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Abstract

In the evolution of energy systems, investigations into distribution networks have concentrated on enhancing reliability and
optimizing performance. Distribution networks with distributed energy resources are expected to significantly enhance
power accommodation capacity, but load flow distribution and network optimization remain key challenges. This study aims
to develop an improved dung beetle optimization (IDBO) algorithm to minimize active power losses and node voltage
deviations in distribution networks, while validating its superiority over existing algorithms across different network
configurations. The IDBO algorithm is enhanced through three key strategies: (i) A variable spiral search strategy is
employed to improve search efficiency and global exploration. (ii) A levy flight strategy is introduced to prevent algorithm
premature convergence. (iii) A t-distribution adjustment strategy based on iteration count is adopted to strengthen local
search capability. To verify whether the IDBO algorithm can achieve the optimal load flow distribution that meets the
reliability requirements of distribution network operation, relevant validations have been conducted. Experimental results
demonstrate that IDBO achieves faster convergence and superior performance on classical test functions. In practical
applications to IEEE 33-bus and 69-bus distribution systems, it significantly reduces power losses and improves voltage
profiles compared to other algorithms. The proposed IDBO algorithm provides an effective solution for distribution network
reconfiguration, demonstrating enhanced optimization capability, improved convergence characteristics, and reliable

performance across various operating conditions.
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1. Introduction

To achieve secure and reliable power supply and facilitate a
clean low-carbon transition, further enhancement and
upgrading of the distribution network are necessary. On
March 1, 2024, the National Development and Reform
Commission and the National Energy Administration[1]
issued the "Guiding Opinions on the High-Quality
Development of Distribution Networks in the New
Situation," proposing the establishment of a novel type of
distribution system that was safe, efficient, clean, low-carbon,
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flexible, adaptive, and intelligent. [2] The incorporation of
renewable energy sources significantly enhances the supply
capacity, distribution capacity, resilience, and flexibility of
the new distribution system. However, instability poses a key
obstacle limiting its widespread application[3]. In this
context, optimizing and restructuring distribution networks
have become the mainstream trend to support the
transformation of the grid. [4]

Distribution network reconfiguration (DNR) involves
optimizing the flow paths of electric currents, thereby
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improving the performance and reliability of the grid. [5]
Losses in distribution networks primarily arise from the
resistance and reactance encountered by electric currents
during transmission, which lead to energy conversion into
heat and subsequent loss. Measures such as restructuring
network topology and integrating distributed energy
resources can effectively reduce the losses of energy caused
by resistance and reactance. By DNR and careful
consideration of the locations and capacities of distributed
energy resource connections, not only can power supply
reliability be enhanced, but it can also contribute to promote
the widespread application of clean energy, which can serve
as a good corresponding to the "dual carbon" objectives. [6]
In DNR, the objective functions and constraints often
involve nonlinear power flow equations, power balance
equations, which are typically non-convex. Furthermore, the
inclusion of discrete and integer variables in distribution
network problems further exacerbates the non-convex nature
of the problem. This discretization and non-convexity make
the DNR problem more closely aligned with the practical
functioning of power systems, thereby adding intricacy and
challenge to the issue. To address this issue, traditional
mathematical methods, heuristic algorithms, and artificial
intelligence algorithms can be employed. These methods can
effectively optimize the DNR's results, enhancing system
efficiency and stability. By reviewing the literature, it was
discovered that when a problem has a very large exploration
space or it is challenging to establish precise mathematical
models, traditional mathematical algorithms reveal the
drawback of low computational efficiency. And the heuristic
algorithms in current literature cannot guarantee finding the
global optimal solution and may sometimes converge to local
optima. In contrast, artificial intelligence algorithms are
evolving towards increased adaptability, integrating the
strengths of multiple heuristic algorithms to enhance
algorithm robustness and search capabilities. Ref. [7]
provided a detailed explanation of the Dragonfly Algorithm
(DA), elucidating its principles of separation, alignment,
cohesion, attraction, and distraction, then simulated on an
enhanced IEEE 16-bus network to validate its effectiveness
in losses reduction and network performance enhancement.
Ref. [8] devised switching functions incorporating
instantaneous operational cost variations and integrates a
trained LSTM model for grid reconfiguration. Case studies
showcase the effectiveness and robustness of this approach.
Ref. [9] introduced a multi-objective approach which
considered both the aggregate active power losses and the
comprehensive network voltage stability. The optimization
function was assessed using load flow methods, and the
proposed Enhanced Sine-Cosine Algorithm (ESCA) was
benchmarked against other established algorithms,
showcasing its superiority. Ref. [10] applied the Harris
Hawks Optimization (HHO) to solve optimization issues and
successfully minimizes total network losses by 21.428% in a
case study on an 83-node distribution system. In aiming to
reduce active power losses, enhance voltage magnitude, and
improve reliability metrics, Ref. [11] contrasted Evolutionary
Optimization (EO) with ten alternative meta-heuristic search
methods when tackling the reconfiguration issue in four

