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Abstract 
 
Accurate reliability assessment of islanded microgrids (iMGs) increasingly depends on intelligent system modeling and data-
driven integration between physical assets and digital control frameworks. To address the limited adaptability of conventional 
reliability models, this paper proposes an ICT-integrated framework for reliability evaluation of iMGs equipped with semi-
active lithium-ion battery-supercapacitor hybrid energy storage systems (HESS). The framework employs a 32-state Markov-
based model to represent component-level degradation and failure dynamics, enabling state-aware reliability analytics through 
automatic state aggregation and transition probability learning. These states are further abstracted into representative operating 
modes that can be seamlessly interfaced with energy management systems for online evaluation. A minimum load curtailment 
strategy is embedded within a time-series Monte Carlo simulation environment to quantify the interactive impact between multi-
state HESS behavior and overall system reliability. Standard indices-outage frequency, duration, and availability-are computed 
to characterize resilience under varying storage conditions. Comparative results verify that the proposed model substantially 
improves the reliability of iMGs by enabling degraded yet continuous operation during partial failures. The study provides a 
scalable and digitally implementable reliability framework for HESS-enabled microgrids, bridging the gap between detailed 
component modeling and real-time operational analytics. 
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1. Introduction 

The accelerating global energy transition and the rapid 
proliferation of wind and photovoltaic (PV) installations have 
driven the extensive deployment of microgrids. Depending 
on their operational modes, microgrids can operate either 
grid-connected or islanded. Among them, islanded 
microgrids (iMGs) operate autonomously from the main grid, 
relying heavily on distributed renewable resources to balance 
local generation and consumption. However, the intermittent  
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and uncertain nature of renewables introduces complex 
dynamics that challenge the stability, reliability, and 
controllability of islanded operation. During surplus 
conditions, renewable output is often curtailed, while during 
resource scarcity, load shedding and service interruptions 
may occur [1][2]. These fluctuations highlight the urgent 
need for intelligent, system-level reliability management 
within the iMG environment. 
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Energy storage systems (ESS) play a pivotal role in 
stabilizing iMGs by buffering renewable intermittency and 
supporting frequency and voltage regulation. Yet, the internal 
reliability of ESS themselves-governed by component 
degradation, converter malfunctions, and control switching 
faults-often becomes a hidden bottleneck that compromises 
overall microgrid availability. Hence, accurate and adaptive 
reliability modeling that reflects diverse operating modes and 
internal degradation pathways is crucial for developing 
resilient microgrid architectures. 

Hybrid energy storage systems (HESS), which integrate 
lithium-ion batteries and supercapacitors, have emerged as a 
digitally manageable and performance-optimized 
configuration capable of addressing the shortcomings of 
single-type storage technologies. Batteries provide high 
energy density for sustained supply, while supercapacitors 
deliver fast dynamic response and high power density for 
transient load regulation [3][4]. Through coordinated control, 
HESS can dynamically allocate power and energy resources, 
alleviating stress on battery units and improving operational 
flexibility. These advantages make HESS particularly 
suitable for ICT-integrated energy management systems, 
such as EV charging infrastructures and distributed microgrid 
controllers, where real-time reliability awareness and fast 
control response are required. 

Previous reliability studies on iMGs have mainly 
concentrated on uncertainties in renewable output [5], load 
variation [6], or distributed generation behavior [7]. 
However, the internal structural dependencies and 
operational states of HESS have received limited attention. 
Many studies oversimplify storage into binary functional 
models [8][9], while others evaluate generation and network 
contingencies without representing the multi-state coupling 
within hybrid storage subsystems [10][11]. Even works 
addressing vehicle-to-grid (V2G) or demand response often 
neglect internal failure dynamics, overlooking the interaction 
between component degradation and system-level reliability 
[12][13]. This gap limits the applicability of traditional 
reliability frameworks in digitalized, multi-energy storage 
environments. 

To overcome these limitations, this paper develops an ICT-
integrated reliability assessment framework for islanded 
microgrids incorporating a semi-active hybrid energy storage 
system. The proposed approach establishes a Markov-based 
multi-state model that captures the stochastic transitions 
among component degradation, partial failures, and recovery 
events. A total of 32 internal states are defined and clustered 
into four representative operational modes using state 
aggregation principles, forming a state-aware reliability 
model compatible with digital energy management systems. 
Furthermore, a minimum load curtailment strategy is 
embedded within a time-series Monte Carlo simulation 
environment to quantify the operational resilience of iMGs 
under diverse fault scenarios. Simulation results demonstrate 
that the proposed multi-state HESS model significantly 
enhances system reliability by maintaining degraded yet 
continuous operation under partial failures. These findings 
emphasize the necessity of fine-grained, data-integrated 

reliability modeling as a cornerstone for next-generation 
intelligent microgrid management. 

2. System Configuration and Modeling of
Islanded Microgrid

The architecture of microgrid power supply systems can 
generally be categorized into four major configurations: (i) 
wind-storage hybrid systems, (ii) small hydropower-based 
microgrids, (iii) combined cooling, heating, and power 
(CCHP) systems utilizing micro gas turbines or other 
distributed generation (DG) units, and (iv) multi-source 
networks composed of diverse distributed energy resources. 
Each architecture is characterized by distinct power-
electronic interfaces and control layers, which determine its 
adaptability and resilience under varying operating 
conditions. 

Building upon these conventional categories, this study 
investigates a representative photovoltaic (PV)-dominated 
islanded microgrid equipped with an ICT-integrated hybrid 
energy storage system (HESS). The reference configuration-
shown schematically in Fig. 1-comprises PV arrays, wind 
turbines, a semi-active lithium-ion battery-supercapacitor 
HESS, multiple load nodes, and the corresponding 
monitoring and control infrastructure. The digital energy 
management system (EMS) functions as the coordination 
layer, linking renewable generators, storage converters, and 
local controllers through a unified communication bus to 
enable state-aware and data-driven operational management. 

All distributed generation units are connected to a central 
AC bus via bidirectional inverters, allowing flexible power 
conversion and coordinated regulation. To reflect realistic 
geographical dispersion across feeders in low-voltage 
distribution networks, the model employs segmented sub-
buses that represent regional clusters of DERs and loads. 
These sub-buses are aggregated through the supervisory 
control layer and can exchange data with the EMS in real time 
for voltage, frequency, and power flow supervision. 

Under normal conditions, when switch S1 is closed, the 
system operates in grid-connected mode, supporting 
interactive charging and discharging of the HESS according 
to predefined control and scheduling strategies. In this mode, 
the EMS communicates with local converters to optimize 
power allocation based on grid price signals or renewable 
forecasts. When switch S1 is opened, the system transitions 
into islanded operation, where autonomous decision-making 
becomes essential. In this state, the EMS relies solely on local 
sensing data-including generation output, 
battery/supercapacitor state of charge, and real-time load 
profiles-to maintain voltage-frequency stability through a 
hierarchical control structure that coordinates distributed 
resources and executes a load curtailment strategy when 
necessary. 

