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Abstract 

In this work a novel modified flower pollination algorithm has been developed to solve the problem of single and multi-

objective Optimal Power Flow operations for Unified power Flow Controller in Flexible Alternating Current Transmission 

Systems. In the proposed Adaptive Flower Pollination Algorithm the best initial solution can be chosen from the fittest and 

also the weights are adaptively adjusted to get better convergence characteristics. The nature of the objective functions is 

non-linear and difficult to get best possible solutions within the boundary conditions of total power demand. The weak 

nodes are determined in the system to locate the UPFC with Fuzzy approach considering input parameters as L-Index and 

voltage magnitudes. The projected method is validated using IEEE-30 and IEEE-57 bus systems for three objective 

functions, namely, system real power loss minimization, fuel cost minimization and the combination of total generating 

cost and system real power loss. Results of Fuzzy- Adaptive Flower Pollination Algorithm based OPF optimization for 

UPFC produced optimum results for the considered objectives of total fuel cost, real power loss and for the multiobjective. 
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1. Introduction

The power system is a largest man made system due to its 

wide geological coverage, a diversity of transactions 

among different utilities, and diversity in the layouts of 

electric power industries, size and the connected 

equipments. There is a necessity of advanced methods to 

optimally investigate, monitor and manage an assortment 

of aspects of such complicated system that take account of 

Unit Commitment (UC), Automatic Generation Control 

(AGC), state estimation, Economic Dispatch (ED) and 

Optimal Power Flow (OPF). The OPF is treated as the 

spinal column technique which was expansively 

researched since 1962 [1]. 

OPF is a static nonlinear problem that optimizes an 

objective function which suits a set of operational and 

physical constraints forced by apparatus restrictions as 

well as security needs. Numerous successful OPF 

techniques [2–4] have been projected to yield a best OPF 

solution. 

Evolutionary algorithms with multiple objectives [5-6] 

have been examined to work out different OPF problems 

to defeat the shortfalls of orthodox methods. Diversified 

hybrid techniques were developed called hybrid EP with 

tabu search [7], firefly and particle swarm optimization 

[8] enroot for steadfastness ED problem for valve point

fuel cost functions.
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For the past twenty years, the ever-increasing 

developments in computational astuteness tools have been 

providing best solutions in the area of metaheuristics 

optimization techniques. Some of them are: Artificial Bee 

and Ant Colony and Bacterial Foraging algorithms [9-11], 

Cuckoo Search [12], Tabu Search [13], Harmony Search 

Algorithm [14], Black Hole Based Optimization [15], 

Improved GA [16-17] etc. 

Flower Pollination Algorithm (FPA), is one of the 

latest optimization algorithms that intended to provide 

solutions for individual and combined objective 

optimization problems [18-20] introduced by X. S. Yang 

in the year 2012. This natural world inspired technique is 

developed from the distinctiveness of flowering plants 

with fascinating characteristics that lend a hand to travel 

around the viable groom in the neighbourhood and 

globally. In the recent times, it has gained increased 

attention to solve the OPF problem [21-22] to discover the 

most select settings of the controllable variables [23]. 

In the past three decades several research articles were 

published on OPF solution with FACTS devices. A 

decomposition scheme developed by Taranto et al. [24] to 

get to the bottom of OPF solution in the presence of 

FACTS. [25] Presented the FACTS modeling in OPF 

solution and discussed the task of that modeling. [26] 

published the OPF technique by placing the FACTS using 

Newton’s method that led to an exceedingly dynamic 

solution. However, it has been identified that the solutions 

of OPF becomes a non-convex solution with series 

compensation that results, the traditional methods may 

struck at local optimum. To assuage the afore said 

complicatedness many advanced techniques have been 

projected by many researchers viz., [27] proposed with 

MDE, Hybrid DA-PSO in [28] to solve OPF problem by 

incorporating FACTS. 

The main intention of this article is to put forward an 

Adaptive Flower Pollination Algorithm (AFPA) with 

UPFC for single and Multi-objective optimization 

problems. The modifications proposed in the Flower 

pollination algorithm to obtain AFPA are given in 

section-4. Here weak nodes are identified through fuzzy 

to identify the best location of UPFC. The three 

considered single and multi objectives are optimized 

using AFPA algorithm by controlling the shunt 

compensators, tap settings of the transformers along with 

UPFC series and shunt controllers. The L-Index is a 

voltage stability index is also considered as one of the 

constraints along with equality and inequality constraints 

to maintain the stability of the system while optimizing 

the considered objectives. The step by step procedure is 

represented in the block diagram given in Figure 1. 

Figure 1. Proposed AFPA block diagram 

2. Fuzzy Approach To Find Weak Nodes

The proposed fuzzy approach uses L-index bus voltage 

profiles to identify the weak nodes in the system.  