distinct distribution test systems. Ref. [12] introduced a novel
DNR method to enhance reliability metrics and lower
operational costs. It applies an Improved Genetic Algorithm
(IGA) to address the nonlinearity of the issue and decrease
computation time. Ref. [13] discussed DNR considering
electric vehicles and DGs, and proposed a hybrid algorithm
named IPSO-ABCO to tackle the complexity of the
optimization issue. These researches on DNR using meta-
heuristic algorithms mentioned above have certain
limitations, including insufficient global search capability,
poor convergence or limited universality.

To address the shortcomings identified in the previous
research, this study considers minimizing active power
dissipation and reducing node voltage deviations as objective
functions. It introduces adaptive parameters and applies
variable spiral search strategy, levy flight strategy, and t-
distribution variation based on the number of iterations to
optimize and enhance the DBO. To validate the algorithm's
universality more effectively, variations in the type,
parameters, locations, and quantities of the connected DG
units are made, and validation is conducted on the IEEE 33-
bus and IEEE 69-bus systems. The primary contributions of
this study are as follows:

e Proposing the IDBO algorithm to tackle DNR problem.

e Performing experiments on two distribution network
configurations, IEEE 33-bus and IEEE 69-bus, to
confirm the algorithm's applicability across different
setups.

e Comparing the DNR results with other algorithms to
verify the algorithm's performance.

In this study, the second part of paper introduces the model
of DNR. In the third part, the IDBO algorithm is proposed
and its performance is tested. The fourth part discusses the
experimental setup and results. The fifth part summarizes the
results of current research.

2. Problem definition

2.1. Objective function

Reducing active power losses[14] and voltage
deviations[15,16] not only enhances the efficiency and
stability of distribution networks but also lowers operational
costs while ensuring user electricity demands are met. Based
on this, in the process of DNR, this study sets these two
objective functions.

] N PZ +Q2
min fi = P/{)SS = Z Rn s Vz .
n=1 n

(1)

M
min f, =V, = mlnz
i=1

V; 'VN
VN

Where, Piss, R, and N is the active power dissipation,
resistance of n-th branch, and total number of branches,
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respectively. V,, P,, and O, represent the voltage level, active
power, and reactive power at the end of the n-th branch. Vg,
and M represent voltage deviation and sum of all nodes. V;
and Vy denote the voltage level at i-th node and the reference
voltage.

2.2. Constraints

To ensure the feasibility of the optimization scheme and align
with actual operation needs, voltage constraints, current

constraints, DG output constraints, branch capacity
constraints, operation constraints, and power flow balancing
constraints are introduced into the DNR model. ['7:18]
i,min < I// < I/[,max (2)
In,min < In < In,max (3)
{PDG,mm_PDGz<PDGmax (4)
QDG,min - QDG,I’ < QDG,max
Sn S Sn,max (5)
geG (6)
M
P+ Py, =P, +V, > V,(G, cos 6, + B, sin0),)
j=1
(7

M
Qi + QDG[ = QL[ + V: ZV_/ (Gg,' sin 6’;, - B[/ cos 91,)
=1

Equation (2) indicates that the voltage V; at i-th node is
constrained within the range of ¥ uin and V;max; Equation (3)
specifies that the current 7, flowing through n-th branch is
constrained within the range of 7, mi» and I, mar; Equation (4)
constrains the DG output power Ppg,; and Opg,: at i-th node
within the ranges of Ppgmin, OpGmin and PpGmax, ODGmax
respectively; Equation (5) ensures that the capacity S, of n-th
branch does not exceed S, mar; In Equation (6), g represents
the reconfigured structure, and G denotes the set of all
feasible topologies; In Equation (7): P;and Q;is the active and
reactive power; Ppg; and Py; is the active power of DG and
load injection at i-th node, respectively; Opgi and Qui
represent the reactive power of DG and load injection at i-th
node, respectively; Gy, B; and 6 denotes the conductance,
susceptance and impedance angle between i-th node and j-th
node.

