BEST 0.11727 1.0044e-05  4.9771e-160 4.499e-94 0.00e+00 
AVG 43.7452 0.0014197 2.5092e-152 6.1647e-58 0.00e+00 
STD 29.7511 0.006154 8.5014e-152 3.3766e-57 0.00e+00 

TIME 0.036718 0.087315 0.13501 0.08252 0.12937 

F5 

BEST 27.0997 27.1538 24.3156 25.3093 27.5211 
AVG 27.7996 28.124 24.9757 25.6512 28.5228 
STD 0.46253 0.62569 0.22633 0.13845 0.30348 

TIME 0.058166 0.10801 0.10781 0.10735 0.16819 

F6 

BEST 0.039951 2.3876 3.302 1.176e-06 1.4707e-196 
AVG 0.26382 3.0826 4.0264 0.0005111 4.5064e-17 
STD 0.16395 0.41829 0.37377 0.0016897 1.1278e-16 

TIME 0.036998 0.090157 0.13698 0.080597 0.1367 

F7 

BEST 0.00012342 0.00020595 1.075e-06 0.00012587 1.238e-06 
AVG 0.0030732 0.0021828 9.4358e-05 0.00092603 0.00011875 
STD 0.0035574 0.0016 7.9564e-05 0.00072556 0.00014218 

TIME 0.11023 0.16239 0.21499 0.15509 0.20421 

F8 

BEST -12568.1468 -5916.9591 -12569.4831 -12569.4831 -12569.4866
AVG -10090.1123 -4943.1093 -12569.19 -8335.9099 -12569.4866
STD 1865.4493 407.9993 0.31997 1530.9192 2.6362e-10

TIME 0.05617 0.10744 0.17088 0.11319 0.15806 

F9 

BEST 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 
AVG 0.00e+00 0.59058 0.00e+00 1.9902 0.00e+00 
STD 0.00e+00 1.8542 0.00e+00 5.45 0.00e+00 

TIME 0.041842 0.10321 0.14443 0.090317 0.14161 
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(g) F7 (h) F8 (i) F9

Figure 2. Algorithm test curve 

4. Experimental design and results
analysis

To validate the feasibility of the IDBO algorithm in 
addressing the DG integration DNR problem, this study 
conducted experiments using the IEEE 33-bus system and 
systematically evaluated its reconfiguration performance 
through seven distinct schemes. 

(i) Distribution network with DG integration and no
reconfiguration.

(ii) Distribution network without DG integration and no
reconfiguration.

(iii) Reconfiguration using the DBO algorithm under DG
integration.

(iv) Reconfiguration using the WOA algorithm under DG
integration.

(v) Reconfiguration using the SOA algorithm under DG
integration.

(vi) Reconfiguration using the BWO algorithm under DG
integration.

(vii) Reconfiguration using the IDBO algorithm under DG
integration.

Additionally, the stability and adaptability of the algorithm 
in various DG scenarios were tested by altering the DG type 
and placement. Subsequently, in order to validate the 
algorithm's universality, the study further conducted tests on 
an IEEE 69-bus system, which demonstrates that the 
proposed scheme can generate feasible DNR results across 
distribution networks with varying architectures, thereby 
empirically confirming its broad applicability. 

4.1. Simulation of IEEE 33-bus distribution 
system  

To validate the effectiveness and advantages of the proposed 
algorithm under different distributed power source 
connection conditions, two comparative schemes were 
designed for experimentation on IEEE 33-bus system. The 
fundamental structure of this system comprises 33 nodes and 

37 sectionalizing switches, with reference values of 10 MVA 
for capacity, 12.66 kV for voltage level, and 3715 kW + j2300 
kVar for initial load. 

Case 1: IEEE 33-bus distribution system with three 
DGs added 
All experiments groups maintained the same DG access 
information, as shown in Table 4, and the algorithm are set to 
iterate 100 times. The system topology after integrating 
distributed generation is shown in Figure 3. Table 5 presents 
the results after reconstruction for each scheme. Analysis 
reveals that compared to the two scenarios before 
reconstruction, DG integration effectively optimizes system 
performance metrics, reducing network losses while 
enhancing voltage levels. 