2.1 L-index 

A transmission system chosen with ‘n’ buses consists of 

‘g’ generator buses, ‘n-g’ P-Q buses. L-Index [29] of the 

network is given by: 

1

1
=

= −
g

i

k ki

i k

v
L F

v
(1) 

Where, k = g +1,....,n. The Fki values of Y-bus matrix 

are complex in nature. 

i.e.    
1 1

LG LL LGF Y Y
− −

= (2) 

where,[YLG] and [YLL]  are the sub parts of Y-bus. For 

the system to be stable, at any P-Q bus k the maximum 

value of Lk should be 1 [29].  

The bus voltage profile and L-index values are 

expressed in fuzzy set notation. The severity index of 

each bus as an output are also divided into different 

categories. The fuzzy rules are used to evaluate the 

severity of each bus in the system. 

Formulate the OPF  problem with 
Constraints and penalty factors 

Modify the Flower Pollination 
Algorithm ( FPA ) with proposed 

modifications 

Obtain the weak nodes of the 
system by Fuzzy approach 

Identify the best location of UPFC 

From the weak nodes 

Read the input data of the system 

Line, load, Generator data with 

constraints 

Run the AFPA - UPFC OPF  solution 
to find best optimal settings to 
reduce the objective function 
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2.2. Bus voltage profiles 

The bus voltage profiles are divided into three categories 

using fuzzy-set notations: low voltage (LV), below 0.95 

p.u.; normal voltage (NV), 0.95-1.05 p.u.; and over

voltage (OV), above 1.05 p.u.

2.3. Voltage stability Index 

The L-indices are divided into five categories using fuzzy 

set notation; very small (VS),0-0.1; small (S), 0.1-0.3; 

medium (M), 0.3-0.6; high (H), 0.6-0.8; very high (VH) 

0.8-0.9.  

The output membership functions to evaluate the 

severity of a week nodes are divided into five categories 

using fuzzy set notations: Very Less Severe (VLS), Less 

Severe (LS), Below Severe (BS), Above Severe (AS) and 

More Severe (MS). 

Table 1. Decision matrix to find weak nodes of the 
system 

AND 

VOLTAGE STABILITY  INDEX 

VLI LI MI HI VHI 

V
O

L
T

A
G

E
 

(p
.u

) 

LV LS LS S HS MS 

NV VLS LS LS S HS 

HV LS S HS MS MS 

The severity index of each bus in the system is found 

using the formula  

 (3) 

Where, SIVP and SIVSI are the severity indexes of post-

contingent voltage profile and voltage stability indexes, 

respectively. 

3. Modeling of UPFC

UPFC is one of the sophisticated device from FACTS, 

can offer instant control of real, reactive power and 

voltage. The power injection model of the UPFC with two 

harmonized synchronous voltage sources shown in Figure 

2.The voltage sources of UPFC are:

( )cos sinsh shsh shV V j = + (4) 

( )cos sinse sese seV V j = + (5) 

Figure 2. UPFC-Power injection model 

Where, , , ,sh se sh seV V   are the voltage magnitude and 

angle of Shunt and series converter respectively. 

With the help of equations (4) and (5) derived from the 

model, real and reactive power expressions can be 

obtained as: 

( )

( )
2

cos

sin

sh i sh

sh i sh i sh

sh i sh

g
P V g VV

b

 

 

− 
= −  

 + − 

(6) 
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2
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b
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−
= − −
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 
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 

(7) 

( )2
cos sin

ij i ij i j ij ij ij ij
P V g VV g b = − +

( ) ( )( )cos sin
i se ij i se ij i se

VV g b   − − + − (8) 

( )2
sin cos

ij i ij i j ij ij ij ij
Q V b VV g b = − − −

( ) ( )( )sin cos
i se ij i se ij i se

VV g b   − − + − (9) 

( )2
cos sin

ji j ij i j ij ji ij ji
P V g VV g b = − +

( ) ( )( )cos sin
j se ij j se ij j se

V V g b   + − + − (10) 

( )2
sin cos

ji j ij i j ij ji ij ji
Q V b VV g b = − − −

( ) ( )( )sin cos
j se ij j se ij j se

V V g b   + − + − (11) 

where 

1
sh sh

sh

g jb
z

+ = ,
1

ij ij

se

g jb
z

+ =  and 

ij i j
  = − ,

ji j i
  = −

SI SI SI
VP VSI

= +
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4. Formulation of OPF Problem

The solution of OPF focus at optimizing a preferred 

objective with the best promising amendment of the 

power network control parameters satisfying both equality 

and inequality constraints. OPF problem is formulated as: 

Subjected to: 

where, J is the objective function; 

x is dependent variable; 

g and h are equality and operating constraints; 

u is the control variable vector such as:

1. Generator voltages at PV buses.

2. Real power at PV buses excluding PG1 swing bus.

3. Tap settings of transformer.

4. Shunt compensators.

Optimal location of UPFC is calculated to optimize the

particular objective function to improve the performance 

of the system where as thermal limits and voltage 

constraints should be satisfied. OPF problem formulation 

is given. After UPFC installation for the following 

objective functions: 

4.1 Fuel cost function 

The total fuel cost as objective function ‘f1’ by daunting 

the constraints is as follows: 

( ) ( )
NG

2
2 lim

1 i Gi i Gi i G1 G1

i=1

f = a P +b P +c + KP P - P
 
 
 


