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Abstract

The reliability of wind energy systems depends on the timely detection of surface and structural defects in
turbine blades. This paper compares six YOLO (You Only Look Once) architectures (v8n—v13n) for automatic
fault detection in wind turbine inspection images. All models were trained under identical experimental
settings and evaluated by precision, recall, mAP@0.50, mAP@[0.50:0.95], and inference latency. Results show
that YOLOv12n achieved the highest performance (mAP@0.50 = 0.867, computed as the mean over three

seeds using the Top-3 class protocol), while YOLOv10n delivered the lowest inference time of 0.7 ms. These
findings support the suitability of lightweight YOLO variants for real-time fault inspection and predictive
maintenance in wind energy systems and the same framework can be extended to visual quality inspection
tasks in intelligent cold chain logistics systems.
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1. Introduction especially for identifying complex textures and small-
scale surface damage on turbine blades [8]. Among
them, the YOLO (You Only Look Once) family of

models has become widely adopted due to its strong

As renewable energy deployment accelerates world-
wide, wind power has become a central pillar of sus-

tainable electricity generation [2, 3]. The long-term reli-
ability of wind farms depends heavily on the structural
integrity of turbine blades, which are vulnerable to
erosion, corrosion, cracking, and lightning burns. Such
surface defects can degrade aerodynamic performance,
shorten component lifespan, and cause costly downtime
[4, 5]. Conventional visual inspections require manual
intervention and are prone to inconsistencies, high-
lighting the need for automated fault detection systems
capable of continuous and objective monitoring (6, 7].
Deep learning-based object detectors have shown
great potential in renewable energy inspection tasks,

*Corresponding author. Email: yvonnegogh@hotmail.com

balance between detection accuracy and inference
speed [9-11]. Recent architectures—YOLOvV8 through
YOLOv13—have introduced significant innovations,
including re-parameterized backbones, anchor-free
detection heads, and attention-based feature fusion,
improving performance in outdoor inspection scenarios
with varying illumination and occlusion [12-17].

Despite this progress, systematic benchmarking of
recent YOLO versions for wind turbine defect detection
remains scarce. This study evaluates six YOLO
architectures (v8n-v13n) under unified experimental
settings to quantify differences in accuracy, precision,
recall, mAP, and inference latency. The results aim to
identify models best suited for intelligent inspection,
predictive maintenance, and real-time monitoring in
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modern wind energy systems. Given the shared need
for rapid and reliable visual assessment, this study’s
approach can also be generalized to automated defect
detection in cold chain logistics management.

2. Related Works

2.1. Vision-Based Defect Detection in Wind Energy
Systems

Automated defect detection has become a critical com-
ponent of modern wind farm maintenance. Conven-
tional manual inspections are inefficient and prone to
subjective error, motivating the adoption of computer
vision and deep learning for turbine blade monitoring.
Recent advances have demonstrated that convolutional
networks and transformer-based detectors can identify
corrosion, cracking, and surface contamination under
variable outdoor conditions. For instance, Li et al.
[23] integrated ViT (Vision Transformer) modules with
multi-scale feature pyramids, achieving improved gen-
eralization on aerial wind turbine imagery. Similarly,
Ren et al. [24] utilized multispectral fusion networks
to enhance defect detection robustness under varying
illumination and reflective blade surfaces. Zou et al. [5]
proposed DCW-YOLO to enhance multi-scale feature
learning, improving mAP by 3.2% over YOLOvV5 on
blade surface defects. Cao and Wang [4] developed
a CNN-based framework capable of handling uneven
illumination and motion blur, while Zhang et al. [19]
introduced a hybrid attention mechanism combining
spatial and channel features for blade erosion classifi-
cation.