3. Algorithm improvements

3.1. DBO algorithm

The design of DBO algorithm draws inspiration from the

2 EA

rolling behavior of dung beetles[19]. The algorithmic
population comprises four types of individuals performing
distinct roles: rolling beetles, breeding beetles, larvae beetles,
and thief beetles, with population ratios of 6:6:7:11. During
algorithm iterations, the position of the rolling beetles are
updated according to Equation (8) [20].

X, (t+1) = X, () +akX, (=D +b[X,()-X" (1) (8)

n>A a=1

A=0.1,7 = rand(l),
n =ran (){77<ﬂ o=l 9)

Where, i = 1, 2, 3, ... , NP; The position of individual i
within the population at iteration ¢ is denoted by X () The

value of the direction control parameter « is jointly
determined by constant A and a random variable 77 . When

=1, the individual moves along the intended direction.
When « =-1, it signifies adeviation from the original path.

The parameter ke(0,0.2] controls the magnitude of

deviation, b€ (0,1) is a natural coefficient, and X" ()

denotes the position with the poorest fitness value in the entire
population.

When roling beetles encounters an obstacle during its
movement, its position is updated according to Equation (10):

X,(t+1) = X,() +tan0|X,()-X,c-D|  (10)

Where, 96[0,72'] .The spawning boundary for the

breeding beetle and the subsequent update of the egg's
position are determined by Equation (11) to (13):

Lb' = max {X; x[ (1—/ H (11)
Ub' =max{X; x[ ( / ﬂ (11)

B(t+1)=X, +b(B.(t)—Lb" )+b,(B,(t)-Ub") (12)

Where, Ub"and Lb" define the edges of the area where eggs
are laid, with X;° representing the position currently
determined as the most favorable within this area during the
search process. Tmax represents the maximum number of
iterations, while Ub and Lb denote the upper and lower
bounds of the optimization problem, Bi(f) represents the
position information of the i-th egg at iteration ¢, biand b, are
two mutually independent vectors, each with a norm of 1x D,
where D represents the dimension.

The positions of larval beetles in the population also
change during foraging, with their foraging behavior and
optimal foraging boundaries simulated by Equation (14) to

(16).
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Lb = max

(13)

ao(1-(i- 77, )]
x1-(1- g1, on

X,(t+1)= X, (0)+ C,(X,(1)~ Lb") + C,(X, (1)~ UB') (15)

Ub' = max (14)

Where, X?is the global best position. Us?and Lb? define
the edges of the optimal foraging area. X (¢) is the location of

the i larval beetle during the # step. C, represents a stochastic
value following a normal distribution. C is a random value

within the range (0,1).

During the iteration process, Equation (17) provides the
position update formula for the dung beetle to simulate its
theft behavior.

X, (t+1)= X7

+|x, (- X/ @) (16)

Where, y is a constant, set to 1/2 in this study. A vector @

of size 1xD is initialized, and its values evolve throughout the
iteration process according to a normal distribution.

3.2. IDBO algorithm

Variable spiral search strategy

In the dung beetle optimization algorithm, during the process
of updating the positions of followers and discoverers, the
position of the followers changes in accordance with the
position of the discoverers. This results in a blind and
monotonous change in the position of the followers. Professor
Mirjalili from Torrens University in Australia proposed two
algorithms: WOAP! and MFO™21. Both of these algorithms
update positions using a spiral search method during the
optimization process. This approach, based on prior
information, adds a spiral update direction to more
comprehensively search the entire problem space. It
effectively improves search efficiency and avoids omissions.
By integrating the variable spiral search strategy into the
position update stage of breeding and foraging dung
beetles®)], the original linear approach path is transformed
into a spiral trajectory. This guides individuals to explore the
region surrounding the optimal solution more thoroughly,
effectively enhancing the algorithm's global search capability,

: . eos( L)
as shown in Equation (18), where, z = e max(l”
L=2Xrand—1

zl X\tvorst B rt/ .. n

e”leos(2nl)lexp(————>) i>—

X,'t;'] — i 2
X+ | X!, - X, [A L cos(2x])  otherwise

(17)

Where, the shape of the spiral search is controlled by
parameter Z; k is a variable coefficient which is set to 5 in this

2 EA

study. / is a random number uniformly sampled from [-1, 1].
The position update formula for the modified dung beetle
reproduction behavior is shown in Equation (19).