( ) ( )
NL N

22 lim

i lim G,i G,i

i=1 i=1

+KV V -V + KQ Q - Q
   
   
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 

( ) ( )
nl NL

2 2
lim lim

i i j j

i=1 j=1

KS abs S - S +KL L - L+
  

   
   
  (12) 

Where, NG=No. of generator units, PGi=Active power 

generation at ith unit, ai,bi and ci are the cost coefficients of 

ith generator and KP,KV,KQ,KS and KL are penalty 

factors for the limit violation. NL represents number of 

load buses, nl represent number of transmission lines and 

Xlim is restrictive values reliant variable given as: 


max max

min min

lim ;

;

X X X

X X X
X 


= (13) 

4.2 Power loss 

The power loss minimization can be articulated as 

follows: 

( )( )2 2

2

1

2 cos  
=

+ − − +
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ij i j i j i j

i

f = G V V VV

( ) ( ) ( )
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i=1 i=1

KP P -P +KV V -V +KQ Q -Q
   
   
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 

( ) ( )
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2 2
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i i j j

i=1 j=1

+KS abs S -S +KL L -L
  

   
   
  (14) 

Where Gij=Conductance belongs to i-jth  line 

The amalgamation of objective function 1&2 is 

expressed as multi objective function. 
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1

3  + + − − +
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The optimization problem can be solved underneath 

the subsequent constraints: 

4.3 Equality constraints 

Nonlinear load flow equations that govern the power 

systems is given by, 

( )
1

cos 0
Gi Di ij

n

i j ij i j

j

P P V V Y   
=

− +− − = (16) 

( )
1

sin 0
Gi Di ij

n

i j ij i j

j

Q Q V V Y   
=

− +− + = (17) 

Where, 
, , , th

Gi Di Gi DiP P Q Q i=
bus real, reactive 

power generation and demands respectively and 
ijY

is 

Bus admittance matrix. 

min ( , )j x u

( , ) 0g x u =

( , )
min max

h h x u hŁ Ł
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4.4 Inequality constraints 

Security and operational constraints are given as: 

Real and reactive power outputs of Generators 
min max , 1,2,...Gi Gi Gi GP P P i N  = (18) 

min max , 1,2,...Gi Gi Gi GQ Q Q i N  = (19) 

2) Bus voltage magnitudes
min max , 1,2,...i i iV V V i N  = (20) 

3) Transformer tap positions
min max , 1,2,...i i i TT T T i N  = (21) 

4) shunt capacitor VAR injections
min max , 1,2,...Ci Ci Ci SQ Q Q i C  = (22) 

5) Line Loadings
max , 1,2,...i i LS S i N = (23) 

6) Voltage stability index
max , 1,2,...ji ji LDL L i N = (24) 

4.5 UPFC Constraints 

UPFC Series injected limits: 
min max

se se seV V V  (25) 
min max

se se se    (26) 

Shunt injected limits: 
min max

sh sh shV V V  (27) 
min max

sh sh sh    (28) 

5. Flower Pollination Algorithm (FPA)

The following rules have been established for FPA 

technique to illustrate an ideal pollination process [30]: 

Rule I: Self-pollination is treated as neighborhood 

pollination, happened by the natural world through the air 

stream or precipitation. 

Rule II: Cross-pollination is treated as a 

comprehensive pollination and the pollinators (birds or 

insects) that are moving from long distance carry the 

pollens which would be treated as Levy flights. 

Rule III: Local pollination have been occurring in the 

midst of the plant flowers itself or from the same class 

flowers. 

Rule IV: The above mentioned two processes could be 

constrained by a control probability function Pa∈ [0, 1]. 

Because of the corporeal flower immediacy and the other 

characteristics airstream or precipitation, self pollination 

could have a momentous part on the whole pollination 

progression [31-32]. 

FPA optimization technique can be formulated from 

the afore mentioned rules, as follows: 

Let yi be the control vector of considered control 

variables that mentioned the ith flower. The cross-

pollination is conceded out by producing arbitrary 

statistics L(λ) given below: 

1 *
( ).( )

t t t
y y L y g

i i i


+
= + − (29) 

The dot (*) in the above equation means element wise 

multiplication. The stride length L(λ) is haggard 

commencing a conformity Levy circulation; the equation 

was named a Levy flight which impersonates pollinator’s 

deeds. Mantegna’s approximation was used to engender 

Levy random numbers [33]. 

Self pollination has been carried out with the step 

length as homogeneously disseminate systematic number 

vector c1 exists among 0 to1 to organize the enormity of 

the elements metamorphosis of the upcoming flower 

generation. 

1
.( )

1

t t t t
y y C y y

i i i k

+
= + − (30) 

Here, t = present iteration, yi
t and yk

t are the present 

pollen from the diverse flowers of the same class. It can 

be represented as, if yt+1 and yt are of same class, this

homogeneously becomes a narrow random saunter. 