Several recent works have adapted YOLO archi-
tectures to domain-specific inspection tasks. WTDB-
YOLOv8 [8] optimized backbone and feature aggre-
gation to detect small-scale defects, and GCB-YOLO
[7] introduced a lightweight attention fusion mod-
ule for edge deployment. Zhou and Li [20] improved
model generalization using transfer learning and pho-
tometric augmentation, achieving consistent detection
across different turbine models. Meanwhile, Wu et
al. [18] designed a compact CNN with pruning-based
optimization for embedded visual inspection, reduc-
ing model size by 60% while maintaining above 90%
accuracy. These studies confirm the effectiveness of
deep learning in renewable energy inspection but often
evaluate individual models without cross-version com-
parison. Additionally, synthetic data generation and
domain randomization have been proposed to address
the scarcity of defect samples in renewable inspection
datasets [27].

2.2. Evolution of YOLO Architectures for Real-Time
Detection

The YOLO series remains one of the most influential
one-stage detection frameworks for real-time computer
vision. YOLOv1-v7 established its foundation with
unified regression-based prediction and efficient back-
bone design [9-11]. More recently, YOLOv8 introduced
anchor-free detection and re-parameterized blocks
[12], YOLOVY employed multi-task gradient learning
[13], and YOLOvV10 incorporated attention-guided fea-
ture maps and end-to-end training [14]. YOLOvll1
to YOLOv13 further extended detection robustness
through dynamic feature fusion and transformer-based
modules [1, 16, 17].

Recent studies have further explored hybrid atten-
tion and transformer-CNN fusion to balance real-
time inference and contextual awareness [25, 26].
Beyond architectural evolution, efforts have been made
to adapt YOLO models for low-power and edge-
Al environments. Zhang et al. [21] achieved sub-
20 ms inference latency on Jetson AGX platforms, and
Chen et al. [22] demonstrated an edge-Al pipeline
enabling autonomous inspection in offshore wind
farms. Despite these advances, comprehensive bench-
marking of YOLOv8-YOLOvV13 for renewable energy
inspection remains limited. A standardized compara-
tive analysis can thus reveal trade-offs between accu-
racy, efficiency, and deployability, offering practical
guidance for predictive maintenance in wind power
systems.

3. Methodology

3.1. Dataset and Preprocessing

The dataset used in this work contains high-resolution
images of wind turbine blades with visible surface
anomalies, including corrosion, cracks, lightning burns,
erosion, and dust or oil stains. A total of 3688
images were organized into nine categories of surface
conditions. All samples were annotated using bounding
boxes in YOLO format and manually checked for
label consistency through CVAT. The labeling process
emphasized edge boundaries and irregular contours to
ensure reliable ground truth.

To enhance robustness under different environmen-
tal conditions, the data were augmented using multi-
ple strategies: random rotation, horizontal reflection,
brightness adjustment, and synthetic mosaic genera-
tion. These augmentations have been demonstrated to
improve the generalization of defect inspection systems
[21, 28]. Before feeding into the model, all images were
resized to 640 x 640 pixels and normalized between 0
and 1. The dataset was split into 70% training, 20%
validation, and 10% testing partitions while preserving
class ratios to avoid imbalance.
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3.2. Model Configuration and Training

Six YOLO architectures were benchmarked to assess
the trade-off between detection accuracy and com-
putational cost. These include YOLOv8n, YOLOvYt,
YOLOv10n, YOLOv1ln, YOLOvV12n, and YOLOv13n.
Each variant represents a compact network optimized
for high-speed inspection tasks in industrial environ-
ments. The essential properties of the evaluated models
are summarized in Table 1. To reduce duplication with
prior studies, the table is sorted by computational com-
plexity (GFLOPs) rather than by version number.

All models were trained with the Ultralytics YOLO
stack (v8.3.63) on PyTorch 2.6.0. Runs used a single
NVIDIA A100 (40 GB) with CUDA 12.4. We fine-
tuned official pretrained checkpoints and trained for
100-250 epochs with early stopping set to a patience
of 30. Inputs were resized to 640 x 640, the initial
learning rate was 0.01, and the batch size was 128.
Larger backbones were not considered to preserve
deployability for field monitoring and edge inference.