B(t+1)=X"+¢ cos2rl)b,C +e” cos(2rl)b, (B.(1)-Ub") (18)

The position update formula for the dung beetle foraging
behavior is shown in Equation (20).

x,(t+1) = e cos2al)x, () + C, x (x,(1) = Lb ) + C, x (x,()~Ub")  (19)

Levy flight strategy

In the DBO algorithm, the dung beetle treats the globally
optimal position as its primary food source. The tendency for
the entire DBO population to migrate toward the global
optimum may lead to premature convergence. Incorporating
the levy walk strategy characterized by its random movement
into the position update mechanism simulates natural random
phenomena. This enables population members to explore
more extensively, avoiding local convergence while
maximizing search efficiency. The step size formula is
detailed in Equation (21).

5= 21
i ]
W
Where, the levy flight path is denoted by .S, ; p and v are
random numbers that follow a normal distribution, z~N(0,
o-i ), v ~N(O, o-f ). o, and o, are obtained from Equation
(22).

T(1+ B)sin(75/2)
rla+p)2]2" " p

o, =1

u =

(22)

where, T is the gamma coefficient, the range of values for 3
is 0< f <2, and in this paper § =1.

The improved position update method for the dung beetle's
stealing behavior is shown in Equation (23).

X, (t+1) =levp(A) X}

') (20)

T-distribution variation based on the number of
iterations

The core of the t-distribution position perturbation strategy
lies in linking the degrees of freedom parameter n of the t-
distribution to the iterative process, thereby achieving
adaptive variation: t-distribution perturbations are introduced
as mutation operators to apply perturbations to the positions
of dung beetle individuals as shown in Equation (24),
achieving population variation, and updating the objective
function values of the perturbed individuals. If the new value
exceeds the optimal value of the previous generation, the
update is executed.
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X! = x, + x, (iter) (24)
Where, x! is the new position of a randomly selected
individual after the global t-distribution perturbation; x; is the

position before the variation; t (iter) is the value of the t-
distribution, and iter is the degree of freedom in terms of the
number of iterations. In the early stages of algorithm iteration,
the t-distribution exhibits a flat shape resembling a Cauchy
distribution, readily generating large-step perturbations that
facilitate global exploration. In the later stages of iteration,
the t-distribution takes on a tall shape approaching a Gaussian
distribution, tending to produce small-step perturbations that
enhance local exploitation. This promotes a balance between

global exploration and local exploitation within the algorithm.

The algorithm flowchart for IDBO is shown in Figure 1.

3.3. Algorithm testing

To evaluate the performance of the improved dung beetle
optimizer (IDBO), this study assesses its effectiveness based
on 9 classic benchmark functions. By running the IDBO
algorithm on test functions of varying dimensions and
complexities and comparing it with the DBO, WOA, BWOP4,
and SOAP%, IDBO algorithms as control group algorithms,
key performance metrics including best value (BEST),
average value (AVG), standard deviation (STD), and
execution times (TIMES) and are set to assess their
performance in convergence speed, convergence accuracy,
and stability.

Initialize algonthm parameters and dung beetle population

:

Calculate the fitness value for each dung beetle

!

Detertnine individual roles

A

Individuals are either rolllng beetles or thief beetles

YES
v

levy flight improvement search method

MO

v MO

levy flight improvement search method

h 4

t-distribution variation based on the number of iterations J

l ]

Update the global optimal solution

t o= 7

ma

YSE
v

Output the optimal solution |

End

Figure 1. Flowchart for IDBO algorithm

Table 1. Algorithm settings.

Algorithm Parament
DBO k=0.1;b=0.3;»=0.5
WOA a €(0,2)
BWO H e(-LI)

2 EA

SOA u,v=1f =2
IDBO k=0.1;b=0.3;y=0.5
Table 1 summarizes the specific parameter settings
employed in this study, while Table 2 provides the relevant
test function formulas and parameters. Set the total
population of the five algorithms to 30, run 50 cycles, each
cycle iteration 500 times, the test results are shown as Table
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3. Figure 2 demonstrates the convergence performance of the
different algorithms on the 9 classical test functions.

