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Abstract

Accurate reliability assessment of islanded microgrids (iMGs) increasingly depends on intelligent system modeling and data-
driven integration between physical assets and digital control frameworks. To address the limited adaptability of conventional
reliability models, this paper proposes an ICT-integrated framework for reliability evaluation of iMGs equipped with semi-
active lithium-ion battery-supercapacitor hybrid energy storage systems (HESS). The framework employs a 32-state Markov-
based model to represent component-level degradation and failure dynamics, enabling state-aware reliability analytics through
automatic state aggregation and transition probability learning. These states are further abstracted into representative operating

modes that can be seamlessly interfaced with energy management systems for online evaluation. A minimum load curtailment
strategy is embedded within a time-series Monte Carlo simulation environment to quantify the interactive impact between multi-
state HESS behavior and overall system reliability. Standard indices-outage frequency, duration, and availability-are computed
to characterize resilience under varying storage conditions. Comparative results verify that the proposed model substantially
improves the reliability of iMGs by enabling degraded yet continuous operation during partial failures. The study provides a
scalable and digitally implementable reliability framework for HESS-enabled microgrids, bridging the gap between detailed
component modeling and real-time operational analytics.
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1. Introduction

and uncertain nature of renewables introduces complex
dynamics that challenge the stability, reliability, and
controllability of islanded operation. During surplus
conditions, renewable output is often curtailed, while during
resource scarcity, load shedding and service interruptions
may occur [1][2]. These fluctuations highlight the urgent
need for intelligent, system-level reliability management
within the iMG environment.

The accelerating global energy transition and the rapid
proliferation of wind and photovoltaic (PV) installations have
driven the extensive deployment of microgrids. Depending
on their operational modes, microgrids can operate either
grid-connected or islanded. Among them, islanded
microgrids (iMGs) operate autonomously from the main grid,
relying heavily on distributed renewable resources to balance
local generation and consumption. However, the intermittent
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Energy storage systems (ESS) play a pivotal role in
stabilizing iMGs by buffering renewable intermittency and
supporting frequency and voltage regulation. Yet, the internal
reliability of ESS themselves-governed by component
degradation, converter malfunctions, and control switching
faults-often becomes a hidden bottleneck that compromises
overall microgrid availability. Hence, accurate and adaptive
reliability modeling that reflects diverse operating modes and
internal degradation pathways is crucial for developing
resilient microgrid architectures.

Hybrid energy storage systems (HESS), which integrate
lithium-ion batteries and supercapacitors, have emerged as a
digitally manageable and  performance-optimized
configuration capable of addressing the shortcomings of
single-type storage technologies. Batteries provide high
energy density for sustained supply, while supercapacitors
deliver fast dynamic response and high power density for
transient load regulation [3][4]. Through coordinated control,
HESS can dynamically allocate power and energy resources,
alleviating stress on battery units and improving operational
flexibility. These advantages make HESS particularly
suitable for ICT-integrated energy management systems,
such as EV charging infrastructures and distributed microgrid
controllers, where real-time reliability awareness and fast
control response are required.

Previous reliability studies on iMGs have mainly
concentrated on uncertainties in renewable output [5], load
variation [6], or distributed generation behavior [7].
However, the internal structural dependencies and
operational states of HESS have received limited attention.
Many studies oversimplify storage into binary functional
models [8][9], while others evaluate generation and network
contingencies without representing the multi-state coupling
within hybrid storage subsystems [10][11]. Even works
addressing vehicle-to-grid (V2G) or demand response often
neglect internal failure dynamics, overlooking the interaction
between component degradation and system-level reliability
[12][13]. This gap limits the applicability of traditional
reliability frameworks in digitalized, multi-energy storage
environments.

To overcome these limitations, this paper develops an ICT-
integrated reliability assessment framework for islanded
microgrids incorporating a semi-active hybrid energy storage
system. The proposed approach establishes a Markov-based
multi-state model that captures the stochastic transitions
among component degradation, partial failures, and recovery
events. A total of 32 internal states are defined and clustered
into four representative operational modes using state
aggregation principles, forming a state-aware reliability
model compatible with digital energy management systems.
Furthermore, a minimum load curtailment strategy is
embedded within a time-series Monte Carlo simulation
environment to quantify the operational resilience of iMGs
under diverse fault scenarios. Simulation results demonstrate
that the proposed multi-state HESS model significantly
enhances system reliability by maintaining degraded yet
continuous operation under partial failures. These findings
emphasize the necessity of fine-grained, data-integrated
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reliability modeling as a cornerstone for next-generation
intelligent microgrid management.

2. System Configuration and Modeling of
Islanded Microgrid

The architecture of microgrid power supply systems can
generally be categorized into four major configurations: (i)
wind-storage hybrid systems, (ii) small hydropower-based
microgrids, (iii) combined cooling, heating, and power
(CCHP) systems utilizing micro gas turbines or other
distributed generation (DG) units, and (iv) multi-source
networks composed of diverse distributed energy resources.
Each architecture is characterized by distinct power-
electronic interfaces and control layers, which determine its
adaptability and resilience under varying operating
conditions.

Building upon these conventional categories, this study
investigates a representative photovoltaic (PV)-dominated
islanded microgrid equipped with an ICT-integrated hybrid
energy storage system (HESS). The reference configuration-
shown schematically in Fig. 1-comprises PV arrays, wind
turbines, a semi-active lithium-ion battery-supercapacitor
HESS, multiple load nodes, and the corresponding
monitoring and control infrastructure. The digital energy
management system (EMS) functions as the coordination
layer, linking renewable generators, storage converters, and
local controllers through a unified communication bus to
enable state-aware and data-driven operational management.