This paper focuses exclusively on reliability assessment 
under the islanded mode, i.e., with switch S1 disconnected, 
representing the autonomous operational state of the PV-
dominated microgrid. By integrating cyber-physical system 
modeling and multi-state HESS reliability analytics, the 
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proposed configuration captures both the physical 
interconnection and the information-layer interaction 
essential for high-fidelity evaluation of microgrid resilience.. 
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Figure 1. Islanded microgrid reliability test system 

2.1. Load Demand Modeling 

The uncertainty in load output is reflected in its time-series 
modeling of seasonal output on long time scales and in the 
volatility modeling of output on short time scales, 
respectively, and the output calculation formulae that take 
into account the load uncertainty are as follows: 

𝑃𝑃𝐿𝐿(𝑡𝑡) = 𝑃𝑃𝐿𝐿𝑇𝑇(𝑡𝑡) + 𝑃𝑃𝐿𝐿𝑊𝑊(𝑡𝑡) (1) 

Where: 𝑃𝑃𝐿𝐿𝑇𝑇(𝑡𝑡) and 𝑃𝑃𝐿𝐿𝑊𝑊(𝑡𝑡) are the time-series model of load 
output and the volatility model of load output, respectively. 

The load timing model 𝑃𝑃𝐿𝐿𝑊𝑊(𝑡𝑡) can be expressed as: 

𝑃𝑃𝐿𝐿𝑇𝑇(𝑡𝑡) = 𝜎𝜎𝐷𝐷𝜎𝜎𝑀𝑀𝑃𝑃𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  (2) 

Where: 𝑃𝑃𝐿𝐿
𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) is the peak load of the year;σD is the ratio 

of the peak load of the day to the peak load of the month; 𝜎𝜎𝑀𝑀 
is the ratio of the peak load of the month to the peak load of 
the year. 

The volatility model of load output 𝑃𝑃𝐿𝐿𝑊𝑊(𝑡𝑡)  can be 
expressed as a normal distribution with the formula: 

𝑓𝑓(𝑃𝑃𝐿𝐿𝑊𝑊(𝑡𝑡)) = 1
√2𝜋𝜋𝜎𝜎𝐿𝐿

𝑒𝑒𝑒𝑒𝑒𝑒 �− �𝑃𝑃𝐿𝐿
𝑊𝑊(𝑡𝑡)−𝜇𝜇𝐿𝐿�

2

2𝜎𝜎𝐿𝐿
2 � (3) 

Where: 𝜎𝜎𝐿𝐿 is the standard deviation of load fluctuation; 𝜇𝜇𝐿𝐿 
is the expected value of load fluctuation. 

2.2 Energy Storage Charging and 
Discharging Model 

The charging and discharging of the energy storage system 
and its capacity constraints are considered to model its 
charging and discharging. 

The charging model is calculated as: 

�
𝑃𝑃ch

(𝑡𝑡) ≤ 𝑃𝑃
ch
𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸ESS
(𝑡𝑡) + 𝑃𝑃ch

(𝑡𝑡)𝛥𝛥𝛥𝛥 ≤ 𝐸𝐸
ESS
𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸ESS
(𝑡𝑡 + 𝛥𝛥𝛥𝛥) = 𝐸𝐸ESS

(𝑡𝑡) + 𝑃𝑃ch
(𝑡𝑡)𝛥𝛥𝛥𝛥

(4) 

Where: 𝑃𝑃ch(𝑡𝑡)is the charging power of the energy storage 
at the moment t; 𝑃𝑃ch

𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum charging power of the 
energy storage; 𝐸𝐸ESS(𝑡𝑡)  is the energy stored in the energy 
storage at the moment t; 𝐸𝐸ESS

𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum capacity of 
the energy storage; and 𝛥𝛥𝛥𝛥 is the time scale, which is set to 1h 
in this paper. 

The discharge mode is calculated as: 

�

𝑃𝑃disch
(𝑡𝑡) ≤ 𝑃𝑃

disch
𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸ESS
(𝑡𝑡) − 𝑃𝑃disch

(𝑡𝑡)𝛥𝛥𝛥𝛥 ≥ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸ESS(𝑡𝑡 + 𝛥𝛥𝛥𝛥) = 𝐸𝐸ESS
(𝑡𝑡) − 𝑃𝑃disch

(𝑡𝑡)𝛥𝛥𝛥𝛥
(5) 

Where: 𝑃𝑃disch(𝑡𝑡)  is the discharge power of the energy 
storage at time t; 𝑃𝑃disch

𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum discharge power of 
the energy storage; 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  is the minimum capacity limit of the 
energy storage. 

In addition, the modeling of PV and wind turbine output 
models are shown in Appendix A, equations (A1 to A4). 

3. Reliability Modeling of Hybrid Energy
Storage Systems

Hybrid energy storage systems (HESS) integrate batteries and 
supercapacitors to leverage their complementary electrical 
and dynamic characteristics [14]. Lithium-ion batteries offer 
high energy density and are suited for sustained energy 
support; nevertheless, their limited power density, nonlinear 
efficiency, and degraded cycle life under high-frequency 
operation constrain their performance in fast-response 
scenarios. In contrast, supercapacitors possess superior power 
density, millisecond-level response, and exceptional charge-
discharge efficiency, making them ideal for managing short-
term power fluctuations and transient disturbances. However, 
their restricted energy capacity limits their ability to provide 
long-duration backup. 

By combining these two technologies, HESS achieve 
multi-timescale energy-power coordination, enabling 
improved transient performance, reduced converter stress, 
and enhanced overall system efficiency. The synergy 
between batteries and supercapacitors allows dynamic energy 
allocation-high-frequency components handled by the 
supercapacitor, and low-frequency energy compensated by 
the battery-thereby maintaining optimal operating conditions 
for both devices. This complementary behavior not only 
extends component lifespan but also strengthens the 
resilience and service continuity of islanded microgrids under 
stochastic renewable generation and load variations. 
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Beyond their physical and electrochemical advantages, 
modern HESS architectures increasingly incorporate ICT-
enabled monitoring and reliability analytics to support 
intelligent operation. Embedded sensors and communication 
interfaces provide real-time data on voltage, current, 
temperature, and state-of-charge, which can be processed 
through digital energy management systems (EMS) for state-
aware decision-making. These digital diagnostics enhance 
situational awareness and enable predictive maintenance, 
forming a cyber-physical layer that directly links component 
health conditions with reliability evaluation at the system 
level. 

However, despite these advances, the quantitative 
reliability contribution of HESS within islanded microgrids 
remains underexplored. Conventional reliability models 
typically treat energy storage as a binary functional element, 
failing to reflect the internal degradation, mode transitions, 
and partial failure states of hybrid configurations. To 
overcome these limitations, fine-grained reliability modeling 
that captures the multi-state behavior and interdependence of 
HESS components is essential. Such models provide the 
analytical foundation for integrating probabilistic failure 
dynamics with real-time control and for developing ICT-
integrated reliability assessment frameworks, as presented in 
the following sections.. 