As the test results in Table 3 suggest, the IDBO
demonstrates faster convergence to the global optimum in
terms of maximum value, while exhibiting better avoidance
of local optima in terms of minimum value. Furthermore, the
results of the IDBO algorithm show lower standard deviation,
indicating superior stability and consistency. In Table 3,
IDBO algorithm shows a stable average value, which
indicates that the performance of the algorithm under
different running instances is relatively consistent, indicating
that the algorithm has stability. Overall, compared to DBO,
WOA, BWO, and SOA, IDBO demonstrates superior
optimization capabilities and higher convergence efficiency.

Based on the evaluation results of the test function, the
IDBO shows satisfactory optimization ability in single-peak
functions F; to Fs. In function Fs, IDBO is able to quickly
locate the optimal solution in the feasible domain faster than
other algorithms. In functions Fs and F7, IDBO demonstrates
superior convergence speed and accuracy compared to other
algorithms. In the multi-peak functions Fg and Fy, it is evident
that IDBO not only converges stably to the optimal value but
also maintains the fastest convergence speed. Overall,
compared to DBO, WOA, BWO, and SOA, IDBO
demonstrates significant advantages in global search
capability, convergence speed, and algorithmic stability.

Table 2. Test function settings

Function Dim Min
F(x)= Zn: x; 10 0
i=1

F) =3 (05 +0.5]) 10 0
F(x)= iixf +random([0,1) 10 0

i=1
ﬂ(x):zn:[xf—10005(27rxl.)+10] 10 0

i=l1

F,(x) = —20exp(-0.2 /%fo )— exp(%Zcos(ani ) +20+e 10 0
i=1 i=1

1 “ n X.
F(x)= F,(x)=——> x’ =[] cos(=5)+1 10 0
6 " 4000 Z‘ I1 Ji
1 B 4+bx,).
F(x)=Y[a, _—le( L *+hx) 4 0.0003075
P b’ +bx,+x,
5
Fs(x):_Z[(x_a[)(x_ai)T+Ci]71 4 -10
i=1
10
F(x) ==Y [(x—a)(x—a) +c¢]" 4 -10
i=1
Table 3. Test results
Functions Index WOA SOA BWO DBO IDBO
BEST 1.1854e-101 5.8131e-18 0.00e+00 4.516e-205 0.00e+00
F AVG 3.4087¢e-90 6.073e-15 3.2477¢-310 1.28e-137 0.00e+00
! STD 1.3929¢-89 1.1443¢-14 0.00e+00 6.9983¢-137 0.00e+00
TIMES 0.037653 0.088075 0.13769 0.083059 0.1338
BEST 1.0512e-69 1.1649¢-11 4.5512e-164 1.0731e-101 0.00e+00
P AVG 7.2165¢-61 2.8274e-10 1.0171e-157 7.7335e-60 0.00e+00
: STD 2.1681e-60 2.9939¢-10 4.0557¢-157 4.2358¢e-59 0.00e+00
TIME 0.04045 0.09347 0.14459 0.088569 0.141
Fs BEST 9947.3829 2.6569¢-09 1.3865¢-307 8.548e-179 0.00e+00