Furthermore, algorithmic intervention has provided better 
reconstruction solutions, with IDBO reducing network losses 
by 1.16%, 0.96%, 7.45% and 2.97% compared to DBO, 
WOA, SOA and BWO algorithms, respectively. Through the 
comparison of minimum voltage values, the applicability of 
IDBO in addressing DNR problems is validated. Figure 4(a-
e) illustrates the node voltage magnitude distribution after 
reconfiguration using the DBO, WOA, SOA, BWO and 
IDBO, contrasting the reconfiguration outcomes of each 
algorithm with the voltage distribution at the inception of the 
distribution network with and without DG integration. By 
comparing the voltage distribution with and without DG 
integration, it is evident that DG integration effectively 
enhances the voltage magnitudes. The red curve in Figure 4(e) 
represents the voltage value of nodes after reconfiguration 
using IDBO algorithm, and the voltage level of each node is 
significantly closer to 1. 

Table 4. DG information of Case 1. 

Node Type Parameter 
3 PQ 800=P kW , cos 0.8=  
6 PQ 800=P kW , cos 0.9=  

24 PQ 1200=P kW , cos 0.85=  
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Figure 3. IEEE 33-bus structure after three DGs added. 

Table 5. Reconstruction results of Case 1 in various states. 

Method Power Dissipation(kW) Minimum Node Voltage(p.u) Open Switches 
202.5193 0.9131 
87.5769 0.9397 
42.6569 0.9626 
45.5565 0.9666 
42.5705 0.9663 
43.4542 0.9583 

NO DG before Operation 
With DG before Operation 

DBO 
WOA 
SOA 
BWO 
IDBO 42.1615 0.9678 

33, 34, 35, 36, 37 
33, 34, 35, 36, 37 
2, 14, 10, 32, 23 
2, 14, 10, 36, 5 

33, 14, 9, 36, 23 
2, 14, 11, 36, 23 
33, 14, 9, 32, 33 

(a)DBO (b)WOA (c)SOA

(d)BWO (e)IDBO (f)Iterative curve

Figure 4. Comparison curve of Case 1 in various states: (a-e) voltage distribution after reconstruction of DBO, 
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.    

0 3 6 9 12 15 18 21 24 27 30

Node

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

N
od

e 
vo

lta
ge

 a
m

pl
itu

de
(p

.u
)

With DG before operation

DBO

No DG before operation

0 3 6 9 12 15 18 21 24 27 30

Node

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

N
od

e 
vo

lta
ge

 a
m

pl
itu

de
(p

.u
)

With DG before operation

WOA

No DG before operation

0 3 6 9 12 15 18 21 24 27 30

Node

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

N
od

e 
vo

lta
ge

 a
m

pl
itu

de
(p

.u
)

With DG before operation

SOA

No DG before operation

0 3 6 9 12 15 18 21 24 27 30

Node

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

N
od

e 
vo

lta
ge

 a
m

pl
itu

de
(p

.u
)

With DG before operation

IDBO

No DG before operation

0 3 6 9 12 15 18 21 24 27 30

Node

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

N
od

e 
vo

lta
ge

 a
m

pl
itu

de
(p

.u
)

With DG before operation

BWO

No DG before operation

10 20 30 40 50 60 70 80 90 100

Iteration

40

45

50

55

60

65

70

Fi
tn

es
s 

va
lu

e

DBO

IDBO

WOA

SOA

BWO

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 
Y. Wu et al. 
 

  10      

Figure 4(f) illustrates the iteration curves of the five 
algorithms, showing that IDBO has a significantly higher 
convergence rate and ability to avoid local optimums 
compared to DBO, WOA, SOA, BWO. 