The Levy flights can be changed to haphazard walks 

with a switching likelihood factor Pa as per the following 

rule: 

If Pa > rand (0,1) 

Do levy flights:
1 *

( ).( )
t t t

y y L y g
i i i


+

= + −

Else 

Do random walks:
1

.( )
1

t t t t
y y C y y

i i i k

+
= + −

End 

6. Adaptive Flower Pollination Algorithm
(AFPA)

Most important aspects of FPA are the preliminary stage 

population and moving from self pollination to global 

pollination. It has a significant brunt on the computational 

encumber and the elucidation convergence. The following 

modifications were proposed to enhance the performance 

of the algorithm. 

6.1 Looking for the best initial condition 

The earliest alteration is, opening from a nearer or fittest 

solution by concurrently inspecting the conflicting guess. 

With this modification, the initial best solution can be 

chosen from the fittest (either from opposite guess). The 

probability theory reveals that, the probability of two 

contradictory solutions which belongs to the identical 
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feasible class has an opportunity of 50% that one is well 

again than the further. Therefore, beginning from the 

fittest of the two such as either presumption or 

contradictory presumption will be the impending to 

encompass an initial position more rapidly to the most 

advantageous way out. To achieve this, A contradictory 

vector to be required [34]. 

Let y be a present solution and the contradictory 

solution vector Y  can be obtained by it apparatus as: 

,Y a b y
i i i i
= + − i=1,2………..n (31) 

Where [ai, bi] are upper and lower limits of yi. 

Quasi-oppositional point: The elucidation point is 

distinct from the preceding conflicting position and it  has 

been demonstrated to furnish improved solution than the 

regular conflicting vector [35]. Let 
n

y  be a solution 

point, 
n

y be its conflicting point mentioned as in 

(31) and also 
2

a b
y
m

+
= be the midpoint among the limits 

[a, b]. The rudiments of the quasi contradictory solution 

vector Y q
is defined as:

If y y
i m i

( )= + −y y c y y
i m iqi m i

Else 

( )= + −y y c y y
i m i iqi

End 

Where c = [0,1]and i= 1,2……..n. 

6.2 Moving from local to global pollination 
process 

Another amendment proposed based on the methods 

proposed in reference [36]. It is based on the combining 

of equations (29) and (30) by means of scalar dynamic 

auto adjusted weights w1 and w2 which may vary based on 

the generation counter ‘t’. The weight variations are 

obtained as follows: 

max min
max 1 1

1 1
max

w w
w w t

t

 
− 

= +  
 

(32) 

( )
( )

min ( ),

2 max ( ),

F t F

w
F t F

= (33) 

Where,
max

1
w , 

min

1
w are the limits of w1 

tmax = Highest generation number.  

F(t) = Fitness value at generation t. 

F =Average of the fitness functions of the present 

population. As a final point, accumulate an arbitrary scale 

factor γ(considered 0.15here) and a Gaussian distribution 

vector (ε2=N(0,1))as an alternative of a uniform 

distribution to self random walks, the modified equation 

is:

1 *
( ).( ) .( )

1 2 2

t t t t t
y y w L y g w y y

i i i i k
  

+
= + − + − (34)

This amendment moves the use of the probability. 

Switch Pa and Levy flights and Brownian motion have 

been merged into a solitary random walk expression. 

7. Simulation results and discussion

The proposed technique was validated on IEEE-30 and 

IEEE-57 bus system in MATLAB programming 

environment. 

7.1 Case 1: Testing on IEEE-30 Bus 
System 

The considered test system has six generators inter related 

with 41 lines with a load demand of 283.4 MW and 126.2 

MVAR [37]. The shunt VAR suppliers are provided at 

buses 10, 12, 15, 17, 20, 21, 23, 24 and 29 [38].Upon 

identifying the weak buses on the system using Fuzzy by 

considering L-Indices and voltage magnitudes and 

consequent results of top weak nodes are tabulated in 

Table 2. 

Table 2. Weak nodes of the system 

S. 
No 

Bus 
No 

Voltage 
(p.u) 

L-Index Severity Rank 

1 27 1.0326 0.0827 26.8642 1 

2 22 1.0318 0.0813 26.2389 2 

3 23 1.0301 0.0842 25.7536 3 

4 29 1.0248 0.1113 25.0000 4 

5 26 1.0075 0.1041 24.8783 5 

6 24 1.0267 0.0822 24.8333 6 

7 16 1.0321 0.0576 24.5239 7 

8 19 1.0236 0.0829 23.6591 8 

9 25 1.0251 0.0822 23.5564 9 

10 12 1.0414 0.0579 17.8208 10 

The bus 27 has utmost severity and treated as feeble 

node in the system as given in Table 1. The line between 

27-30 is elected as the best location of UPFC. AFPA-OPF
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UPFC results of the network for minimization of fuel cost 

and power loss were shown in Table 3 and Table 5 

respectively. 