2 EA
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AVG 39226.5032 1.0568e-06 2.3247e-292 2.4905e-93 7.4073e-279
STD 13625.1038 2.9547¢-06 0.00e+00 1.3641e-92 0.00e+00
TIME 0.17407 0.22529 0.28785 0.22492 0.27844
BEST 0.11727 1.0044¢e-05 4.9771e-160 4.499¢-94 0.00e+00
F AVG 43,7452 0.0014197 2.5092e-152 6.1647¢-58 0.00e+00
STD 29.7511 0.006154 8.5014¢-152 3.3766e-57 0.00e+00
TIME 0.036718 0.087315 0.13501 0.08252 0.12937
BEST 27.0997 27.1538 243156 25.3093 27.5211
Fs AVG 27.7996 28.124 249757 25.6512 28.5228
STD 0.46253 0.62569 0.22633 0.13845 0.30348
TIME 0.058166 0.10801 0.10781 0.10735 0.16819
BEST 0.039951 2.3876 3.302 1.176e-06 1.4707e-196
Fo AVG 0.26382 3.0826 4.0264 0.0005111 4.5064¢-17
STD 0.16395 0.41829 0.37377 0.0016897 1.1278e-16
TIME 0.036998 0.090157 0.13698 0.080597 0.1367
BEST 0.00012342 0.00020595 1.075e-06 0.00012587 1.238e-06
P AVG 0.0030732 0.0021828 9.4358¢e-05 0.00092603 0.00011875
STD 0.0035574 0.0016 7.9564¢-05 0.00072556 0.00014218
TIME 0.11023 0.16239 0.21499 0.15509 0.20421
BEST -12568.1468 -5916.9591 -12569.4831 -12569.4831 -12569.4866
Fe AVG -10090.1123 -4943.1093 -12569.19 -8335.9099 -12569.4866
STD 1865.4493 407.9993 0.31997 1530.9192 2.6362e-10
TIME 0.05617 0.10744 0.17088 0.11319 0.15806
BEST 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
Fo AVG 0.00e+00 0.59058 0.00e+00 1.9902 0.00e+00
STD 0.00e+00 1.8542 0.00e+00 5.45 0.00e+00
TIME 0.041842 0.10321 0.14443 0.090317 0.14161
o T 10°] — ] N
E
. E .
o | EW0 e
D ——S0A 1D
IDBO
00 e 100 200 300 500 600 00 s e
Heration Iteration Heration
(a) F1 (b) F> (c) F3
0’y
100 200 ['er;::):“ 400 500 600 100 200 “er;::“ 400 500 600 100 200 [leraz:):" 400 500 600
(d) Fa (e) Fs (f) Fe
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Figure 2. Algorithm test curve

4. Experimental design and results
analysis

To validate the feasibility of the IDBO algorithm in
addressing the DG integration DNR problem, this study
conducted experiments using the IEEE 33-bus system and
systematically evaluated its reconfiguration performance
through seven distinct schemes.

(i) Distribution network with DG integration and no

reconfiguration.
(ii) Distribution network without DG integration and no
reconfiguration.
(iii) Reconfiguration using the DBO algorithm under DG
integration.
(iv) Reconfiguration using the WOA algorithm under DG
integration.
(v) Reconfiguration using the SOA algorithm under DG
integration.
(vi) Reconfiguration using the BWO algorithm under DG
integration.
(vii) Reconfiguration using the IDBO algorithm under DG
integration.

Additionally, the stability and adaptability of the algorithm
in various DG scenarios were tested by altering the DG type
and placement. Subsequently, in order to validate the
algorithm's universality, the study further conducted tests on
an IEEE 69-bus system, which demonstrates that the
proposed scheme can generate feasible DNR results across
distribution networks with varying architectures, thereby
empirically confirming its broad applicability.

4 1. Simulation of IEEE 33-bus distribution
system

To validate the effectiveness and advantages of the proposed
algorithm under different distributed power source
connection conditions, two comparative schemes were
designed for experimentation on IEEE 33-bus system. The
fundamental structure of this system comprises 33 nodes and

2 EA

37 sectionalizing switches, with reference values of 10 MVA
for capacity, 12.66 kV for voltage level, and 3715 kW +j2300
kVar for initial load.

Case 1: IEEE 33-bus distribution system with three
DGs added

All experiments groups maintained the same DG access
information, as shown in Table 4, and the algorithm are set to
iterate 100 times. The system topology after integrating
distributed generation is shown in Figure 3. Table 5 presents
the results after reconstruction for each scheme. Analysis
reveals that compared to the two scenarios before
reconstruction, DG integration effectively optimizes system
performance metrics, reducing network losses while
enhancing voltage levels.

Furthermore, algorithmic intervention has provided better
reconstruction solutions, with IDBO reducing network losses
by 1.16%, 0.96%, 7.45% and 2.97% compared to DBO,
WOA, SOA and BWO algorithms, respectively. Through the
comparison of minimum voltage values, the applicability of
IDBO in addressing DNR problems is validated. Figure 4(a-
e) illustrates the node voltage magnitude distribution after
reconfiguration using the DBO, WOA, SOA, BWO and
IDBO, contrasting the reconfiguration outcomes of each
algorithm with the voltage distribution at the inception of the
distribution network with and without DG integration. By
comparing the voltage distribution with and without DG
integration, it is evident that DG integration effectively
enhances the voltage magnitudes. The red curve in Figure 4(e)
represents the voltage value of nodes after reconfiguration
using IDBO algorithm, and the voltage level of each node is
significantly closer to 1.