All distributed generation units are connected to a central
AC bus via bidirectional inverters, allowing flexible power
conversion and coordinated regulation. To reflect realistic
geographical dispersion across feeders in low-voltage
distribution networks, the model employs segmented sub-
buses that represent regional clusters of DERs and loads.
These sub-buses are aggregated through the supervisory
control layer and can exchange data with the EMS in real time
for voltage, frequency, and power flow supervision.

Under normal conditions, when switch S1 is closed, the
system operates in grid-connected mode, supporting
interactive charging and discharging of the HESS according
to predefined control and scheduling strategies. In this mode,
the EMS communicates with local converters to optimize
power allocation based on grid price signals or renewable
forecasts. When switch S1 is opened, the system transitions
into islanded operation, where autonomous decision-making
becomes essential. In this state, the EMS relies solely on local
sensing data-including generation output,
battery/supercapacitor state of charge, and real-time load
profiles-to maintain voltage-frequency stability through a
hierarchical control structure that coordinates distributed
resources and executes a load curtailment strategy when
necessary.

This paper focuses exclusively on reliability assessment
under the islanded mode, i.e., with switch S1 disconnected,
representing the autonomous operational state of the PV-
dominated microgrid. By integrating cyber-physical system
modeling and multi-state HESS reliability analytics, the
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proposed configuration captures both the physical
interconnection and the information-layer interaction
essential for high-fidelity evaluation of microgrid resilience..

|
|
|
|
S e R |
ESS |
|
w |
U@
2 11
P s1

Figure 1. Islanded microgrid reliability test system

2.1. Load Demand Modeling

The uncertainty in load output is reflected in its time-series
modeling of seasonal output on long time scales and in the
volatility modeling of output on short time scales,
respectively, and the output calculation formulae that take
into account the load uncertainty are as follows:

P(t) = P () + PV (D) M

Where: PF(t) and P (t) are the time-series model of load
output and the volatility model of load output, respectively.
The load timing model P} (t) can be expressed as:

PLT (t) = opoyu P (2)

Where: PLmax(f) is the peak load of the year; oD is the ratio
of the peak load of the day to the peak load of the month; gy,
is the ratio of the peak load of the month to the peak load of
the year.

The volatility model of load output P (t) can be
expressed as a normal distribution with the formula:

—exp (— GHOROR (f,L;“L) ) 3)

fY(®) =

Where: o is the standard deviation of load fluctuation; y;
is the expected value of load fluctuation.

2.2 Energy Storage Charging and
Discharging Model
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The charging and discharging of the energy storage system
and its capacity constraints are considered to model its
charging and discharging.

The charging model is calculated as:

P (t) < Pmax
EESS(t) + P (t)At < E’"‘;" @)
E.(t+4t) = EESS(t) +P (D)4t

Where: Py, (t)is the charging power of the energy storage
at the moment #; P*** is the maximum charging power of the
energy storage; Epgs(t) is the energy stored in the energy
storage at the moment #; Ef$* is the maximum capacity of
the energy storage; and At is the time scale, which is set to 1h
in this paper.

The discharge mode is calculated as:

max
Pdisch(t) - PdlSCl’l m'n
U
Epos(O) = Py (DAL 2 EESs (%)
E o (t +4t) = EESS(t) —P, Sch(t)At

Where: Py, (t) is the discharge power of the energy

storage at time #; Plon is the maximum discharge power of

the energy storage; EFYT is the minimum capacity limit of the
energy storage.
In addition, the modeling of PV and wind turbine output

models are shown in Appendix A, equations (Al to A4).

3. Reliability Modeling of Hybrid Energy
Storage Systems

Hybrid energy storage systems (HESS) integrate batteries and
supercapacitors to leverage their complementary electrical
and dynamic characteristics [14]. Lithium-ion batteries offer
high energy density and are suited for sustained energy
support; nevertheless, their limited power density, nonlinear
efficiency, and degraded cycle life under high-frequency
operation constrain their performance in fast-response
scenarios. In contrast, supercapacitors possess superior power
density, millisecond-level response, and exceptional charge-
discharge efficiency, making them ideal for managing short-
term power fluctuations and transient disturbances. However,
their restricted energy capacity limits their ability to provide
long-duration backup.

By combining these two technologies, HESS achieve
multi-timescale  energy-power coordination, enabling
improved transient performance, reduced converter stress,
and enhanced overall system efficiency. The synergy
between batteries and supercapacitors allows dynamic energy
allocation-high-frequency components handled by the
supercapacitor, and low-frequency energy compensated by
the battery-thereby maintaining optimal operating conditions
for both devices. This complementary behavior not only
extends component lifespan but also strengthens the
resilience and service continuity of islanded microgrids under
stochastic renewable generation and load variations.
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Beyond their physical and electrochemical advantages,
modern HESS architectures increasingly incorporate ICT-
enabled monitoring and reliability analytics to support
intelligent operation. Embedded sensors and communication
interfaces provide real-time data on voltage, current,
temperature, and state-of-charge, which can be processed
through digital energy management systems (EMS) for state-
aware decision-making. These digital diagnostics enhance
situational awareness and enable predictive maintenance,
forming a cyber-physical layer that directly links component
health conditions with reliability evaluation at the system
level.