Table 3. Simulation results of FPA, AFPA & AFPA-
UPFC 

Parameter 
LIMITS 

Min    Max 
FPA AFPA 

AFPA 
UPFC 

PG1 0.5   2.0 1.7588 1.7460 1.7605 

PG2 0.2   0.8 0.4852 0.4754 0.4712 

PG5 0.1   0.35 0.2139 0.2021 0.1992 

PG8 0.1   0.3 0.1202 0.1170 0.1228 

PG11 0.1   0.5 0.2037 0.2132 0.2076 

PG13 0.12    0.4 0.1210 0.1091 0.1200 

VG1 0.9   1.10 1.0729 1.0500 1.0600 

VG2 0.9   1.10 1.0567 1.0354 1.0451 

VG5 0.9   1.10 1.0452 1.0212 1.0423 

VG8 0.9   1.10 1.0261 1.0127 1.0120 

VG11 0.9   1.10 1.0241 1.0130 1.0294 

VG13 0.9   1.10 1.0529 1.0400 1.0116 

T11 0.9    1.10 1.0469 1.0683 1.0107 

T12 0.9    1.10 1.0240 1.0078 0.9768 

T15 0.9    1.10 0.9642 0.9701 1.0205 

T36 0.9    1.10 0.9396 0.9856 1.0312 

QC10 0.0   0.2 0.2000 0.0431 0.0214 

QC12 0.0   0.2 0.1305 0.0000 0.0331 

QC15 0.0   0.2 0.0448 0.2000 0.1120 

QC17 0.0   0.2 0.0567 0.0000 0.0000 

QC20 0.0   0.2 0.0470 0.1288 0.0333 

QC21 0.0   0.2 0.1445 0.0734 0.1823 

QC23 0.0   0.2 0.0000 0.0836 0.0089 

QC24 0.0   0.2 0.0340 0.0525 0.0323 

QC29 0.0   0.2 0.0512 0.0448 0.1087 

Cost ($/h) 800.15 799.15 798.01 

Ploss (P.u) 0.0889 0.0875 0.0851 

Li
max 0.0    0.5 0.1350 0.1338 0.1209 

Vse 0.0    0.2 0.0502 

Vsh 0.9    1.1 0.9712 

It is found that, total generating cost in proposed 

scheme is reduced to 798.01 $/h with respect to FPA 

yielding 800.15$/h and AFPA yielding 799.15$/h. Figure 

3 shows the comparison of above results. It is also noted 

that, the L-Index is decreased to 0.1209 with respect to 

FPA yielding 0.1350 and AFPA yielding 0.1338 that 

gives enhanced voltage stability and the resultant 

graphical representations is as shown in Figure 4. The 

variations of voltage magnitudes of FPA and AFPA and 

AFPA with UPFC are shown in Figure 5. 

Figure 3. Fuel cost for different OPF techniques 

Figure 4. Bus voltages for different OPF techniques 

Figure 5. L-indices for different OPF techniques 
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Table 4. Fuel cost comparison for different 
techniques 

S.No Method Fuel Cost ($/h) 

1 EP[39] 802.9070 
4 IEP[39] 802.4650 
5 SADE-AIM[40] 802.4040 
6 PSO[38] 800.4136 
7 PSO-DV[41] 800.2314 
8 EAPSO-DV[41] 800.1010 
9 FPA 800.15 
10 AFPA 799.150 
11 AFPA-UPFC 798.014 

From the above it is apparent that the projected 

technique provides remarkable results with respect to the 

literature. 

Table 5. OPF Results with Power loss as an 
objective 

Parameter 
LIMITS 

Min    Max 
PFA AFPA 

AFPA 
UPFC 

PG1 0.5    2.0 1.7608 1.7529 1.7625 

PG2 0.2    0.8 0.4774 0.4750 0.4848 

PG5 0.1    0.35 0.2120 0.2031 0.2110 

PG8 0.1    0.3 0.1202 0.1201 0.1201 

PG11 0.1    0.5 0.2126 0.2112 0.2152 

PG13 0.12   0.4 0.1210 0.1200 0.1200 

VG1 0.9    1.10 1.0833 1.0937 1.0829 

VG2 0.9    1.10 1.0634 1.0756 1.0667 

VG5 0.9    1.10 1.0337 1.0483 1.0442 

VG8 0.9    1.10 1.0167 0.9830 1.0161 

VG11 0.9    1.10 1.0297 1.0389 1.0341 

VG13 0.9    1.10 1.0605 1.0272 1.0829 

T11 0.9   1.10 1.0322 1.0929 1.0469 

T12 0.9   1.10 1.0026 1.0222 1.0240 

T15 0.9   1.10 0.9823 0.9854 0.9642 

T36 0.9   1.10 0.9526 1.0124 0.9396 

QC10 0.0   0.2 0.1633 0 .0510 0.2000 

QC12 0.0   0.2 0.0550 0.0000 0.1305 

QC15 0.0   0.2 0.1323 0 .0934 0.0448 

QC17 0.0   0.2 0.1052 0 .0819 0.0567 

QC20 0.0   0.2 0.0335 0. 0507 0.0470 

QC21 0.0   0.2 0.0115 0.1042 0.1445 

QC23 0.0   0.2 0.0431 0 .0000 0.0000 

QC24 0.0   0.2 0.0000 0.1313 0.0340 

QC29 0.0   0.2 0.0123 0. 0290 0.0000 

Ploss (P.u) 0.0712 0.0695 0.0591 

Li
max 0.0   0.5 0.1254 0.1267 0.1209 

Vse 0.0    0.2 0.0521 

Vsh 0.9    1.1 0.9734 

From Table 4, It is apparent that the system real power 

loss in proposed scheme has been reduced to 5.91MW 

where it is 7.12 MW and 6.95 MW in FPA and AFPA 

respectively. The proposed method results obtained for 

the multi-objective function are tabulated in Table 6. 