Table 4. DG information of Case 1.

Node Type Parameter
3 PQ P =800kW ,cos =0.8
6 PQ P =800kW ,cos=0.9
24 PQ P =1200kW ,cos =0.85
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Figure 3. IEEE 33-bus structure after three DGs added.

Table 5. Reconstruction results of Case 1 in various states.

Method Power Dissipation(kW) Minimum Node Voltage(p.u) Open Switches
NO DG before Operation 202.5193 0.9131 33, 34, 35, 36, 37
With DG before Operation 87.5769 0.9397 33, 34, 35, 36, 37
DBO 42.6569 0.9626 2,14,10, 32,23

WOA 45.5565 0.9666 2,14, 10, 36, 5

SOA 42.5705 0.9663 33,14, 9, 36,23

BWO 43.4542 0.9583 2,14,11, 36,23

IDBO 42.1615 0.9678 33,14,9,32,33
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Figure 4. Comparison curve of Case 1 in various states: (a-e) voltage distribution after reconstruction of DBO,
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.
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Figure 4(f) illustrates the iteration curves of the five  smoother, with a higher quality of voltage and closer to the
algorithms, showing that IDBO has a significantly higher  reference voltage.
convergence rate and ability to avoid local optimums
compared to DBO, WOA, SOA, BWO.
Table 6. DG information of Case 2.

Case 2: IEEE 33-bus distribution system with four

DGs added

Change the location and type of DG integration while keeping Node Type Parameter

the initial parameter Settings as in case 1, as detailed in Table 4 PI P =200kW ,I =504
6. The network structure after DG access is shown in Figure 17 PI P =300kW ,I =504

5. The results obtained from the experiment are presented in

Table 7, where the optimal reconstruction scheme provided 2 PV P =300kW v, =0.98

by the IDBO algorithm reduces the network loss to 34.9708 30 PQ P =300kW ,cos=0.9

kW. With IDBO reducing network losses by 0.65%, 0.24%,

2.20%, 0.77%, compared to DBO, WOA, SOA and BWO Figure 6(f) shows the iterative progress of the five

algorithms, respectively. Minimum voltage increased to  algorithms. The IDBO algorithm improves the efficiency of
0.9758. This is verified by the node voltage distributions  the search process by continuously optimizing the
shown in Figure 6 (a-¢) compared to the other four schemes,  parameters, allowing it to converge to the best solution faster
the voltage distribution curves obtained by IDBO are  than DBO, WOA, SOA and BWO.
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Figure 5. IEEE 33-bus structure after four DGs added
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Figure 6. Comparison curve of Case 2 in various states: (a-e) voltage distribution after reconstruction of DBO,
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.

Table 7. Reconstruction results of Case 2 in various states.

Method Power Dissipation(kW) Minimum Node Voltage(p.u) Parameter
NO DG before Operation 202.5193 0.9131 33, 34, 35, 36, 37
With DG before Operation 79.0475 0.9397 33, 34, 35, 36, 37
DBO 53.9619 0.9667 7,34,11, 15,37
WOA 548174 0.9707 33, 14,9, 16,28
S0A 53.7414 0.9662 7,14,9,15, 37
BWO 54.0299 0.9652 7,34,10, 15,37
IDBO 536130 0.9667 7,14,10, 15,37

4.2. Simulation of IEEE 69-bus distribution
system

To validate the effectiveness and advantages of this algorithm
under different distributed power source integration
conditions, two comparative schemes were designed for
testing on the IEEE 69-bus distribution system model. This
model comprises 73 branches, 69 nodes, and 73 switches,
with baseline capacity, voltage, and initial load set at 10 MV A,
12.66 kV, and 3802 kV +j2694.6 kvar, respectively.