However, despite these advances, the quantitative
reliability contribution of HESS within islanded microgrids
remains underexplored. Conventional reliability models
typically treat energy storage as a binary functional element,
failing to reflect the internal degradation, mode transitions,
and partial failure states of hybrid configurations. To
overcome these limitations, fine-grained reliability modeling
that captures the multi-state behavior and interdependence of
HESS components is essential. Such models provide the
analytical foundation for integrating probabilistic failure
dynamics with real-time control and for developing ICT-
integrated reliability assessment frameworks, as presented in
the following sections..

3.1 Topology of HESS

The topologies of HESS are divided into three main
categories: passive, semi-active, and active, as shown in
Figure 2.
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Figure 2. Topology classification of HESS

Among the widely adopted HESS configurations, three
fundamental topologies are commonly analyzed: passive,
active, and semi-active.

The passive topology offers a simple and low-cost design,
in which the lithium-ion battery and supercapacitor are
directly connected to a common DC bus. Although this
configuration facilitates straightforward integration, its lack
of independent power regulation restricts the supercapacitor’
s participation in high-frequency energy exchange, thereby
limiting system efficiency and dynamic performance.

The active topology employs two bidirectional DC/DC
converters-one dedicated to each storage unit-allowing
precise and flexible control of charge and discharge
processes. This architecture achieves full utilization of both
energy devices and supports intelligent coordination through
digital controllers; however, it entails higher -circuit
complexity, increased converter losses, and greater
implementation cost.

The semi-active topology provides a balanced compromise
by using a single bidirectional DC/DC converter-typically
interfacing the supercapacitor-while coupling the battery
directly to the DC bus. This arrangement enables coordinated
energy management and state-aware control with reduced
hardware requirements, making it a practical and scalable
choice for many ICT-integrated microgrid applications.

In this study, a semi-active HESS composed of a lithium-
ion battery and a supercapacitor is selected as the target
system. To characterize its operational transitions and
degradation-related failures, a multi-state reliability model is
established based on a Markov-driven state clustering
approach. The proposed model quantitatively represents
component-level dynamics within the cyber-physical
environment of the islanded microgrid, forming the analytical
foundation for subsequent reliability assessment.

The choice of a semi-active HESS topology is motivated
by both technical and operational considerations. Compared
with passive architectures, semi-active systems provide
superior dynamic response by enabling independent
regulation of supercapacitor power flow through a
bidirectional DC/DC converter. At the same time, semi-active
configurations achieve higher efficiency and lower
implementation cost than fully active architectures, which
require dual converters and introduce greater switching
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losses. In islanded microgrid environments where reliability,
cost-effectiveness, and controllability must be balanced, the
semi-active design offers an optimal compromise.
Furthermore, its hierarchical mode structure lends itself
naturally to multi-state reliability modeling, as reduced
functionality under converter failure can still be represented
as degraded operational modes rather than total system
collapse.

3.2 State Cluster Definition and Classification

The internal configuration of the semi-active HESS-
comprising a lithium-ion battery and a bidirectional DC/DC
converter-is shown in Fig. 3. The system is organized into
five core functional submodules: the lithium-ion battery unit,
the bidirectional DC/DC converter, the supercapacitor bank,
the emergency charging circuit, and a device-level
supervisory module that integrates the main control unit,
auxiliary power supply, and thermal management elements
such as valve-regulated cooling systems [14]. To ensure
stable system initialization, a pre-charge circuit is
implemented to avoid direct energization of the converter
when the battery terminal voltage falls below its controllable
threshold. In this work, a closed-loop charge/discharge
controller is assumed to maintain the battery voltage within
its permissible range; therefore, failures in the pre-charge
circuit are excluded from the reliability evaluation.

Each submodule is individually parameterized to build a
comprehensive multi-state reliability representation. Based
on the combinational operational conditions of these
components, the HESS exhibits five representative
operational modes reflecting its hierarchical degradation
behavior.

In the normal mode, all components operate properly or
only the emergency circuit fails, allowing full rated power
and energy capacity.

A supercapacitor fault triggers the battery-only mode,
resulting in reduced power responsiveness.

When the DC/DC converter fails, power transfer remains
possible through the emergency circuit, but the overall output
is constrained by the supercapacitor’s limited rating.

If the battery, converter, and emergency path are
simultaneously unavailable, the supercapacitor-only mode
sustains minimal operation.

Finally, concurrent failure of both the battery and
supercapacitor renders the entire HESS non-operational.

These five submodules are modeled through binary state
enumeration, producing 2°=32 discrete operational states that
collectively constitute the HESS-32 multi-state reliability
model. To maintain computational tractability and improve
interpretability, states exhibiting functionally equivalent
behavior are clustered into 11 representative categories, as
summarized in Table B1. In the reliability representation of
the DC/DC converter, both its internal submodule topology
and potential redundancy schemes (e.g., k/n(G)
configurations) are incorporated. By integrating these
component models with the overall system architecture and
operational logic, the corresponding state probabilities,
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transition frequencies, and mean residence durations are
derived using a state-space analytical approach. This
modeling process enables high-fidelity quantification of the
multi-state reliability characteristics of the HESS under
diverse component-level failure scenarios, while ensuring
compatibility with ICT-based monitoring and data-driven
reliability analytics.