3.1 Topology of HESS 

The topologies of HESS are divided into three main 
categories: passive, semi-active, and active, as shown in 
Figure 2. 
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Figure 2. Topology classification of HESS 

Among the widely adopted HESS configurations, three 
fundamental topologies are commonly analyzed: passive, 
active, and semi-active. 

The passive topology offers a simple and low-cost design, 
in which the lithium-ion battery and supercapacitor are 
directly connected to a common DC bus. Although this 
configuration facilitates straightforward integration, its lack 
of independent power regulation restricts the supercapacitor’
s participation in high-frequency energy exchange, thereby 
limiting system efficiency and dynamic performance. 

The active topology employs two bidirectional DC/DC 
converters-one dedicated to each storage unit-allowing 
precise and flexible control of charge and discharge 
processes. This architecture achieves full utilization of both 
energy devices and supports intelligent coordination through 
digital controllers; however, it entails higher circuit 
complexity, increased converter losses, and greater 
implementation cost. 

The semi-active topology provides a balanced compromise 
by using a single bidirectional DC/DC converter-typically 
interfacing the supercapacitor-while coupling the battery 
directly to the DC bus. This arrangement enables coordinated 
energy management and state-aware control with reduced 
hardware requirements, making it a practical and scalable 
choice for many ICT-integrated microgrid applications. 

In this study, a semi-active HESS composed of a lithium-
ion battery and a supercapacitor is selected as the target 
system. To characterize its operational transitions and 
degradation-related failures, a multi-state reliability model is 
established based on a Markov-driven state clustering 
approach. The proposed model quantitatively represents 
component-level dynamics within the cyber-physical 
environment of the islanded microgrid, forming the analytical 
foundation for subsequent reliability assessment. 

The choice of a semi-active HESS topology is motivated 
by both technical and operational considerations. Compared 
with passive architectures, semi-active systems provide 
superior dynamic response by enabling independent 
regulation of supercapacitor power flow through a 
bidirectional DC/DC converter. At the same time, semi-active 
configurations achieve higher efficiency and lower 
implementation cost than fully active architectures, which 
require dual converters and introduce greater switching 
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losses. In islanded microgrid environments where reliability, 
cost-effectiveness, and controllability must be balanced, the 
semi-active design offers an optimal compromise. 
Furthermore, its hierarchical mode structure lends itself 
naturally to multi-state reliability modeling, as reduced 
functionality under converter failure can still be represented 
as degraded operational modes rather than total system 
collapse. 

3.2 State Cluster Definition and Classification 

The internal configuration of the semi-active HESS-
comprising a lithium-ion battery and a bidirectional DC/DC 
converter-is shown in Fig. 3. The system is organized into 
five core functional submodules: the lithium-ion battery unit, 
the bidirectional DC/DC converter, the supercapacitor bank, 
the emergency charging circuit, and a device-level 
supervisory module that integrates the main control unit, 
auxiliary power supply, and thermal management elements 
such as valve-regulated cooling systems [14]. To ensure 
stable system initialization, a pre-charge circuit is 
implemented to avoid direct energization of the converter 
when the battery terminal voltage falls below its controllable 
threshold. In this work, a closed-loop charge/discharge 
controller is assumed to maintain the battery voltage within 
its permissible range; therefore, failures in the pre-charge 
circuit are excluded from the reliability evaluation. 

Each submodule is individually parameterized to build a 
comprehensive multi-state reliability representation. Based 
on the combinational operational conditions of these 
components, the HESS exhibits five representative 
operational modes reflecting its hierarchical degradation 
behavior. 

In the normal mode, all components operate properly or 
only the emergency circuit fails, allowing full rated power 
and energy capacity. 

A supercapacitor fault triggers the battery-only mode, 
resulting in reduced power responsiveness. 

When the DC/DC converter fails, power transfer remains 
possible through the emergency circuit, but the overall output 
is constrained by the supercapacitor’s limited rating. 

If the battery, converter, and emergency path are 
simultaneously unavailable, the supercapacitor-only mode 
sustains minimal operation. 

Finally, concurrent failure of both the battery and 
supercapacitor renders the entire HESS non-operational. 

These five submodules are modeled through binary state 
enumeration, producing 25=32 discrete operational states that 
collectively constitute the HESS-32 multi-state reliability 
model. To maintain computational tractability and improve 
interpretability, states exhibiting functionally equivalent 
behavior are clustered into 11 representative categories, as 
summarized in Table B1. In the reliability representation of 
the DC/DC converter, both its internal submodule topology 
and potential redundancy schemes (e.g., k/n(G) 
configurations) are incorporated. By integrating these 
component models with the overall system architecture and 
operational logic, the corresponding state probabilities, 

transition frequencies, and mean residence durations are 
derived using a state-space analytical approach. This 
modeling process enables high-fidelity quantification of the 
multi-state reliability characteristics of the HESS under 
diverse component-level failure scenarios, while ensuring 
compatibility with ICT-based monitoring and data-driven 
reliability analytics. 

3.3 State Probability Analysis Using Markov 
Chains 

The basic idea of Markov chain is to divide the time-
continuous stochastic process into a finite number of discrete 
states Xi (i=0, 1, 2, ...), and the set of all discrete states as well 
as the transfer relationship between the states constitutes a 
Markov chain. According to the analysis in Section 2.2, the 
HESS discrete state space S = {S1 , S2 , S3 , ..., S32 }, defines 
the transfer probability matrix: 

𝑃𝑃(𝛥𝛥𝛥𝛥) =

⎣
⎢
⎢
⎡ 𝑝𝑝11

(𝛥𝛥𝛥𝛥) 𝑝𝑝12(𝛥𝛥𝛥𝛥) ⋯ 𝑝𝑝1,32(𝛥𝛥𝛥𝛥)
𝑝𝑝21(𝛥𝛥𝛥𝛥) 𝑝𝑝22(𝛥𝛥𝛥𝛥) ⋯ 𝑝𝑝2,32(𝛥𝛥𝛥𝛥)

⋮ ⋮ ⋮
𝑝𝑝32,1(𝛥𝛥𝛥𝛥) 𝑝𝑝32,2(𝛥𝛥𝛥𝛥) ⋯ 𝑝𝑝32,32(𝛥𝛥𝛥𝛥)⎦

⎥
⎥
⎤
  (6) 

Where: 𝑝𝑝𝑖𝑖𝑖𝑖  is the one-step transfer probability, denoting 
the transfer probability from state Si to Sj (i,j=1,2,3,...,32). 

According to the principle of Markov process 
approximation and the full probability condition, the 
probability of each state Pi (i=1, 2, ..., 32) can be solved 
according to equation (9). 