Case 3: IEEE 69-bus distribution system with three
DGs added

The DG information of system integration is in accord with
case 1 presented also in Table 4, and the algorithm is set to

(59) (60) (61) (62) (63) (64) (65  (66) (67)  (68)

iterate 100 times. The topology of the distribution network
after connecting to DG is shown in Figure 7. The
reconfiguration outcomes are displayed in Table 8, where the
optimal reconstruction scheme provided by the IDBO
algorithm reduces the net-work loss to 53.4602 kW.
Compared to the different scenarios with DG reconstruction
using DBO, WOA, SOA and BWO algorithms, the reduction
percentages are 5.44%, 11.88%, 11.87% and 12.00%,
respectively, and the minimum voltage increased to 0.9658.
Figure 8(a-e) show the voltage distribution in seven scenarios.
The figure under observation reveals that the voltage curve
after reconfiguration with the IDBO is more uniform than the
curve without DG integration and with DG integration, and is
closer to the per unit value of 1 compared to the DBO, WOA,
SOA, and BWO. Figure 8(f) further proves the convergence
ability of IDBO.
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Figure 7. IEEE 69-bus structure after three DGs added
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Table 8. Reconstruction results of Case 3 in various states.

Method Power Dissipation(kW) Minimum Node Voltage(p.u) Parameter
NO DG before Operation 341.0235 0.8713 61,13,4,43,38
With DG before Operation 234.0108 0.8900 61,13,4,43,38
DBO 56.5352 0.9599 69,19,71,11,5
WOA 60.6652 0.9593 69,18, 13, 11, 46
SOA 60.7538 0.9590 69,19, 14, 11, 47
BWO 60.6625 0.9593 69, 19, 11, 13, 47
IDBO 53.4602 0.9658 69,19,14,11,4
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Figure 8. Comparison curve of Case 3 in various states: (a-e) voltage distribution after reconstruction of DBO,
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.

Case 4: IEEE 69-bus distribution system with four  prerequisites of stable power grid function. Figure 10(f)
DGs added shows the iterative comparison diagram of the five algorithms,
As shown in Table 9, the integrated DG information in the  indicating that the convergence capability of the IDBO
system was modified, and the algorithm was set to iterate 100  remains superior.

times. The topology of the distribution network after

connecting to DG is shown in Figure 9. The reconfiguration

outcomes are displayed in Table 10. The optimal Table 9. DG information of Case 4.
reconstruction scheme provided by the IDBO algorithm
reduces the network loss to 69.8845 kW. Compared with the

other six scenarios before DG reconstruction without Node Type Parameter
integration, before DG reconstruction with integration, and 26 PI P =200kW ,I, =504
with DG reconstruction using DBO, WOA, SOA and BWO 39 PI P =300kW .1, =504

algorithms, the reduction percentages are 79.51%, 62.32%,
2.59%, 1.35%, 2.63% and 6.23%, respectively. The minimum 54 134 P =300kW .V, =098
voltage value is increased to 0.9459. Figure 10(a-€) show the 68 PQ P =300kW ,cos =0.9
node voltage amplitude curve. In Figure 10(e), the voltage
amplitude curve from IDBO aligns better with the
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Figure 9. IEEE 69-bus structure after four DGs added.
Table 10. Reconstruction results of Case 4 in various states.
Method Power Dissipation(kW) Minimum Node Voltage(p.u) Parameter
NO DG before Operation 341.0235 0.8713 61,13,4,43,38
With DG before Operation 185.4558 0.9099 61,13,4,43,38
DBO 71.7398 0.9461 69, 70, 66, 24, 46
WOA 74.5299 0.9202 10, 70, 66, 50, 46
SOA 71.7722 0.9459 64,70, 12, 25, 44
BWO 70.8440 0.9459 10, 13, 62, 25, 44
IDBO 69.8845 0.9459 10, 70, 14, 25, 47
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Figure 10. Comparison curve of Case 4 in various states: (a-e) voltage distribution after reconstruction of DBO,
WOA, SOA, BWO and IDBO; (f) Iterative curve of DBO, WOA, SOA, BWO and IDBO.
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5. Conclusion

The IDBO is proposed in this study to address complex
optimization  problems in distribution ~ network
reconfiguration. The algorithm integrates a variable spiral
search mechanism and a Levy flight strategy to enhance
global exploration capability and convergence speed. An
adaptive t-distribution perturbation strategy, which adjusts
with the iteration count, is introduced to strengthen local
search performance. Parameters are dynamically tuned
according to problem complexity, achieving an effective
balance between global exploration and local exploitation.
The IDBO algorithm was applied to distribution network
reconfiguration and tested on two systems with different
topological structures under various distributed generation
integration scenarios. Simulation results demonstrate that
IDBO exhibits strong adaptability, robust constraint-handling
capability, and precise local search performance, highlighting
its stability and versatility in providing an effective solution
for complex distribution network reconfiguration problems.
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