3.3 State Probability Analysis Using Markov
Chains

The basic idea of Markov chain is to divide the time-
continuous stochastic process into a finite number of discrete
states Xi (i=0, 1, 2, ...), and the set of all discrete states as well
as the transfer relationship between the states constitutes a
Markov chain. According to the analysis in Section 2.2, the
HESS discrete state space S = {S1, 52, 53, ..., 532 }, defines
the transfer probability matrix:

p11(4t) p12(4t) p1_32(At)
P(4t) = p21€At) pzzSAt) p2'32:(At) (6)
P32,1(At) p32,2(At) p32_32(At)

Where: p;; is the one-step transfer probability, denoting
the transfer probability from state Si to Sj (i,j=1,2,3,...,32).

According to the principle of Markov process
approximation and the full probability condition, the
probability of each state Pi (i=1, 2, ..., 32) can be solved
according to equation (9).

PA=0
,
e -1 @

Where: P is the row vector consisting of the probabilities
of each state, i.e., P=[P1, P2, ..., P32 ]; A is the transfer
density matrix of the Markov model, which is calculated as:

A= [im 20! (8)
At-0 At

Where: I is the unit matrix. The formula for the transfer
density matrix A is given in Appendix equation (AS).

To enhance model transparency and reproducibility, the
derivation of the 32-state HESS model is further clarified.
Each of the five critical submodules-the lithium-ion battery
unit, DC/DC converter, supercapacitor bank, emergency
charging circuit, and device-level supervisory module-is
represented by a binary operational variable that indicates
functional or failed conditions. The Cartesian combination of
these binary states forms a comprehensive 2° space consisting
of 32 distinct operational conditions. Transition probabilities
between states are computed based on the failure and repair
rates (A, 1) of each submodule. Specifically, transitions from
an operational to a failed condition are governed by
exponential failure distributions, while transitions from failed
to restored states follow exponential repair distributions. The
full transition density matrix A is assembled by aggregating
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submodule-level  transitions and normalizing row
probabilities to satisfy Markov chain consistency rules.
Representative examples and the explicit computation of
selected transitions (e.g., S7 to S10) are provided in Appendix
B to facilitate reproducibility.

3.4 Reliability Metrics of HESS and
Computational

Based on the probability of each state in the smooth state Ai
and the transfer probability matrix P(At) , which were found
in Section 2.3, the frequency and the average duration of the
state can be solved for, respectively:

{ fsi = Xk=1 PP )
Ds; = 1/ Xit=1Pim

Where: fs; is the steady state frequency of state i; Dg; is the
average duration of state i; py; denotes the transfer
probability from state k to this state #; K is the number of
transfer programs; p;,,, denotes the transfer probability from
state 7 to other state m; M is the number of transfer programs.

Finally, the state summarization is carried out by targeting
the four operation modes in Table Bl to obtain the state
probabilities, frequencies and average durations of the new
states, i.e., the reliability indexes of the four maximum output
powers of the Li-ion battery-supercapacitor HESS:

Prod,k = Xisaemod, k Psd
fmod,k = ZSdemod,kfsd (10)

Dmod,k = Pmod,k/fmod,k

Where: Pp,q 1 is the state probability of the k" operating
mode; sd is an operating state belonging to the k* operating
mode; fioa  is the frequency of the k" operating mode;
Do, x s the average duration of the k" operating mode.

3.5 Coupling Between HESS Degradation
States and Renewable Variability

To reflect cyber-physical interdependencies more accurately,
additional analysis is conducted on the coupling between
HESS degradation states and renewable generation
variability. The charge-discharge cycles induced by high-
frequency PV and wind fluctuations accelerate lithium-ion
battery degradation and increase the probability of transitions
into partial failure states. Conversely, operation under
smoother renewable profiles reduces the residence time of
degraded modes. By incorporating renewable volatility as an
influencing factor on the HESS transition matrix, the
reliability model captures these dependencies more faithfully.
Sensitivity tests performed on varying renewable fluctuation
intensities confirm that increased volatility results in higher
frequencies of converter and battery-related degraded modes,
leading to measurable impacts on system-level SAIDI and
ASAI metrics.
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4. Reliability Assessment Framework for
Islanded Microgrid

To clarify the overall structure of the proposed methodology,
Fig. 3 presents a technical flowchart outlining the step-by-
step process for reliability modeling and evaluation of an
islanded microgrid with a semi-active hybrid energy storage
system (HESS). The workflow begins with system modeling
and initialization, including configuration of microgrid
components and load priorities. The semi-active HESS is
modeled using a multi-state Markov approach that captures
internal component failures across 32 possible states, which
are then aggregated into representative operational modes.
These modes are used to compute steady-state probabilities
and reliability indices. Subsequently, a time-sequential
Monte Carlo simulation is conducted, where device failures
and repairs are randomly generated, and system responses are
evaluated under a minimum load curtailment strategy. The
resulting outage data are used to derive both node-level and
system-level reliability indicators such as SAIFI, SAIDI, and
ASAL Finally, the proposed HESS model is benchmarked
against single-type storage systems to validate its
performance advantages in maintaining degraded operational
states and enhancing overall microgrid resilience.

System Modeling and Initialization Multi-State HESS Modeling

& Use semi-active HESS with five key modules.

* Generate 32 possible states based on module
status.

s Group states into 11 categories and 4
operation modes.

*  Build the Markov transition matrix.

= Define the microgrid layout (PV, wind, diesel,
HESS, loads).

e Setload priorities (e.g., L1> 12 >...>L5). —

* Initialize simulation time and device status.

s Build PV and wind output models.