Case 2: IEEE 33-bus distribution system with four 
DGs added 
Change the location and type of DG integration while keeping 
the initial parameter Settings as in case 1, as detailed in Table 
6. The network structure after DG access is shown in Figure 
5. The results obtained from the experiment are presented in 
Table 7, where the optimal reconstruction scheme provided 
by the IDBO algorithm reduces the network loss to 34.9708 
kW. With IDBO reducing network losses by 0.65%, 0.24%, 
2.20%, 0.77%, compared to DBO, WOA, SOA and BWO 
algorithms, respectively. Minimum voltage increased to 
0.9758. This is verified by the node voltage distributions 
shown in Figure 6 (a-e) compared to the other four schemes, 
the voltage distribution curves obtained by IDBO are 

smoother, with a higher quality of voltage and closer to the 
reference voltage. 

Table 6. DG information of Case 2. 

Node Type Parameter 
4 PI 200=P kW , 50=sI A  

17 PI 300=P kW , 50=sI A  

25 PV 300=P kW , 0.98=sV  
30 PQ 300=P kW , cos 0.9=  

 
Figure 6(f) shows the iterative progress of the five 

algorithms. The IDBO algorithm improves the efficiency of 
the search process by continuously optimizing the 
parameters, allowing it to converge to the best solution faster 
than DBO, WOA, SOA and BWO. 
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Figure 5. IEEE 33-bus structure after four DGs added 
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(d)BWO (e)IDBO (f)Iterative curve

Figure 6. Comparison curve of Case 2 in various states: (a-e) voltage distribution after reconstruction of DBO, 
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.   

Table 7. Reconstruction results of Case 2 in various states. 

Method Power Dissipation(kW) Minimum Node Voltage(p.u) Parameter 
202.5193 0.9131 
79.0475 0.9397 
53.9619 0.9667 
54.8174 0.9707 
53.7414 0.9662 
54.0299 0.9652 

NO DG before Operation 
With DG before Operation 

DBO 
WOA 
SOA 
BWO 
IDBO 53.6130 0.9667 

33, 34, 35, 36, 37 
33, 34, 35, 36, 37 
7, 34, 11, 15, 37 
33, 14, 9, 16, 28 
7, 14, 9, 15, 37 

7, 34, 10, 15, 37 
7, 14, 10, 15, 37 

4.2. Simulation of IEEE 69-bus distribution 
system  

To validate the effectiveness and advantages of this algorithm 
under different distributed power source integration 
conditions, two comparative schemes were designed for 
testing on the IEEE 69-bus distribution system model. This 
model comprises 73 branches, 69 nodes, and 73 switches, 
with baseline capacity, voltage, and initial load set at 10 MVA, 
12.66 kV, and 3802 kV + j2694.6 kvar, respectively. 

Case 3: IEEE 69-bus distribution system with three 
DGs added 
The DG information of system integration is in accord with 
case 1 presented also in Table 4, and the algorithm is set to  

iterate 100 times. The topology of the distribution network 
after connecting to DG is shown in Figure 7. The 
reconfiguration outcomes are displayed in Table 8, where the 
optimal reconstruction scheme provided by the IDBO 
algorithm reduces the net-work loss to 53.4602 kW. 
Compared to the different scenarios with DG reconstruction 
using DBO, WOA, SOA and BWO algorithms, the reduction 
percentages are 5.44%, 11.88%, 11.87% and 12.00%, 
respectively, and the minimum voltage increased to 0.9658. 
Figure 8(a-e) show the voltage distribution in seven scenarios. 
The figure under observation reveals that the voltage curve 
after reconfiguration with the IDBO is more uniform than the 
curve without DG integration and with DG integration, and is 
closer to the per unit value of 1 compared to the DBO, WOA, 
SOA, and BWO. Figure 8(f) further proves the convergence 
ability of IDBO. 
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Figure 7. IEEE 69-bus structure after three DGs added 
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Table 8. Reconstruction results of Case 3 in various states. 