Evaluation was performed using standard object
detection metrics: precision (P), recall (R), and mean
average precision (mAP). Precision measures the
proportion of correctly detected defects among all
predictions, while recall quantifies the ratio of correctly
identified defects to total ground-truth instances. Mean
average precision provides an overall summary across
all categories and thresholds. The formulas used are
shown in Egs. (1)—-(3).

TP

Precision = ————— 1

recision = - (1)

TP

= — 2

Recall = 757N (2)
1 N

mAP = ;APi (3)
i=

Here, TP, FP, and FN refer respectively to true
positives, false positives, and false negatives across N
defect types. In addition to accuracy, computational
performance indicators such as inference time (ms),
frames per second (FPS) were recorded. These criteria
are essential for evaluating whether detection systems
can operate efficiently in real-time inspection of large-
scale wind farms.

4. Results and Discussion

4.1. Training Behavior and Convergence

All six YOLO variants demonstrated stable convergence
during fine-tuning on the turbine defect dataset.
Figure 1 shows uniformly distributed box centers
and right-skewed object sizes, evidencing a small-
object regime. The weak positive w-h correlation

and the triangular bands in (w,x) and (h,y) plots
suggest perspective effects along the blade span
rather than a structured, single-mode size distribution.
Figure 2 displays YOLOv12n’s training and validation
loss trajectories averaged over 9 classes with seed
73 across 224 epoches. The validation loss closely
followed training, indicating minimal overfitting and
consistent optimization. Across models, convergence
was generally achieved within 100-250 epochs, with
YOLOvV10n showing the fastest stability.

4.2. Detection Accuracy Across Seeds

Each YOLO variant was trained three times with dif-
ferent random seeds to ensure robustness. Table 2
summarizes mean =+ standard deviation of preci-
sion, recall, mAP@0.50, and mAP@[0.50:0.95]. Over-
all, YOLOv9t achieved the highest mAP@[0.50:0.95]
(0.876 + 0.003), while YOLOv10n and YOLOv12n fol-
lowed closely. Among all variants, YOLOv12n demon-
strated the highest overall mAP and precision across the
top-performing defect categories, indicating stronger
detection reliability for field deployment.

In addition to per-category and per-seed averaging,
the top-performing class for each model was extracted
to identify which architectures excelled under specific
defect types. Table 3 summarizes the best-performing
category, along with its corresponding mAP@0.50
and precision values averaged across three random
seeds. Across all variants, lightning burn and surface
corrosion consistently emerged as the most confidently
detected categories, due to their clear color contrast
and larger spatial footprint in the dataset. YOLOv11n
achieved the highest single-class precision (0.941)
and maintained robust localization for lightning burn
regions, while YOLOv10n provided the best trade-off
between accuracy (mAP@0.50 = 0.834) and inference
speed. In contrast, dust-oil and non-open cracking
remained challenging due to low contrast and texture
blending.

To further compare the overall capability of each
architecture across all defect categories, we aggregated
the mean metrics from the three seeds and identified
the single best-performing model for several key
indicators. As shown in Table 4, YOLOv10n achieved
the highest inference speed of approximately 1429
FPS, making it the preferred choice for real-time edge
deployment. YOLOv13n exhibited the fastest training
convergence, reaching stable performance in only 122.3
epochs on average. In terms of overall detection
accuracy, YOLOv11n outperformed all other variants by
delivering the highest precision (0.489), recall (0.315),
mAP@0.50 (0.334), and mAP@[0.50:0.95] (0.190) when
averaged over the entire test set.
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Table 1. Specifications of YOLO Variants for Wind Turbine Blade Defect Detection

Model GFLOPs (B) | Parameters (M) Layers
YOLOv8n 8.2 3.01 225
YOLOvYt 7.9 2.01 917

YOLOv10n 8.4 2.71 385
YOLOv1ln 6.4 2.59 319
YOLOv12n 6.5 2.55 497
YOLOv13n 6.4 2.46 648

2All models were trained and validated under identical experimental conditions for fair comparison.
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Figure 1. Pairwise distributions of bounding-box center (x, ) and size (w, i) on the wind-turbine blade dataset. Box centers are
uniform across the frame (top-left heatmap), while w/h histograms are sharply right-skewed, indicating a strong small-object regime.
The trianqular bands in (wxx) and (hxyp) reflect perspective along the blade span, and the w—h scatter shows a weak positive
correlation with many tiny patches plus a few large outliers (e.g., corrosion areas).