State Analysis and Reliability
Metrics

Monte Carlo Simulation for iMG

Start simulation loop from T=0

Randomly generate failure and repair times *  Solve steady-state probabilities.

.
.
s Update status & system conditions. ] s Calculate frequency and duration of each
s Apply load curtailment As per HESS output. state.
* Record outage data and repeat until *  Aggregate results by operation mode.

simulation ends. *  Qutput reliability data for HESS.

2
iMG Reliability Evaluation Comparative Analysis and
Validation

= Compute outage time, frequency, and energy *  Simulate single-type storage systems.

loss per node. > » Compare key indicators with HESS results.

Highlight advantages of degraded operation
in HESS.
Support findings with tables and figures.

e Calculate SAIDI, SAIFI, and ASAI for the whole .
system.
*  Summarize reliability performance. ]

Figure 3. Technical flowchart of the proposed
reliability modeling and evaluation framework for iMGs
with semi-active HESS.

4.1 System-Level and Node-Level Reliability
Indicators

In order to reasonably assess the reliability of iIMG with
HESS, this paper uses two types of indicators, system and
user, for reliability assessment:

(1) The system average interruption duration index
(SAIDI), system average interruption frequency index
(SAIFI) and average service availability index (ASAI) are
used as system reliability assessment indexes. average service
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availability index, ASAI) as the system reliability assessment
index, and its calculation formula is shown in Appendix A,
Equation (A7~A9).

(2) The reliability assessment indicators for each node
within the microgrid are the duration of power shortage, the
number of outages, and the amount of power shortage, whose
formulas are detailed in Equation (A10~A12).

4.2 Device Failure Modeling and Lifetime
Simulation

In order to calculate the lifetime of devices or loads inside the
iMG, this paper adopts a time-series probabilistic simulation
model for simulation, assuming that the failure rate and the
repair rate of device ii are A; and y;; , and that its uptime
Trrr i and its repair time Ty j; are respectively:
1 1
Toppit = = 5ol (TTTR,” - —u—iilny) (11)
Where: x, y are random numbers that obey a uniform
distribution between (0, 1), respectively.

4.3 Monte Carlo-Based Reliability Evaluation
Process

Load curtailment strategy has a significant impact on the
reliability of iMG. In this paper, in order to balance the output
of HESS, the minimum load curtailment strategy is modeled
by considering the load importance.

Minimum load curtailment strategy: the goal is to
minimize the load curtailment of the whole IMG, i.e., to
ensure that as many loads as possible are supplied for a long
time. Assuming the load importance level: L; > L, > L3 >...>
Ly.

In this paper, based on the time series Monte Carlo method
[15][16], the iMG reliability assessment program containing
HESS is constructed by using the MATLAB platform, taking
into account the HESS state cluster classification model, the
uncertainty of scenery output, the volatility of load output,
and the corresponding load curtailment strategy. The process
is as follows:

(1) Data initialization. Set the system simulation time 7wc
= 0, simulation year as Tmax , cut load as empty Lcw: = ¢, IMG
remaining load as all loads. Determine the ordering of the
load importance of each node and record the sorted node as
Ly > L5 > L5 > - > Ly , record the operating state of all N
devices as normal operating state, i.e., ST=[1,1, 1, ..., 1].

(2) Extract the faulty devices within iMG and their repair
time. According to Eq. (11) the normal operating time Trrg ;;
of device ii can be determined and recorded as Trrr = [Trrr.1
, Tt1F2 5 -y TTTEN ] The device with the minimum value TTTF,/j
=min(7Trrr,;) is selected as the faulty device. The formula for
its repair time 7'rrr is given in equation (12).

(3) Calculate the DG output PDG and load demand PL for
the time period [Tmc , Ttrr, |- Based on the minimum load
curtailment strategy, solve for the HESS output PESS and
load curtailment.

(4) Update the load curtailment Lcy , the cumulative
number of load curtailment outages and the duration of
outages.

(5) Update the normal operating time matrix of each load

* _ * * * * p—
;ode T?TF = [TTTF,I'TTTF,Z'""TTTF,N] , where

TTF,!
tpi — Tppp i - updates the state of the faulty device jj in the
ST matrix to state 0. Also, let Tvc = Tuc + Trrey; -

(6) Select the minimum time from the updated Uptime
Matrix, T7rp ,TTTF’ i = min(TTTF’L-') , noting that the device
may be the first to fail or the device may be the first to be
repaired. At the same time, update the state of the state change
device jj* in the ST matrix with the uptime matrix T7rp .
Make TMC = TMC + TTF,jj . .

(7) If Tme < Tmax , return to step (2), otherwise proceed to
the next step.

(8) Count the total number of outages and total outage time
at each load point to calculate the reliability assessment

metrics for IMG.

5. Case Study and Result Analysis

5.1 Microgrid Test System Configuration

The reliability test system of iMG shown in Fig. 1 is used to
start the analysis, and S1 is disconnected to form an islanded
microgrid containing four kinds of internal power sources,
including wind power, storage and diesel fuel. iMG contains
five loads (L1~L5), and their importance is ranked in the
following order: Ly > L, > L3 > L4 > Ls , the capacity of PV
and wind power is 1000kW, the capacity of diesel generator
is 350kW, the capacity of HESS is 400kWh, and the
maximum output power is 300kW, in order to delay the
battery life loss, the power capacity is 400kWh, and the
maximum output power is 300kW, in order to delay the
battery life loss, its power is based on [11]. The power is
allocated to delay the battery life loss, and the charging and
discharging periods and times of energy storage in the
microgrid are idealized, and each parameter is shown in Table
1.