Table 6. OPF results for multi-objective function (f3) 

Parameter 
Limits 

Min    Max 
PFA AFPA 

AFPA 
UPFC 

PG1 0.5    2.0 1.3654 1.2757 1.2412 

PG2 0.2    0.8 0.3988 0.4001 0.4033 

PG5 0.1    0.35 0.1897 0.1933 0.1917 

PG8 0.1    0.3 0.1004 0.1000 0.1001 

PG11 0.1    0.5 0.1500 0.1500 0.1500 

PG13 0.12   0.4 0.1200 0.1202 0.1200 

VG1 0.9    1.1 1.0977 1.1000 1.0998 

VG2 0.9    1.1 1.0750 1.0778 1.0773 

VG5 0.9    1.1 1.0583 1.0570 1.0553 

VG8 0.9    1.1 1.0485 1.0654 1.0298 

VG11 0.9    1.1 1.0484 1.0502 1.0459 

VG13 0.9    1.1 1.0897 1.0840 1.0732 

T11 0.9   1.1 1.0035 0.9981 1.0704 

T12 0.9    1.1 1.0408 1.0753 0.9996 

T15 0.9    1.1 1.0151 0.9000 0.9000 

T36 0.9    1.1 0.9604 0.9920 1.0125 

QC10 0.0    0.2 0.0000 0.0803 0.1853 

QC12 0.0    0.2 0.1732 0.0000 0.0000 

QC15 0.0    0.2 0.0693 0.0061 0.0897 

QC17 0.0    0.2 0.2000 0.0000 0.0000 

QC20 0.0    0.2 0.0635 0.0708 0.0730 

QC21 0.0    0.2 0.1103 0.1997 0.0777 

QC23 0.0    0.2 0.0000 0.0614 0.0000 

QC24 0.0    0.2 0.0000 0.0207 0.0218 

QC29 0.0    0.2 0.0329 0.0493 0.2000 

Cost ($/h) 833.56 846.21 852.16 

f3 800.23 799.38 798.01 

Li
max 0.0    0.5 0.1232 0.1301 0.1300 

Vse 0.0    0.2 0.0518 

Vsh 0.9    1.1 0.9949 

From the Table 6, it is evident that the projected AFPA 

method with UPFC is also provided an optimum solution 

for multi-objective function. 

7.2 Case 2: Testing on IEEE-57 bus system 

The IEEE-57 bus system has 80 transmission lines 

together with 17 tap changing transformers, 7 generators 
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and 50 PQ buses with a overall loading of P = 1250.80 

MW and Q = 336.40 MVAR and 11 shunt VAr 

compensators which are located at 18, 19, 23, 25, 27, 28, 

29, 30, 32, 35 and 41 buses. The best five weak nodes 

presented in Table 7. 

Table 7. Fuzzy severity of weak nodes 

S.
No 

Bus 
No 

Voltage 
(p.u) 

L-Index Severity Rank 

1 57 0.9376 0.2649 43.0895 1 

2 56 0.9400 0.2104 37.6400 2 

3 50 0.9658 0.2537 34.558 3 

4 32 1.0346 0.247 30.651 4 

5 33 1.0325 0.2487 29.6435 5 

The bus 57 has utmost severity treated as weakest node 

and the line between 56-42 is preferred for the most 

favourable location of UPFC. The AFPA-OPF results of 

the system with UPFC are given in subsequent tables. 