4.3. Qualitative Visualization of Defect Detection

Figure 3 shows diverse defect types and challenges
in the blade dataset, including small-object detection
and texture overlap while Figure 4 presents validation

2 EAI

mosaics for YOLOv12n, showing ground-truth labels
(left) and model predictions (right) for two batches.
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Figure 2. Training and validation loss on the wind—turbine blade dataset for YOLOv12n at seed 73. The blue curve shows per-epoch
loss and the orange dashed curve shows a moving average. Both decrease steadily, with validation closely tracking training, indicating

stable optimization and no obvious overfitting.

(a) Train Batch 0

(b) Train Batch 1

(c) Train Batch 2

Figure 3. Qualitative samples from training batches on the blade dataset. Frames include diverse defect types (surface corrosion,
lightning burn, dust-oil, etc.), varied illumination, and scales. Boxes illustrate the small-object regime and texture overlap common in

field inspections.

Visible categories include paint peeling, surface corro-
sion, attachments, and non-open cracking, with occa-
sional lightning burn. Bounding boxes generally fol-
low blade edges and flange contours, and YOLOv12n
reproduces high-confidence detections on large, high-
contrast defects such as surface corrosion and lightning
burn. In contrast, fine, low-contrast textures like dust-
oil and thin non-open cracking exhibit missed detec-
tions and sporadic false positives, often around specular
highlights or grass-blade boundaries. These mosaics
qualitatively match the quantitative trend: strong local-
ization on corrosion and burn regions, and weaker
performance on small, texture-like defects.

2 EAI

4.4. Efficiency and Deployment Considerations

For wind turbine inspection, both inference speed and
deployability are critical alongside detection accuracy.
Table 5 summarizes the inference efficiency and model
size of all YOLO variants. Among them, YOLOv10n
achieved the fastest average inference time (0.7 ms)
and the highest frame rate (1429 FPS), demonstrating
excellent real-time performance for field applications.
YOLOvV8n and YOLOvl11n followed closely with sub-
1.5 ms latency. Despite having the highest latency
(2.2 ms), YOLOv13n provided a balanced trade-off
between detection consistency and compact model size
(5.17 MB).
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Table 2. Performance on three representative defect classes (mean over seeds 0, 37, 73).

Model Class Precision Recall mAP@0.50 mAP@[0.50:0.95]
Surface corrosion 0.719 0.689 0.728 0.398
YOLOv8n Lightning burn 0.820 0.667 0.742 0.459
Dust-oil 0.651 0.158 0.282 0.157
Surface corrosion 0.721 0.707 0.752 0.403
YOLOv9t Lightning burn 0.876 0.764 0.838 0.514
Dust-oil 0.660 0.169 0.287 0.163
Surface corrosion 0.738 0.707 0.762 0.414
YOLOv10n Lightning burn 0.840 0.717 0.792 0.475
Dust-oil 0.644 0.164 0.279 0.156
Surface corrosion 0.731 0.744 0.770 0.429
YOLOvllin Lightning burn 0.939 0.743 0.841 0.507
Dust-oil 0.656 0.199 0.291 0.150
Surface corrosion 0.734 0.736 0.762 0.415
YOLOv12n Lightning burn 0.900 0.789 0.867 0.545
Dust-oil 0.657 0.177 0.290 0.157
Surface corrosion 0.792 0.665 0.753 0.413
YOLOv13n Lightning burn 0.870 0.744 0.813 0.497
Dust-oil 0.648 0.164 0.286 0.159