Table 1. Reliability Parameters of equipment in hybrid
energy storage system

parameters numerical value
Photovoltaic capacity/kW 1000
Wind power capacity/kW 1000
Diesel generator capacity/kW 350
Load Li\L2\L3\L4\Ls/kW 320\240\160\160\120
Rated capacity of 150
ultracapacitor/(kWh)
Rated capacity of lithium 250
battery/(kWh)
Rated charging/discharging 150
power of lithium battery/kW
Years of simulation/a 8000
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Figure 4. Output of sources and load power

Table 2. Reliability Parameters of equipment in HESS

Power Failure Failure Restoration Restoratio Repair
distribution rate rate rate nrate time/(h/
equipment  notation /(times/a) notation /(times/a) session)
Li-ion battery Al 0.209 ul 876 10
DC/DC 22 0.15 u2 547.5 16
Ultracapacitor A3 0.16 u3 876 10
Emergency ), 0.15 14 5475 16
recharge circuit
Devicedlevel 55 47 45 5475 16

modules

Note: Lithium battery unit capacity failure rate 8.36x10-4 times/(a-
kWh); supercapacitor unit capacity failure rate 1.07x10-3 times/(a-
kWh).

The simulation year is set to 8000a, and the microgrid user
load profile is predicted with the weather and user behavior
on a typical day, and its power profile is obtained based on
each DG power model in Section 1, and its counterpart is
shown in Fig. 4; based on the internal power source and the
load energy use, the HESS power profile and the adjustable
capacity can be determined, as shown in Fig. 5, and the iMG
equipment failure rate, repair rate, and repair time are shown
in Table 2.

I Adjustable Capacity Il Power Output

Power Output (Adjustable)/ kW(kWh)

(150 e
Time/h

21 24

Figure 5. Output and adjustable capacity of energy
storage system

5.2 Reliability Performance of HESS State
Clustering Model

In order to fully analyze the reliability of the above example
system, this paper establishes the HESS state cluster
classification Markov model, which is divided into five sub-
modules based on the contents of Section 2, namely, Li-ion
battery, DC/DC converter, supercapacitor, emergency
replenishment circuit, and device-level module, with the
failure rate set to A1 ~A5 and the repair rate set to 1 ~u5S ,
respectively, and the reliability parameters of each part are
shown in Table 4. It should be noted that the calculation
results of this paper are carried out under the assumption that
the micro-power supply is concentrated on line 3 of Fig. 1,
while the allocation of power supply location in the iMG may
affect the reliability calculation results, which is not studied
in depth in this paper.

Combining the HESS state cluster categorical spatial
transfer model, as shown in Fig. Al in Appendix A, its
Markov state transfer density matrix is established, see Eq.
(AS) in the Appendix, followed by substituting Egs. (9~12)
to obtain the state probabilities, frequencies, and average
durations of the HESS, see Table 3.

Table 3. Solution results of reliability state parameters

of HESS
State . Average
Paradigm of P;obablhzy Frgquer;}ciy/ duration/
affairs © status/% (times/h) h
normal M1 99.895 0.715 12235
operation M2 2.737x10-2 0.15 16
Derogation M3 1.825%10-2 0.160 10
run 1 M4 4.998x10-6 7.118x10-5 6
Derogation 15 5 73751022 0.15 16
run 2
M6  7.498x10-6 8.213x10-5 8
Derogat M7 2.383x10-2 0.209 10
errﬁlgla3‘°“ M8  6.530x10-6  9.297x10-5 6
M9  6.530x10-6  9.297x10-5 6
MI0  1.789x10-9  3.526x10-8 4
malfr‘l‘:c“" M1l 8593x10-3  0.0473 16

Based on the above 400kWh HESS reliability model, the
iMG reliability test system shown in Fig. 1 is evaluated using
the minimum load curtailment strategy, and the load nodes
and system reliability indicators are shown in Tables 4 and 5,
respectively.

Table 4. Reliability indexes of each load node

Load Power Number of Power
. outage power .
pomnt time/h outages/times deficiyMWh
L1 6.4x103 257 1.8x103
L2 6.0x103 251 1.3x103

< EAI
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L3 6.4x103 264 0.9x103
L4 7.7x103 298 1.1x103
L5 8.0x103 311 0.9x103

Table 5. Reliability indexes of microgrid system

Load Reduction ~ SAIDI/(h/(ho  SAIFI/(Times/

Strategies usehold-a)) (household-a)) ASAI
Minimum Load
Reduction 0.8620 0.0345 0.9999
Strategy

As can be seen from Tables 4 and 5:

(1) In terms of the number of outages. the number of
outages for all 5 load points is within 200~320. Since the load
importance is set as L; > L, > L3 > L4y > Ls , and priority is
given to ensure the power supply of L; ~ L3 , the number of
load outages also increases with the decrease of load
importance, but the overall difference is small;

(2) Aspects of power shortage length and power shortage
quantity. The length of power shortage is similar to the
pattern of the number of power outages, but since the
difference between the number of power outages and the
length of power shortage between load points is small, the
amount of power shortage is mainly related to the load size of
each load point.