Table 8. Comparison of FPA, AFPA & AFPA-UPFC 
results 

Parameter 
Limits 

FPA AFPA 
AFPA 
UPFC Min Max 

PG1 0.00 5.7588 1.9231 1.8674 1.8445 

PG2 0.00 1.0000 1.0000 1.0000 1.0000 

PG3 0.00 1.400 0.5772 0.5759 0.5426 

PG4 0.00 1.0000 1.0000 1.0000 1.0000 

PG5 0.00 5.5000 3.5045 3.2213 3.1100 

PG6 0.00 1.0000 0.6421 0.7768 0.7121 

PG7 0.00 4.100 4.1000 3.9500 3.8481 

VG1 0.90 1.10 0.9773 1.0125 1.0284 

VG2 0.90 1.10 0.9654 1.0152 1.0321 

VG3 0.90 1.10 0.9725 1.0120 1.0123 

VG4 0.90 1.10 0.9845 1.0134 1.0157 

VG5 0.90 1.10 0.9763 1.0008 1.0071 

VG6 0.90 1.10 0.9684 1.0451 1.0152 

VG7 0.90 1.10 0.9825 0.9946 1.0005 

T1 0.90 1.10 1.0511 1.0080 1.0376 

T2 0.90 1.10 0.9300 0.9724 0.9492 

T3 0.90 1.10 0.9100 0.9657 1.0565 

T4 0.90 1.10 0.9421 0.9231 1.1000 

T5 0.90 1.10 1.0003 0.9745 1.1000 

T6 0.90 1.10 0.9811 1.0245 1.0253 

T7 0.90 1.10 0.9051 0.9889 0.9829 

T8 0.90 1.10 0.9000 0.9957 0.9462 

T9 0.90 1.10 0.9235 0.9494 0.9413 

T10 0.90 1.10 0.9100 0.9345 0.9788 

T11 0.90 1.10 0.9231 0.9702 0.9879 

T12 0.90 1.10 0.9123 0.9978 1.1000 

T13 0.90 1.10 0.9421 0.941 0.9412 

T14 0.90 1.10 0.9624 0.9862 0.9325 

T15 0.90 1.10 1.0221 0.9629 0.9000 

T16 0.90 1.10 0.9769 1.0163 0.9103 

T17 0.90 1.10 0.9314 1.0612 0.9764 

QC1 0.00 0.20 0.1215 0.1414 0.0523 

QC2 0.00 0.20 0.1542 0.1804 0.0473 

QC3 0.00 0.20 0.1725 0.0524 0.1702 

QC4 0.00 0.20 0.1214 0.0151 0.0583 

QC5 0.00 0.20 0.0312 0.0389 0.1700 

QC6 0.00 0.20 0.0601 0.0645 0.0400 

QC7 0.00 0.20 0.1032 0.0742 0.0862 

QC8 0.00 0.20 0.0021 0.0502 0.0103 

QC9 0.00 0.20 0.0310 0.0624 0.0125 

QC10 0.00 0.20 0.0134 0.0545 0.0425 

QC11 0.00 0.20 0.0426 0.0831 0.0524 

Cost ($/h) 42506 42481 42235 

Ploss (P.u) 0.1359 0.1468 0.1202 

Li
max 0.00 0.50 0.2796 0.2941 0.1787 

Vse 0.00 0.20 0.0200 

θse 122.876 

Figure 6. Bus voltages for different OPF methods 

Table 9. OPF results with Power loss as an objective 

Param
eter 

Limits 
FPA AFPA 

AFPA 
UPFC Min Max 

PG1 0.00 5.7588 2.136 1.9466 2.1102 

PG2 0.00 1.0000 0.1079 0.7898 0.6452 

PG3 0.00 1.400 1.1379 1.1400 1.0621 

PG4 0.00 1.0000 0.9001 1.0000 0.9631 

PG5 0.00 5.5000 2.9174 3.1548 3.4621 

PG6 0.00 1.0000 0.7740 0.3757 0.1158 

PG7 0.00 4.100 3.910 4.1000 3.8910 

VG1 0.90 1.10 0.9946 1.0185 1.0214 
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VG2 0.90 1.10 0.9954 1.0491 1.0412 

VG3 0.90 1.10 0.998 1.016 1.0351 

VG4 0.90 1.10 1.0222 1.1000 1.0157 

VG5 0.90 1.10 1.0152 1.007 1.0002 

VG6 0.90 1.10 0.9994 1.027 1.0208 

VG7 0.90 1.10 1.0998 0.9821 1.0176 

T1 0.90 1.10 1.1000 0.9841 1.0364 

T2 0.90 1.10 0.9823 0.9586 1.0263 

T3 0.90 1.10 0.9293 1.0434 1.0484 

T4 0.90 1.10 1.0968 0.9399 0.9850 

T5 0.90 1.10 0.9466 0.9835 0.9919 

T6 0.90 1.10 1.0398 1.0033 0.9000 

T7 0.90 1.10 0.9624 0.9648 0.9000 

T8 0.90 1.10 0.9000 0.9834 0.9000 

T9 0.90 1.10 1.0308 0.9931 1.0000 

T10 0.90 1.10 0.9307 0.9864 0.9543 

T11 0.90 1.10 0.9000 0.9609 0.9488 

T12 0.90 1.10 1.0033 1.0163 0.9564 

T13 0.90 1.10 0.9326 0.9493 0.9432 

T14 0.90 1.10 0.9238 1.0119 1.0035 

T15 0.90 1.10 1.0237 0.9736 0.9651 

T16 0.90 1.10 0.9139 1.0100 0.9720 

T17 0.90 1.10 0.9601 0.9714 0.9000 

QC1 0.00 0.20 0.0938 0.1127 0.0677 

QC2 0.00 0.20 0.135 0.1634 0.1292 

QC3 0.00 0.20 0.0736 0.1162 0.0120 

QC4 0.00 0.20 0.0713 0.0493 0.0574 

QC5 0.00 0.20 0.0204 0.1203 0.1178 

QC6 0.00 0.20 0.0637 0.0530 0.0146 

QC7 0.00 0.20 0.0723 0.1192 0.0754 

QC8 0.00 0.20 0.0821 0.0580 0.0825 

QC9 0.00 0.20 0.0206 0.0738 0.0167 

QC10 0.00 0.20 0.0674 0.0000 0.0597 

QC11 0.00 0.20 0.0387 0.0426 0.0236 

Cost 
($/h) 