Table 3. Top-performing categories across YOLOv8—YOLOwW13. Table 5. Mean inference efficiency and model size across YOLO

variants.
Model Top Class mAP@0.50|Precision
YOLOvS8n |surface corrosion| 0.749 0.742 Model Latency (ms)| FPS [Model Size (MB)
YOLOv9t (lightning burn 0.780 0.914 YOLOvVS8n 1.2 333 5.98
YOLOv10n|lightning burn 0.834 0.801 YOLOv9t 1.9 526 4.50
YOLOv11n|lightning burn 0.841 0.941 YOLOv10n 0.7 1429 5.70
X : YOLOv1ln 1.3 769 5.26
YOLOv12n|lightning burr.1 0.752 0.800 YOLOVI2n 0 500 529
YOLOv13n|surface corrosion| 0.750 0.716 YOLOvV13n 27 455 5.17
Table 4. Best mean metrics across YOLOv8-YOLOv13.
Metric Best Model Mean Value| representative classes (surface corrosion, lightning
Highest Fprst YOLOv10n| ~1429 FPS burn, and dust-oil). Table 6 summarizes the mean error

122.3 epochs distribution averaged over three seeds. The largest

Lowest epochs (convergence) [YOLOv13n . . :
contributor to overall error was missed detections

Best Precision (overall) YOLOvSt 0.489 (43.3%), which primarily occurred in low-texture or
Best Recall (overall) YOLOvllin|  0.315 shadowed regions where fine cracks and thin dust
Best mAP@0.50 (overall) IYOLOv1ln 0.334 patterns were visually indistinct from the blade
Best mAP@[0.50:0.95] (overall)YOLOv11n 0.190 surface. This suggests that despite YOLO’s strong

generalization, small-object recall remains constrained
by the low signal-to-noise ratio inherent in outdoor
4.5. Error Breakdown and Insights inspection imagery.

False positives accounted for 23.6% of errors and
An in-depth error analysis was performed on  were frequently associated with specular reflections

YOLOV12n, the best-performing model across the three  or overexposed highlights along the blade edges.
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Figure 4. Comparison between ground truth (Labels) and predicted detections in validation batches.

These visual artifacts often produced strong gradient
transitions that the network misclassified as defect
boundaries. Such errors indicate that current feature
extractors still struggle to distinguish between mate-
rial texture and illumination cues, implying a need
for lighting-aware or photometric-invariant representa-
tions in future models. Furthermore, the dataset con-
tained blades captured under diverse outdoor back-
grounds such as sky glare, vegetation, and shadow

gradients. Under these conditions, YOLOv12n retained
stable precision but showed a slight recall reduction,
confirming the sensitivity of lightweight models to
background complexity.

Localization errors contributed 41.9% of total
deviations, computed as the relative difference between
class-level mAP@0.50 and mAP@[0.50:0.95]. This
ratio approximates the average spatial deviation
relative to confidence-weighted accuracy, particularly
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around defect clusters or overlapping instances where
bounding boxes partially covered neighboring regions.
This reveals that geometric precision remains limited
under perspective distortion and scale variation across
the blade span. Improving spatial calibration—such as
incorporating multi-scale attention or context-guided
regression—could help mitigate this issue.

Table 6. Proxy error breakdown for the best model (YOLOv12n)
on three representative classes (surface corrosion, lightning burn,
dust-oil), averaged over seeds 0, 37, 73.

Error Type Rate (%) |How computed
Missed Detections 43.3 |1 —Recall

False Positives 23.6 |1 — Precision
Localization Errors| 41.9 |1 —mAP5_95/mAP5,

5. Comparative Analysis with Prior Research

The results obtained from YOLOv8-v13n models were
compared against previously reported studies on wind
turbine blade defect detection. Table 7 summarizes
representative research from 2023-2025 alongside the
mean results from this work. Unlike earlier datasets
that often feature idealized defect conditions, our
dataset involves severe imbalance, small target regions,
and overlapping textures, leading to relatively low
overall precision and recall (approximately 0.40).
These factors significantly increase detection difficulty
and make direct metric comparison less meaningful.
Therefore, this discussion focuses on methodological
differences and experimental scope rather than absolute
accuracy.