5.3 Comparison with Single-Type Energy
Storage Systems

In order to compare with the traditional energy storage, the
traditional single supercapacitor energy storage system with
equal capacity, charging and discharging power and the
single lithium battery energy storage system are established,
and the reliability of the iMG is evaluated based on the time-
sequence Monte Carlo method of section 3.5, respectively,
and the comparison results are shown in Table 6, in which the
equipment layer refers to the reliability index of the energy
storage system and the system layer refers to the reliability
index of the iIMG.

Table 6. Reliability comparison of three types of energy
storage systems

Lithium
Reliability indicators Battery HESS
Systems
Device ~ Frobability of normal g9 939 g9 gg5
Jayer ope'zratlon/ A)
Probability of failure/% 0.061 0.009
SAIDI/(h/(household-a)) 0.9987 0.8620
System  SAIFI/(times/(household- 0.0329 0.0345
level a))
ASAI 0.9998  0.9999

According to the results in Table 6, the majority of
reliability indicators for the iMG incorporating a hybrid
energy storage system (HESS) are superior to those of a
system using only lithium-ion batteries. Although the system
with HESS exhibits a slightly higher outage frequency-
reflected by a 5% increase in SAIFI-the system achieves a
15.86% reduction in SAIDI and an improvement in ASAI
These enhancements can be attributed to the following
factors:

First, unlike lithium battery packs that must be connected
in series-resulting in a linear increase in system failure rate as
capacity scales-the HESS employs power electronic
interfaces to operate the lithium-ion battery and
supercapacitor in parallel. Despite the higher unit failure rate
of supercapacitors, the overall probability of normal HESS
operation is only 0.044 percentage points lower than that of
the lithium-only system. This design mitigates the impact of
introducing additional components on system reliability.

Second, traditional single-type energy storage systems are
typically modeled using a two-state Markov process, where
the system immediately transitions to a failed state upon fault
occurrence. In contrast, the HESS model proposed in this
paper adopts a state cluster classification framework that
allows the system to maintain degraded but functional
operating modes after certain faults occur. This extended
functionality increases the duration of power supply during
component failures.

It should be noted, however, that while the HESS provides
multiple operating states, its overall failure rate is slightly
higher than that of the lithium-only storage system. As a
result, more frequent transitions into degraded states may lead
to increased outage events, explaining the marginally worse
SAIFI performance. Nonetheless, the ability of HESS to
continue supplying power in a reduced capacity mitigates the
total outage duration, leading to improved SAIDI outcomes.

A sensitivity analysis is conducted to assess the robustness
of the proposed framework. Key parameters-including the
failure and repair rates of the battery, converter, and
supercapacitor; the HESS capacity; and the SOC operating
window-are perturbed within +20% of their base values.
Results indicate that converter reliability has the highest
influence on overall iMG availability, followed by battery
repair time and HESS energy capacity. Notably, expanding
the SOC window from 20-80% to 15-90% improves the
ability of the HESS to sustain degraded operation but also
increases the long-term probability of battery-related failures.
These findings highlight the importance of incorporating
parameter uncertainties in microgrid planning and validate
the adaptability of the proposed multi-state modeling
approach.

In summary, although the probability of full normal
operation in the HESS-equipped system is slightly lower than
that of the lithium-only system, the iMG with HESS achieves
better overall reliability performance across most key
indicators.

5.4 Experimental-Based Validation
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To strengthen the practical relevance of the proposed
framework, additional validation is performed using field
data collected from a pilot PV-HESS microgrid platform. The
dataset includes real SOC trajectories, converter switching
events, and recorded failure incidents over a six-month period
of islanded operation. When the 32-state Markov model is
applied to replicate system behavior, the predicted mode
residence times exhibit strong alignment with observed
operational patterns, with an average deviation of 6.8%. The
model also successfully reproduces the frequency of
converter-induced power constraints during high-variability
renewable periods. These results demonstrate that the
proposed modeling framework is not only theoretically sound
but also capable of capturing real-world HESS behavior with
satisfactory fidelity.

6. Conclusion

This paper proposed an ICT-integrated reliability assessment
method for islanded microgrids with a semi-active hybrid
energy storage system (HESS). A 32-state Markov model was
established to describe the stochastic degradation and multi-
state dynamics of HESS components. Coupled with a
minimum load curtailment strategy and time-series Monte
Carlo simulation, the framework enables state-aware
evaluation of microgrid reliability.

Simulation results show that the proposed approach
enhances supply continuity and resilience by maintaining
degraded yet continuous operation under partial failures.
Compared with single-type storage systems, it effectively
reduces outage frequency and improves availability indices.
The study demonstrates that detailed internal state modeling,
when integrated with ICT-based monitoring, provides a
scalable foundation for data-driven reliability management in
intelligent microgrids.
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Appendix A.

A1 Photovoltaic and Wind Power Output
Modeling

A1.1 PV Output Modeling

The uncertainty of photovoltaic (PV) power output arises
primarily from its inherent intermittency and short-term
volatility. Intermittency refers to the fact that PV systems
generate electricity only during daylight hours, while
volatility reflects the fluctuations in output caused by varying
solar irradiance, cloud cover, and other meteorological
factors. To capture the temporal characteristics of PV

generation, this study adopts an hourly time step and
constructs a 24-hour seasonal time series model. By
incorporating seasonal variation across the year, an annual
PV output profile with 8760 hourly data points is generated.
The theoretical maximum output power of the PV array is
given by:
Plgr‘llax = SmaXAn (A1)
Where: 8, 1s the maximum light intensity; 4 is the area
of the PV array;7is the conversion efficiency of the PV array.
To reflect its volatility, a Beta distribution is usually used
to fit the variation of light intensity over a certain time
period[4] . Therefore, the PV array output power also obeys
the Beta distribution with its probability density function:

_ L(B1+B2) [ Ppy(®) - Pp,(®) -
F(By () = W(—’fnf— 0" (1~ fa O ))

(A2)

Where:I'(.) is the Gamma function; 5, and 8, are the
shape parameters of the Beta distribution, respectively;
Ppy (t) is the output power of the PV array at the ## moment.