� 𝑷𝑷𝑷𝑷 = 0
∑ 𝑃𝑃𝑖𝑖9
𝑖𝑖=1 = 1 (7) 

Where: P is the row vector consisting of the probabilities 
of each state, i.e., P = [P1 , P2 , ..., P32 ]; A is the transfer 
density matrix of the Markov model, which is calculated as: 

𝑨𝑨 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝛥𝛥𝛥𝛥→0

𝑃𝑃(𝛥𝛥𝛥𝛥)−𝑰𝑰
𝛥𝛥𝛥𝛥

(8) 

Where: I is the unit matrix. The formula for the transfer 
density matrix A is given in Appendix equation (A5). 

To enhance model transparency and reproducibility, the 
derivation of the 32-state HESS model is further clarified. 
Each of the five critical submodules-the lithium-ion battery 
unit, DC/DC converter, supercapacitor bank, emergency 
charging circuit, and device-level supervisory module-is 
represented by a binary operational variable that indicates 
functional or failed conditions. The Cartesian combination of 
these binary states forms a comprehensive 2⁵ space consisting 
of 32 distinct operational conditions. Transition probabilities 
between states are computed based on the failure and repair 
rates (λ, μ) of each submodule. Specifically, transitions from 
an operational to a failed condition are governed by 
exponential failure distributions, while transitions from failed 
to restored states follow exponential repair distributions. The 
full transition density matrix A is assembled by aggregating 
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submodule-level transitions and normalizing row 
probabilities to satisfy Markov chain consistency rules. 
Representative examples and the explicit computation of 
selected transitions (e.g., S7 to S10) are provided in Appendix 
B to facilitate reproducibility. 

3.4 Reliability Metrics of HESS and 
Computational  

Based on the probability of each state in the smooth state Ai 
and the transfer probability matrix P(Δt) , which were found 
in Section 2.3, the frequency and the average duration of the 
state can be solved for, respectively: 

� 𝑓𝑓𝑆𝑆𝑆𝑆 = ∑ 𝑃𝑃𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝐷𝐷𝑆𝑆𝑆𝑆 = 1/∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑀𝑀
𝑚𝑚=1

(9) 

Where: 𝑓𝑓𝑆𝑆𝑆𝑆 is the steady state frequency of state i; 𝐷𝐷𝑆𝑆𝑆𝑆  is the 
average duration of state i; 𝑝𝑝𝑘𝑘𝑘𝑘  denotes the transfer 
probability from state k to this state i; K is the number of 
transfer programs; 𝑝𝑝𝑖𝑖𝑖𝑖 denotes the transfer probability from 
state i to other state m; M is the number of transfer programs. 

Finally, the state summarization is carried out by targeting 
the four operation modes in Table B1 to obtain the state 
probabilities, frequencies and average durations of the new 
states, i.e., the reliability indexes of the four maximum output 
powers of the Li-ion battery-supercapacitor HESS: 

�
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 = ∑ 𝑝𝑝𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆∈𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 = ∑ 𝑓𝑓𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆∈𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘/𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘

 (10) 

Where: 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 is the state probability of the kth operating 
mode; sd is an operating state belonging to the kth operating 
mode; 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘  is the frequency of the kth operating mode; 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 is the average duration of the kth operating mode. 

3.5 Coupling Between HESS Degradation 
States and Renewable Variability 

To reflect cyber-physical interdependencies more accurately, 
additional analysis is conducted on the coupling between 
HESS degradation states and renewable generation 
variability. The charge-discharge cycles induced by high-
frequency PV and wind fluctuations accelerate lithium-ion 
battery degradation and increase the probability of transitions 
into partial failure states. Conversely, operation under 
smoother renewable profiles reduces the residence time of 
degraded modes. By incorporating renewable volatility as an 
influencing factor on the HESS transition matrix, the 
reliability model captures these dependencies more faithfully. 
Sensitivity tests performed on varying renewable fluctuation 
intensities confirm that increased volatility results in higher 
frequencies of converter and battery-related degraded modes, 
leading to measurable impacts on system-level SAIDI and 
ASAI metrics. 

4. Reliability Assessment Framework for
Islanded Microgrid

To clarify the overall structure of the proposed methodology, 
Fig. 3 presents a technical flowchart outlining the step-by-
step process for reliability modeling and evaluation of an 
islanded microgrid with a semi-active hybrid energy storage 
system (HESS). The workflow begins with system modeling 
and initialization, including configuration of microgrid 
components and load priorities. The semi-active HESS is 
modeled using a multi-state Markov approach that captures 
internal component failures across 32 possible states, which 
are then aggregated into representative operational modes. 
These modes are used to compute steady-state probabilities 
and reliability indices. Subsequently, a time-sequential 
Monte Carlo simulation is conducted, where device failures 
and repairs are randomly generated, and system responses are 
evaluated under a minimum load curtailment strategy. The 
resulting outage data are used to derive both node-level and 
system-level reliability indicators such as SAIFI, SAIDI, and 
ASAI. Finally, the proposed HESS model is benchmarked 
against single-type storage systems to validate its 
performance advantages in maintaining degraded operational 
states and enhancing overall microgrid resilience. 

Figure 3. Technical flowchart of the proposed 
reliability modeling and evaluation framework for iMGs 

with semi-active HESS. 

4.1 System-Level and Node-Level Reliability 
Indicators 

In order to reasonably assess the reliability of iMG with 
HESS, this paper uses two types of indicators, system and 
user, for reliability assessment: 

(1) The system average interruption duration index
(SAIDI), system average interruption frequency index 
(SAIFI) and average service availability index (ASAI) are 
used as system reliability assessment indexes. average service 
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availability index, ASAI) as the system reliability assessment 
index, and its calculation formula is shown in Appendix A, 
Equation (A7~A9). 

(2) The reliability assessment indicators for each node
within the microgrid are the duration of power shortage, the 
number of outages, and the amount of power shortage, whose 
formulas are detailed in Equation (A10~A12). 

4.2 Device Failure Modeling and Lifetime 
Simulation 

In order to calculate the lifetime of devices or loads inside the 
iMG, this paper adopts a time-series probabilistic simulation 
model for simulation, assuming that the failure rate and the 
repair rate of device ii are 𝜆𝜆𝑖𝑖𝑖𝑖  and 𝜇𝜇𝑖𝑖𝑖𝑖  , and that its uptime 
𝑇𝑇TTF,𝑖𝑖𝑖𝑖  and its repair time 𝑇𝑇TTR,𝑖𝑖𝑖𝑖  are respectively: 

𝑇𝑇TTF,𝑖𝑖𝑖𝑖 = − 1
𝜆𝜆𝑖𝑖𝑖𝑖
𝑙𝑙𝑙𝑙 𝑥𝑥 ; �𝑇𝑇TTR,𝑖𝑖𝑖𝑖 = − 1

𝜇𝜇𝑖𝑖𝑖𝑖
𝑙𝑙𝑙𝑙 𝑦𝑦� (11) 

Where: x, y are random numbers that obey a uniform 
distribution between (0, 1), respectively. 

4.3 Monte Carlo-Based Reliability Evaluation 
Process 

Load curtailment strategy has a significant impact on the 
reliability of iMG. In this paper, in order to balance the output 
of HESS, the minimum load curtailment strategy is modeled 
by considering the load importance. 