Method Power Dissipation(kW) Minimum Node Voltage(p.u) Parameter 
NO DG before Operation 341.0235 0.8713 61, 13, 4, 43, 38 

With DG before Operation 234.0108 0.8900 61, 13, 4, 43, 38 
DBO 56.5352 0.9599 69, 19, 71, 11, 5 
WOA 60.6652 0.9593 69, 18, 13, 11, 46 
SOA 60.7538 0.9590 69, 19, 14, 11, 47 
BWO 60.6625 0.9593 69, 19, 11, 13, 47 
IDBO 53.4602 0.9658 69, 19, 14, 11, 4 

(a)DBO (b)WOA (c)SOA

Iteration
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(d)BWO (e)IDBO (f)Iterative curve

Figure 8. Comparison curve of Case 3 in various states: (a-e) voltage distribution after reconstruction of DBO, 
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.  

Case 4: IEEE 69-bus distribution system with four 
DGs added 
As shown in Table 9, the integrated DG information in the 
system was modified, and the algorithm was set to iterate 100 
times. The topology of the distribution network after 
connecting to DG is shown in Figure 9. The reconfiguration 
outcomes are displayed in Table 10. The optimal 
reconstruction scheme provided by the IDBO algorithm 
reduces the network loss to 69.8845 kW. Compared with the 
other six scenarios before DG reconstruction without 
integration, before DG reconstruction with integration, and 
with DG reconstruction using DBO, WOA, SOA and BWO 
algorithms, the reduction percentages are 79.51%, 62.32%, 
2.59%, 1.35%, 2.63% and 6.23%, respectively. The minimum 
voltage value is increased to 0.9459. Figure 10(a-e) show the 
node voltage amplitude curve. In Figure 10(e), the voltage 
amplitude curve from IDBO aligns better with the 

prerequisites of stable power grid function. Figure 10(f) 
shows the iterative comparison diagram of the five algorithms, 
indicating that the convergence capability of the IDBO 
remains superior. 

Table 9. DG information of Case 4. 

Node Type Parameter 
26 PI 200=P kW , 50=sI A  

39 PI 300=P kW , 50=sI A  

54 PV 300=P kW , 0.98=sV  
68 PQ 300=P kW , cos 0.9=  
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Figure 9. IEEE 69-bus structure after four DGs added. 

Table 10. Reconstruction results of Case 4 in various states. 

Method Power Dissipation(kW) Minimum Node Voltage(p.u) Parameter 
NO DG before Operation 341.0235 0.8713 61, 13, 4, 43, 38 

With DG before Operation 185.4558 0.9099 61, 13, 4, 43, 38 
DBO 71.7398 0.9461 69, 70, 66, 24, 46 
WOA 74.5299 0.9202 10, 70, 66, 50, 46 
SOA 71.7722 0.9459 64, 70, 12, 25, 44 
BWO 70.8440 0.9459 10, 13, 62, 25, 44 
IDBO 69.8845 0.9459 10, 70, 14, 25, 47 

(a)DBO (b)WOA (c)SOA
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Figure 10. Comparison curve of Case 4 in various states: (a-e) voltage distribution after reconstruction of DBO, 
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.  
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5. Conclusion

The IDBO is proposed in this study to address complex 
optimization problems in distribution network 
reconfiguration. The algorithm integrates a variable spiral 
search mechanism and a Levy flight strategy to enhance 
global exploration capability and convergence speed. An 
adaptive t-distribution perturbation strategy, which adjusts 
with the iteration count, is introduced to strengthen local 
search performance. Parameters are dynamically tuned 
according to problem complexity, achieving an effective 
balance between global exploration and local exploitation. 
The IDBO algorithm was applied to distribution network 
reconfiguration and tested on two systems with different 
topological structures under various distributed generation 
integration scenarios. Simulation results demonstrate that 
IDBO exhibits strong adaptability, robust constraint-handling 
capability, and precise local search performance, highlighting 
its stability and versatility in providing an effective solution 
for complex distribution network reconfiguration problems. 
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