44865 46213 45219 

Ploss 

(P.u) 
0.129 0.1154 0.1032 

Li
max 0.00 0.50 0.2805 0.2974 0.2231 

Vse 0.00 0.20 0.0629 

θse 114.66 

Table 10. OPF results for multi-objective function (f3) 

Param
eter 

Limits 
FPA AFPA 

AFPA 
UPFC Min Max 

PG1 0.00 5.7588 2.073 1.8856 2.5276 

PG2 0.00 1.0000 0.8257 0.7842 0.1023 

PG3 0.00 1.4000 1.3457 1.4000 1.1279 

PG4 0.00 1.0000 2.6864 3.1489 2.8174 

PG5 0.00 5.5000 3.8689 4.0000 3.9001 

PG6 0.00 1.0000 0.7945 0.8757 0.7640 

PG7 0.00 4.1000 3.7200 3.8000 4.0000 

VG1 0.90 1.10 1.028 1.0261 1.0259 

VG2 0.90 1.10 1.0357 1.0357 1.0379 

VG3 0.90 1.10 1.0397 1.0397 1.0274 

VG4 0.90 1.10 1.0495 1.0495 1.0181 

VG5 0.90 1.10 1.0442 1.0442 1.0214 

VG6 0.90 1.10 1.0416 1.0416 0.9961 

VG7 0.90 1.10 1.0525 1.0525 1.0443 

T1 0.90 1.10 0.9870 1.0441 1.0585 

T2 0.90 1.10 0.9310 0.9845 0.9541 

T3 0.90 1.10 1.0743 1.0665 1.0314 

T4 0.90 1.10 0.937 0.9491 1.0220 

T5 0.90 1.10 0.9528 1.0300 0.9910 

T6 0.90 1.10 1.0202 0.9742 0.9605 

T7 0.90 1.10 0.9808 1.0083 0.9000 

T8 0.90 1.10 0.9945 0.9221 0.9494 

T9 0.90 1.10 0.9817 0.9877 1.0048 

T10 0.90 1.10 0.9620 0.9626 0.9426 

T11 0.90 1.10 0.9528 0.9243 0.9107 

T12 0.90 1.10 0.912 1.0153 0.9996 

T13 0.90 1.10 1.005 0.9881 1.0677 

T14 0.90 1.10 1.0123 1.0036 1.0021 

T15 0.90 1.10 0.988 0.9693 0.9664 

T16 0.90 1.10 1.036 0.9678 0.9512 

T17 0.90 1.10 0.918 1.0069 1.0116 

QC1 0.00 0.20 0.127 0.0618 0.0938 

QC2 0.00 0.20 0.134 0.1919 0.135 

QC3 0.00 0.20 0.162 0.0774 0.0736 

QC4 0.00 0.20 0.093 0.0412 0.0703 

QC5 0.00 0.20 0.103 0.0358 0.0254 

QC6 0.00 0.20 0.030 0.0738 0.0661 

QC7 0.00 0.20 0.192 0.0000 0.0415 

QC8 0.00 0.20 0.080 0.0469 0.0708 

QC9 0.00 0.20 0.038 0.0856 0.1904 

QC10 0.00 0.20 0.0214 0.0972 0.0624 

QC11 0.00 0.20 0.0426 0.1793 0.0701 

f3 42494 42453 42332 

Li
max 0.00 0.50 0.1391 0.1318 0.1209 

Vse 0.00 0.20 0.0191 

θse 112.47 

From the Table 7, 8 & 9, it is evident that proposed 

AFPA technique with UPFC is very efficient to acquire 

optimum solution for single and multi-objective function.  
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8. Conclusion

Standard test networks IEEE-30 & IEEE-57 bus systems 

were selected to check the efficacy of the projected 

method for the considered single and multi objective 

functions. Fuzzy approach has been used to find the 

location of UPFC in the considered test system that 

effectively eliminated the masking effect in contingency 

ranking of the other proposed methods. 

The proposed method i.e AFPA with UPFC was very 

effective in eliminating the drawbacks of FPA and AFPA 

while finding the best possible control settings of the 

control variables. The proposed method reduced the fuel 

cost from 802.9$/h to 798.01$/h i.e 4.89$/h compared to 

existing literature and the power loss has been reduced to 

83% of FPA where as in the case of multi-objective 

function the reduction in the weighted sum from 800.23 to 

798.01 with respect to FPA. Here, in addition to proposed 

objectives, the inclusion of UPFC in the projected 

technique enhanced the stability margin and reduces 

voltage deviation too. 

This research work may also be extended by placing 

multiple facts devices in optimal places for single and 

multi objective optimization problems and also be 

extended to support the system under contingency 

conditions which gains lot of attention especially for 

planning and operation of the complex power systems.   
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