Minimum load curtailment strategy: the goal is to 
minimize the load curtailment of the whole iMG, i.e., to 
ensure that as many loads as possible are supplied for a long 
time. Assuming the load importance level: L1 > L2 > L3 >...> 
Ln. 

In this paper, based on the time series Monte Carlo method 
[15][16], the iMG reliability assessment program containing 
HESS is constructed by using the MATLAB platform, taking 
into account the HESS state cluster classification model, the 
uncertainty of scenery output, the volatility of load output, 
and the corresponding load curtailment strategy. The process 
is as follows: 

(1) Data initialization. Set the system simulation time TMC
= 0, simulation year as Tmax , cut load as empty Lcut = ɸ, iMG 
remaining load as all loads. Determine the ordering of the 
load importance of each node and record the sorted node as 
𝐿𝐿1∗ > 𝐿𝐿2∗ > 𝐿𝐿3∗ > ⋯ > 𝐿𝐿𝑛𝑛∗  , record the operating state of all N 
devices as normal operating state, i.e., ST = [1, 1, 1, ..., 1]. 

(2) Extract the faulty devices within iMG and their repair
time. According to Eq. (11) the normal operating time 𝑇𝑇TTF,𝑖𝑖𝑖𝑖  
of device ii can be determined and recorded as TTTF = [TTTF,1 
, TTTF,2 , ..., TTTF,N ]. The device with the minimum value TTTF,jj 
=min(TTTF,ii) is selected as the faulty device. The formula for 
its repair time TTTR is given in equation (12). 

(3) Calculate the DG output PDG and load demand PL for
the time period [TMC , TTTF,jj ]. Based on the minimum load 
curtailment strategy, solve for the HESS output PESS and 
load curtailment. 

(4) Update the load curtailment Lcut , the cumulative
number of load curtailment outages and the duration of 
outages. 

(5) Update the normal operating time matrix of each load
node 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇∗ = �𝑇𝑇

TTF,1
∗ ,𝑇𝑇

TTF,2
∗ , … ,𝑇𝑇

TTF,N
∗ �  , where 𝑇𝑇

TTF,𝑖𝑖
∗ =

𝑇𝑇TTF,𝑖𝑖 − 𝑇𝑇TTF,𝑗𝑗𝑗𝑗  , updates the state of the faulty device jj in the 
ST matrix to state 0. Also, let TMC = TMC + TTTF,jj . 

(6) Select the minimum time from the updated Uptime
Matrix, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇∗  ,𝑇𝑇

TTF,𝑗𝑗𝑗𝑗
∗ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇

TTF,𝑖𝑖
∗ � , noting that the device

may be the first to fail or the device may be the first to be 
repaired. At the same time, update the state of the state change 
device jj* in the ST matrix with the uptime matrix 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇∗  . 
Make 𝑇𝑇MC = 𝑇𝑇MC + 𝑇𝑇

TTF,𝑗𝑗𝑗𝑗
∗  . 

(7) If TMC < Tmax , return to step (2), otherwise proceed to
the next step. 

(8) Count the total number of outages and total outage time 
at each load point to calculate the reliability assessment 
metrics for iMG. 

5. Case Study and Result Analysis

5.1 Microgrid Test System Configuration 

The reliability test system of iMG shown in Fig. 1 is used to 
start the analysis, and S1 is disconnected to form an islanded 
microgrid containing four kinds of internal power sources, 
including wind power, storage and diesel fuel. iMG contains 
five loads (L1~L5), and their importance is ranked in the 
following order: L1 > L2 > L3 > L4 > L5 , the capacity of PV 
and wind power is 1000kW, the capacity of diesel generator 
is 350kW, the capacity of HESS is 400kWh, and the 
maximum output power is 300kW, in order to delay the 
battery life loss, the power capacity is 400kWh, and the 
maximum output power is 300kW, in order to delay the 
battery life loss, its power is based on [11]. The power is 
allocated to delay the battery life loss, and the charging and 
discharging periods and times of energy storage in the 
microgrid are idealized, and each parameter is shown in Table 
1. 

Table 1. Reliability Parameters of equipment in hybrid 
energy storage system 

parameters numerical value 
Photovoltaic capacity/kW 1000 
Wind power capacity/kW 1000 

Diesel generator capacity/kW 350 
Load L1\L2\L3\L4\L5/kW 320\240\160\160\120 

Rated capacity of 
ultracapacitor/(kWh) 150 

Rated capacity of lithium 
battery/(kWh) 250 

Rated charging/discharging 
power of lithium battery/kW 150 

Years of simulation/a 8000 
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Figure 4. Output of sources and load power 

Table 2. Reliability Parameters of equipment in HESS 

Power 
distribution 
equipment 

Failure 
rate 

notation 

Failure 
rate 

/(times/a) 

Restoration 
rate 

notation 

Restoratio
n rate 

/(times/a) 

Repair 
time/(h/
session) 

Li-ion battery λ1 0.209 μ1 876 10 
DC/DC λ2 0.15 μ2 547.5 16 

Ultracapacitor λ3 0.16 μ3 876 10 
Emergency 

recharge circuit λ4 0.15 μ4 547.5 16 

Device-level 
modules λ5 0.047 μ5 547.5 16 

Note: Lithium battery unit capacity failure rate 8.36×10-4 times/(a-
kWh); supercapacitor unit capacity failure rate 1.07×10-3 times/(a-
kWh). 

The simulation year is set to 8000a, and the microgrid user 
load profile is predicted with the weather and user behavior 
on a typical day, and its power profile is obtained based on 
each DG power model in Section 1, and its counterpart is 
shown in Fig. 4; based on the internal power source and the 
load energy use, the HESS power profile and the adjustable 
capacity can be determined, as shown in Fig. 5, and the iMG 
equipment failure rate, repair rate, and repair time are shown 
in Table 2. 
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Figure 5. Output and adjustable capacity of energy 
storage system 

5.2 Reliability Performance of HESS State 
Clustering Model 

In order to fully analyze the reliability of the above example 
system, this paper establishes the HESS state cluster 
classification Markov model, which is divided into five sub-
modules based on the contents of Section 2, namely, Li-ion 
battery, DC/DC converter, supercapacitor, emergency 
replenishment circuit, and device-level module, with the 
failure rate set to λ1 ~λ5 and the repair rate set to µ1 ~µ5 , 
respectively, and the reliability parameters of each part are 
shown in Table 4. It should be noted that the calculation 
results of this paper are carried out under the assumption that 
the micro-power supply is concentrated on line 3 of Fig. 1, 
while the allocation of power supply location in the iMG may 
affect the reliability calculation results, which is not studied 
in depth in this paper. 

Combining the HESS state cluster categorical spatial 
transfer model, as shown in Fig. A1 in Appendix A, its 
Markov state transfer density matrix is established, see Eq. 
(A5) in the Appendix, followed by substituting Eqs. (9~12) 
to obtain the state probabilities, frequencies, and average 
durations of the HESS, see Table 3. 