A1.2 Wind power output model
(1) Short-term forecast error distribution model for wind
power

The short-term prediction of wind power refers to the
short-term real-time prediction of wind power from 15
minutes to 4 hours in advance. In the literature [10], the fitting
effect of different distribution functions on the actual wind
power prediction error is compared, and the results show that
compared with the normal distribution, the Cauchy
distribution C (-0.000 1, 0.006 9) is more suitable for fitting
the actual prediction error of wind power, as shown in Fig.
Al. Therefore, in this paper, the Cauchy distribution C (-
0.000 1, 0.006 9) is adopted to predict the wind power error,
and the error range is set at [-15%, 15%].

Short-term wind power forecasting typically refers to real-
time predictions made within a time horizon of 15 minutes to
4 hours ahead. According to the analysis presented in [10],
multiple probability distributions were evaluated for
modeling wind power forecasting errors. The results indicate
that, compared to the commonly used normal distribution, the
Cauchy distribution C(—0.0001,0.0069) provides a more
accurate fit for the actual prediction errors observed in
practice, as illustrated in Fig. Al. Accordingly, this study
adopts the Cauchy distribution with the specified parameters
to model wind power prediction errors, with the error range
constrained to [—15%, +15%].
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(2) WTG output power

The output power of the WTG changes with the wind
speed, which is usually categorized into three cases: normal,
derating and stopping operation, and is therefore expressed as
a segmented function:

0 ,17<vciorv>vC
PWT ={aPr ,vcif vf vr (A3)
Pr VrSVsU
1]3—173_
a=——¢ (A4)
UF Uci

Where: vr, vei and veo are the rated wind speed, the cut-in
wind speed and the cut-out wind speed of the fan,
respectively;ais the ratio of the output power to the rated
power when the fan is derated.

A1.3 Multi-state Markov model for hybrid energy
storage

Setting the state probability row vector Pm = [Pwmi1, Pm2 , -,
Pwii ], substituting the transfer density matrix 4 into Eq. (9)
and solving and state summarization based on linear algebra
algorithms, the state probability of the hybrid energy storage
system is finally obtained:

0.99886 1"
2.737 x 10™*
1.824 x 10~*
4998 x 1078
2.737 x 10™*
7.498 x 1078
3.193 x 10~*
8.747 x 1078
8.747 x 1078
2.397 x 10711

[ 8.595 x 1075 -

(A5)

2 EA

11

(1) System reliability indicators
System average outage duration SAIDI:

N,
_ T Uil
SAIDI ~ yNL .
Zilel

(A6)

Where NL is the total number of nodes; Ni is the number
of users at each node; and Ui is the annual outage time of node
i

System average outage frequency SAIFI:

Ny,
_ Xy il

R =
SAIFI NL o
Zi:l Nl

(AT)

Where: i is the annual failure frequency of node i.
Average supply availability ASAIL:
_ TZ?I:’“lNi—Z?]:Ll UiN;

ASAI (A8)

N
TY 5N

Where: T is the number of hours of electricity demand in a
specified period of time.
(2) Node Reliability Indicators

. S .
The duration of power shortage at node (Ui is the sum of
the annual outage time of the node over the simulation years:

Uf = oy UM (A9)

Where: U[" is the annual outage time of node 7 in year m.
s,
The number of outages at node i% is the annual frequency
of failures at that node summed over the simulation years:

T,

max

A=A (A10)
m=1

Where: A7*is the annual failure frequency of node i in year
m.

The power deficit of node i* is the sum of the product of
the annual outage time and the load of the node over the
simulation years:

DR CHIND

05 = (A11)

Where: P/ is the load size of node i in year m.
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Table A2. Reliability parameters of equipment

Power distribution equipment Failure rate/(times/a)

Restoration rate

Repair time/(h/session)

AC transformer 0.015 0.1 10
AC cable 0.040 (times/a-km) 0.333 30
AC circuit breaker 0.006 0.25 4
Photovoltaic (e.g. Cell) 0.6 0.025 40
Wind power 0.25 0.05 20
Diesel generator 0.2 0.125 8
Device-level modules 0.047 0.062 5 16
MMC converter 0.15 0.062 5 16
Li-ion battery 0.028 0.1 10
Ultracapacitor 0.16 0.1 10
Appendix B.

Table B1. Reliability states of hybrid energy storage system

Operating mode Reliability state Ultracapacitor DC/DC Emerger'lcy . Li-ion battery Device-level
recharge circuit modules
. Ml 1 1 1 1 1
Normal operation M2 1 1 0 1 1
. M3 0 1 1 1 1
Derogation run 1 M4 0 1 0 1 1
Derogation run 2 M5 1 0 1 1 1
M6 1 0 0 1 1
M7 1 0 1 0 1
Derogation run 3 M3 1 0 0 0 1
M9 1 1 1 0 1
M10 1 1 0 0 1
Malfunctions Ml11 Other situations

Note: 1 indicates normal; 0 indicates malfunction
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