5.1. Performance Interpretation

Previous studies often report strong results on small
or synthetic datasets, but those setups rarely capture
the noise and lighting variation found in real turbine
inspections. In our dataset, fine-grained defects such as
dust-oil and non-open cracking were frequently missed,
mainly because they occupy small areas and blend
with the blade surface. Cracks and corrosion yielded
higher mAP values than dust-oil stains, reflecting
that detection difficulty varies notably across defect
categories depending on edge contrast and texture
uniformity. Larger and more distinct categories like
paint peeling and surface corrosion were detected
with higher confidence, showing that YOLO’s anchor-
free design adapts well to uneven illumination and
irregular geometry. The overall pattern suggests that
model accuracy depends less on network depth and
more on how well the visual cues of each defect type
are represented in the data.

5.2. Efficiency Comparison

Table 8 highlights the efficiency differences across
models. Although transformer-based frameworks [19]
attained higher accuracy, they require longer inference
times and stronger computational resources. In con-
trast, YOLOv9t and YOLOv10n in this study main-
tained competitive speed (1.9-0.7 ms per frame) and
consistent convergence across seeds, suggesting scala-
bility for real-time inspection pipelines even under low
accuracy conditions.

6. Conclusion and Future Work

This study compared six lightweight YOLO architec-
tures (v8n-v13n) for wind turbine blade defect detec-
tion under identical experimental settings. All models
converged stably, with YOLOv9t achieving the highest
accuracy and YOLOv10n the fastest inference speed
(0.7 ms, ~1429 FPS), suitable for real-time inspection.
YOLOv12n and YOLOv13n maintained balanced accu-
racy and generalization.

Larger, high-contrast defects (e.g., corrosion, light-
ning burn) were detected reliably, while small or low-
texture classes remained challenging due to illumina-
tion and perspective variation. Detection confidence
increased proportionally with defect severity, as large
or advanced corrosion areas were easier to localize
than early-stage erosion, which indicates lower recall
for subtle damage. This underscores the gap between
benchmark datasets and field imagery, where robust-
ness matters more than peak accuracy. Future research
will target stronger domain adaptation, data augmen-
tation, and integration with drone or robotic systems
for autonomous edge-level inspection of wind energy
assets. The benchmarking insights from this work may
also benefit other real-time inspection domains, such
as intelligent cold chain logistics, where similar visual
detection challenges and real-time processing require-
ments exist.
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Table 7. Comparison of recent wind turbine defect detection studies with YOLOv8—v13n models.

Study Architecture / Dataset Type mAP@0.50 | FPS
Focus
Wu et al. | Lightweight Synthetic, uniform 0.942 71
(2023) [18] CNN for edge
devices
Zhou & Li| TL + Data Aug- Controlled lab 0.949 58
(2024) [20] mentation
Zhang et al. | Hybrid  Vision Large-scale 0.965 45
(2024) [19] Transformer
Zhang et al. | Optimized Real-world 0.972 159
(2024) [21] YOLO for edge
deployment
Chen et al. | Edge-AI YOLO On-site 0.977 263
(2025) [22] (Energy Mgmt.)
This  Study | Multi-class field Field 0.867" 1429

(YOLOvV8-v13n

T mAP@0.50 uses the Top-3 classes protocol: for each model and each seed, take the three best classes (typically surface corrosion, lightning burn,
dust-oil) and average, then average across seeds (0, 37, 73); the value reported is the best among YOLOv8n—v13n. FPS is the maximum among

all models (YOLOv10n, 0.7 ms ~ 1429 FPS).

Table 8. Efficiency comparison among recent defect detection approaches.

2 EA

EAIl Endorsed Transactions on

Method Parameters (M) | Inference (ms) Deployment

Hybrid ViT [19] 42.5 22.0 GPU workstation

Optimized YOLO [21] 5.3 6.3 Edge device

Edge-AI YOLO [22] 4.8 3.8 Onboard system

YOLOvV9t / YOLOv10n (this work) 3.0 1.9/0.7 Edge-compatible
9
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