Table 3. Solution results of reliability state parameters 
of HESS 

Paradigm 
State 

of 
affairs 

Probability 
of status/% 

Frequency/ 
(times/h) 

Average 
duration/

h 
normal 

operation 
M1 99.895 0.715 12235 
M2 2.737×10-2 0.15 16 

Derogation 
run 1 

M3 1.825×10-2 0.160 10 
M4 4.998×10-6 7.118×10-5 6 

Derogation 
run 2 M5 2.737×10-2 0.15 16 

Derogation 
run 3 

M6 7.498×10-6 8.213×10-5 8 
M7 2.383×10-2 0.209 10 
M8 6.530×10-6 9.297×10-5 6 
M9 6.530×10-6 9.297×10-5 6 

M10 1.789×10-9 3.526×10-8 4 
malfunctio

ns M11 8.593×10-3 0.047 3 16 

Based on the above 400kWh HESS reliability model, the 
iMG reliability test system shown in Fig. 1 is evaluated using 
the minimum load curtailment strategy, and the load nodes 
and system reliability indicators are shown in Tables 4 and 5, 
respectively. 

Table 4. Reliability indexes of each load node 

Load 
point 

Power 
outage 
time/h 

Number of 
power 

outages/times 

Power 
deficit/MWh 

L1 6.4×103 257 1.8×103 
L2 6.0×103 251 1.3×103 
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L3 6.4×103 264 0.9×103 
L4 7.7×103 298 1.1×103 
L5 8.0×103 311 0.9×103 

Table 5. Reliability indexes of microgrid system 

Load Reduction 
Strategies 

SAIDI/(h/(ho
usehold-a)) 

SAIFI/(Times/
(household-a)) ASAI

Minimum Load 
Reduction 
Strategy 

0.8620 0.0345 0.9999 

As can be seen from Tables 4 and 5: 
(1) In terms of the number of outages. the number of

outages for all 5 load points is within 200~320. Since the load 
importance is set as L1 > L2 > L3 > L4 > L5 , and priority is 
given to ensure the power supply of L1 ~ L3 , the number of 
load outages also increases with the decrease of load 
importance, but the overall difference is small; 

(2) Aspects of power shortage length and power shortage 
quantity. The length of power shortage is similar to the 
pattern of the number of power outages, but since the 
difference between the number of power outages and the 
length of power shortage between load points is small, the 
amount of power shortage is mainly related to the load size of 
each load point. 

5.3 Comparison with Single-Type Energy 
Storage Systems 

In order to compare with the traditional energy storage, the 
traditional single supercapacitor energy storage system with 
equal capacity, charging and discharging power and the 
single lithium battery energy storage system are established, 
and the reliability of the iMG is evaluated based on the time-
sequence Monte Carlo method of section 3.5, respectively, 
and the comparison results are shown in Table 6, in which the 
equipment layer refers to the reliability index of the energy 
storage system and the system layer refers to the reliability 
index of the iMG. 

Table 6. Reliability comparison of three types of energy 
storage systems 

Reliability indicators 
Lithium 
Battery 
Systems 

HESS 

Device 
layer 

Probability of normal 
operation/% 99.939 99.895 

Probability of failure/% 0.061 0.009 

System 
level 

SAIDI/(h/(household-a)) 0.9987 0.8620 
SAIFI/(times/(household-

a)) 0.0329 0.0345 

ASAI 0.9998 0.9999 

According to the results in Table 6, the majority of 
reliability indicators for the iMG incorporating a hybrid 
energy storage system (HESS) are superior to those of a 
system using only lithium-ion batteries. Although the system 
with HESS exhibits a slightly higher outage frequency-
reflected by a 5% increase in SAIFI-the system achieves a 
15.86% reduction in SAIDI and an improvement in ASAI. 
These enhancements can be attributed to the following 
factors: 

First, unlike lithium battery packs that must be connected 
in series-resulting in a linear increase in system failure rate as 
capacity scales-the HESS employs power electronic 
interfaces to operate the lithium-ion battery and 
supercapacitor in parallel. Despite the higher unit failure rate 
of supercapacitors, the overall probability of normal HESS 
operation is only 0.044 percentage points lower than that of 
the lithium-only system. This design mitigates the impact of 
introducing additional components on system reliability. 

Second, traditional single-type energy storage systems are 
typically modeled using a two-state Markov process, where 
the system immediately transitions to a failed state upon fault 
occurrence. In contrast, the HESS model proposed in this 
paper adopts a state cluster classification framework that 
allows the system to maintain degraded but functional 
operating modes after certain faults occur. This extended 
functionality increases the duration of power supply during 
component failures. 

It should be noted, however, that while the HESS provides 
multiple operating states, its overall failure rate is slightly 
higher than that of the lithium-only storage system. As a 
result, more frequent transitions into degraded states may lead 
to increased outage events, explaining the marginally worse 
SAIFI performance. Nonetheless, the ability of HESS to 
continue supplying power in a reduced capacity mitigates the 
total outage duration, leading to improved SAIDI outcomes. 

A sensitivity analysis is conducted to assess the robustness 
of the proposed framework. Key parameters-including the 
failure and repair rates of the battery, converter, and 
supercapacitor; the HESS capacity; and the SOC operating 
window-are perturbed within ±20% of their base values. 
Results indicate that converter reliability has the highest 
influence on overall iMG availability, followed by battery 
repair time and HESS energy capacity. Notably, expanding 
the SOC window from 20-80% to 15-90% improves the 
ability of the HESS to sustain degraded operation but also 
increases the long-term probability of battery-related failures. 
These findings highlight the importance of incorporating 
parameter uncertainties in microgrid planning and validate 
the adaptability of the proposed multi-state modeling 
approach. 

In summary, although the probability of full normal 
operation in the HESS-equipped system is slightly lower than 
that of the lithium-only system, the iMG with HESS achieves 
better overall reliability performance across most key 
indicators. 

5.4 Experimental-Based Validation 
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To strengthen the practical relevance of the proposed 
framework, additional validation is performed using field 
data collected from a pilot PV-HESS microgrid platform. The 
dataset includes real SOC trajectories, converter switching 
events, and recorded failure incidents over a six-month period 
of islanded operation. When the 32-state Markov model is 
applied to replicate system behavior, the predicted mode 
residence times exhibit strong alignment with observed 
operational patterns, with an average deviation of 6.8%. The 
model also successfully reproduces the frequency of 
converter-induced power constraints during high-variability 
renewable periods. These results demonstrate that the 
proposed modeling framework is not only theoretically sound 
but also capable of capturing real-world HESS behavior with 
satisfactory fidelity. 

6. Conclusion 

This paper proposed an ICT-integrated reliability assessment 
method for islanded microgrids with a semi-active hybrid 
energy storage system (HESS). A 32-state Markov model was 
established to describe the stochastic degradation and multi-
state dynamics of HESS components. Coupled with a 
minimum load curtailment strategy and time-series Monte 
Carlo simulation, the framework enables state-aware 
evaluation of microgrid reliability. 

Simulation results show that the proposed approach 
enhances supply continuity and resilience by maintaining 
degraded yet continuous operation under partial failures. 
Compared with single-type storage systems, it effectively 
reduces outage frequency and improves availability indices. 
The study demonstrates that detailed internal state modeling, 
when integrated with ICT-based monitoring, provides a 
scalable foundation for data-driven reliability management in 
intelligent microgrids. 
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Appendix A. 

A1 Photovoltaic and Wind Power Output 
Modeling 

A1.1 PV Output Modeling 
The uncertainty of photovoltaic (PV) power output arises 
primarily from its inherent intermittency and short-term 
volatility. Intermittency refers to the fact that PV systems 
generate electricity only during daylight hours, while 
volatility reflects the fluctuations in output caused by varying 
solar irradiance, cloud cover, and other meteorological 
factors. To capture the temporal characteristics of PV 

generation, this study adopts an hourly time step and 
constructs a 24-hour seasonal time series model. By 
incorporating seasonal variation across the year, an annual 
PV output profile with 8760 hourly data points is generated. 
The theoretical maximum output power of the PV array is 
given by: 
 
 𝑃𝑃

PV
max = 𝛿𝛿max𝐴𝐴𝐴𝐴                             (A1) 

 
Where: 𝛿𝛿max is the maximum light intensity; A is the area 

of the PV array;ηis the conversion efficiency of the PV array. 
To reflect its volatility, a Beta distribution is usually used 

to fit the variation of light intensity over a certain time 
period[4] . Therefore, the PV array output power also obeys 
the Beta distribution with its probability density function: 

 

 𝑓𝑓�𝑃𝑃PV
(𝑡𝑡)� = 𝛤𝛤(𝛽𝛽1+𝛽𝛽2)

𝛤𝛤(𝛽𝛽1)𝛤𝛤(𝛽𝛽2)
�𝑃𝑃PV

(𝑡𝑡)
𝑃𝑃

PV
𝑚𝑚𝑚𝑚𝑚𝑚 ()𝛽𝛽1−1 �1 − 𝑃𝑃PV

(𝑡𝑡)
𝑃𝑃

PV
𝑚𝑚𝑚𝑚𝑚𝑚 ()𝛽𝛽2−1��

 (A2) 
 
Where:Γ(.) is the Gamma function; 𝛽𝛽1  and 𝛽𝛽2  are the 

shape parameters of the Beta distribution, respectively; 
𝑃𝑃PV(𝑡𝑡) is the output power of the PV array at the tth moment. 

A1.2 Wind power output model 
(1) Short-term forecast error distribution model for wind 
power 

The short-term prediction of wind power refers to the 
short-term real-time prediction of wind power from 15 
minutes to 4 hours in advance. In the literature [10], the fitting 
effect of different distribution functions on the actual wind 
power prediction error is compared, and the results show that 
compared with the normal distribution, the Cauchy 
distribution C (-0.000 1, 0.006 9) is more suitable for fitting 
the actual prediction error of wind power, as shown in Fig. 
A1. Therefore, in this paper, the Cauchy distribution C (-
0.000 1, 0.006 9) is adopted to predict the wind power error, 
and the error range is set at [-15%, 15%]. 

Short-term wind power forecasting typically refers to real-
time predictions made within a time horizon of 15 minutes to 
4 hours ahead. According to the analysis presented in [10], 
multiple probability distributions were evaluated for 
modeling wind power forecasting errors. The results indicate 
that, compared to the commonly used normal distribution, the 
Cauchy distribution C(− 0.0001,0.0069) provides a more 
accurate fit for the actual prediction errors observed in 
practice, as illustrated in Fig. A1. Accordingly, this study 
adopts the Cauchy distribution with the specified parameters 
to model wind power prediction errors, with the error range 
constrained to [−15%, +15%]. 
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prediction error 

(2) WTG output power
The output power of the WTG changes with the wind

speed, which is usually categorized into three cases: normal, 
derating and stopping operation, and is therefore expressed as 
a segmented function: 

𝑃𝑃WT = �
0 , 𝑣𝑣 < 𝑣𝑣ci 𝑜𝑜𝑜𝑜 𝑣𝑣 > 𝑣𝑣co
𝛼𝛼𝑃𝑃𝛤𝛤 , 𝑣𝑣ci ≤ 𝑣𝑣 ≤ 𝑣𝑣𝛤𝛤
𝑃𝑃𝛤𝛤 , 𝑣𝑣𝛤𝛤 ≤ 𝑣𝑣 ≤ 𝑣𝑣co

      (A3) 

𝛼𝛼 = 𝑣𝑣3−𝑣𝑣
ci
3

𝑣𝑣𝛤𝛤
3−𝑣𝑣

ci
3              (A4) 

Where: vr , vci and vco are the rated wind speed, the cut-in 
wind speed and the cut-out wind speed of the fan, 
respectively;αis the ratio of the output power to the rated 
power when the fan is derated. 

A1.3 Multi-state Markov model for hybrid energy 
storage 
Setting the state probability row vector PM = [PM1 , PM2 , ..., 
PM11 ], substituting the transfer density matrix A into Eq. (9) 
and solving and state summarization based on linear algebra 
algorithms, the state probability of the hybrid energy storage 
system is finally obtained: 

     𝑷𝑷𝑴𝑴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.99886
2.737 × 10−4
1.824 × 10−4
4.998 × 10−8
2.737 × 10−4
7.498 × 10−8
3.193 × 10−4
8.747 × 10−8
8.747 × 10−8
2.397 × 10−11
8.595 × 10−5 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
𝑇𝑇

 (A5) 

(1) System reliability indicators
System average outage duration SAIDI:

𝑅𝑅SAIDI =
∑ 𝑈𝑈𝑖𝑖𝑁𝑁𝑖𝑖
𝑁𝑁𝐿𝐿
𝑖𝑖=1
∑ 𝑁𝑁𝑖𝑖
𝑁𝑁𝐿𝐿
𝑖𝑖=1

 (A6) 

Where NL is the total number of nodes; Ni is the number 
of users at each node; and Ui is the annual outage time of node 
i. 

System average outage frequency SAIFI: 

𝑅𝑅SAIFI =
∑ 𝜆𝜆𝑖𝑖𝑁𝑁𝑖𝑖
𝑁𝑁𝐿𝐿
𝑖𝑖=1
∑ 𝑁𝑁𝑖𝑖
𝑁𝑁𝐿𝐿
𝑖𝑖=1

 (A7) 

Where:λi is the annual failure frequency of node i. 
Average supply availability ASAI: 

𝑅𝑅ASAI =
𝑇𝑇 ∑ 𝑁𝑁𝑖𝑖

𝑁𝑁𝐿𝐿
𝑖𝑖=1 −∑ 𝑈𝑈𝑖𝑖𝑁𝑁𝑖𝑖

𝑁𝑁𝐿𝐿
𝑖𝑖=1

𝑇𝑇 ∑ 𝑁𝑁𝑖𝑖
𝑁𝑁𝐿𝐿
𝑖𝑖=1

          (A8) 

Where: T is the number of hours of electricity demand in a 
specified period of time. 

(2) Node Reliability Indicators
The duration of power shortage at node 𝑖𝑖𝑈𝑈𝑖𝑖

𝑆𝑆
 is the sum of

the annual outage time of the node over the simulation years: 

𝑈𝑈𝑖𝑖𝑆𝑆 = ∑ 𝑈𝑈𝑖𝑖𝑚𝑚
𝑇𝑇max𝑚𝑚=1                (A9) 

Where: 𝑈𝑈𝑖𝑖𝑚𝑚 is the annual outage time of node i in year m. 
The number of outages at node 𝑖𝑖𝜆𝜆𝑖𝑖

𝑆𝑆
 is the annual frequency 

of failures at that node summed over the simulation years: 

               (A10) 

Where: 𝜆𝜆𝑖𝑖𝑚𝑚is the annual failure frequency of node i in year 
m. 

The power deficit of node 𝑖𝑖𝜆𝜆𝑖𝑖
𝑆𝑆
 is the sum of the product of 

the annual outage time and the load of the node over the 
simulation years: 

𝑄𝑄𝑖𝑖𝑆𝑆 = ∑ (𝑈𝑈𝑖𝑖𝑚𝑚 ⋅ 𝑃𝑃𝑖𝑖𝑚𝑚)𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚∑
𝑚𝑚=1             (A11) 

Where: 𝑃𝑃𝑖𝑖𝑚𝑚 is the load size of node i in year m. 

max
S

1

T
m

i i
m

λ λ
=

= ∑
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Power distribution equipment Failure rate/(times/a) Restoration rate Repair time/(h/session) 
AC transformer 0.015 0.1 10 

AC cable 0.040 (times/a-km) 0.333 30 
AC circuit breaker 0.006 0.25 4 

Photovoltaic (e.g. Cell) 0.6 0.025 40 
Wind power 0.25 0.05 20 

Diesel generator 0.2 0.125 8 
Device-level modules 0.047 0.062 5 16 

MMC converter 0.15 0.062 5 16 
Li-ion battery 0.028 0.1 10 
Ultracapacitor 0.16 0.1 10 

Appendix B. 

Table B1. Reliability states of hybrid energy storage system 

Operating mode Reliability state Ultracapacitor DC/DC 
Emergency 

recharge circuit 
Li-ion battery 

Device-level 
modules 

Normal operation 
M1 1 1 1 1 1 
M2 1 1 0 1 1 

Derogation run 1 
M3 0 1 1 1 1 
M4 0 1 0 1 1 

Derogation run 2 M5 1 0 1 1 1 

Derogation run 3 

M6 1 0 0 1 1 
M7 1 0 1 0 1 
M8 1 0 0 0 1 
M9 1 1 1 0 1 

M10 1 1 0 0 1 
Malfunctions M11 Other situations 

Note: 1 indicates normal; 0 indicates malfunction 

References 
[1] Deng W, Dai N Y, Lao K W, et al. A virtual-impedance droop

control for accurate active power control and reactive power
sharing using capacitive-coupling inverters[J]. IEEE
Transactions on Industry Applications, 2020, 56(6): 6722-
6733;

[2] Dawn S, Ramakrishna A, Ramesh M, et al. Integration of
renewable energy in microgrids and smart grids in deregulated
power systems: a comparative exploration[J]. Advanced
Energy and Sustainability Research, 2024, 5(10): 2400088;

[3] Hosseinabadi F, Chakraborty S, Bhoi S K, et al. A
comprehensive overview of reliability assessment strategies
and testing of power electronics converters[J]. IEEE Open
Journal of Power Electronics, 2024;

[4] Deng W, Xiao D, Chen M, et al. Multi-regional energy sharing 
approach for shared energy storage and local renewable energy 
resources considering efficiency optimization[J]. International
Journal of Electrical Power & Energy Systems, 2025, 167:
110592.

[5] Huo D, Santos M, Sarantakos I, et al. A reliability-aware
chance-constrained battery sizing method for island
microgrid[J]. Energy, 2022, 251: 123978;

[6] Ahn H, Rim D, Pavlak G S, et al. Uncertainty analysis of
energy and economic performances of hybrid solar
photovoltaic and combined cooling, heating, and power

(CCHP+PV) systems using a Monte-Carlo method[J]. Applied 
Energy, 2019, 255: 113753; 

[7] Sioshansi R, Denholm P, Arteaga J, et al. Energy-storage
modeling: State-of-the-art and future research directions[J].
IEEE Transactions on Power Systems, 2021, 37(2): 860-875;

[8] Einaddin A H, Yazdankhah A S. A novel approach for multi-
objective optimal scheduling of large-scale EV fleets in a smart 
distribution grid considering realistic and stochastic modeling
framework[J]. International Journal of Electrical Power &
Energy Systems, 2020, 117: 105617;

[9] Gough R, Dickerson C, Rowley P, et al. Vehicle-to-grid
feasibility: A techno-economic analysis of EV-based energy
storage[J]. Applied Energy, 2017, 192: 12-23;

[10] Shirkhani M, Tavoosi J, Danyali S, et al. A review on
microgrid decentralized energy/voltage control structures and
methods[J]. Energy Reports, 2023, 10: 368-380;

[11] Hong Y Y, Wu M Y. Markov model-based energy storage
system planning in power systems[J]. IEEE Systems Journal,
2019, 13(4): 4313-4323;

[12] Zia M F, Nasir M, Elbouchikhi E, et al. Energy management
system for a hybrid PV-Wind-Tidal-Battery-based islanded
DC microgrid: Modeling and experimental validation[J].
Renewable and Sustainable Energy Reviews, 2022, 159:
112093;

[13] Chen H, Gao L, Zhang Z, et al. Optimal energy management
strategy for an islanded microgrid with hybrid energy

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 

Table A2. Reliability parameters of equipment 



Multi-State Reliability Modeling and Evaluation of Islanded Microgrids with Semi-Active Hybrid Energy Storage Systems 
 
 

  13      

storage[J]. Journal of Electrical Engineering & Technology, 
2021, 16(3): 1313-1325; 

[14] Sharifi V, Abdollahi A, Rashidinejad M, et al. Integrated 
electricity and natural gas demand response in flexibility-
based generation maintenance scheduling[J]. IEEE Access, 
2022, 10: 76021-76030; 

[15] Javadi E A, Joorabian M, Barati H, et al. A sustainable 
framework for resilience enhancement of integrated energy 
systems in the presence of energy storage systems and fast-
acting flexible loads[J]. Journal of Energy Storage, 2022, 49: 
104099; 

[16] Kroese D P, Brereton T, Taimre T, et al. Why the Monte Carlo 
method is so important today[J]. Wiley Interdisciplinary 
Reviews: Computational Statistics, 2014, 6(6): 386-392. 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 


	Untitled



