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Abstract 

This paper explains the role of Phasor Measurement Units (PMUs) in estimating the state of energy systems and suggests a 
linear state estimator involving PMU current and voltage measurements for tracking the system state. The state estimator 
carries out the estimation process in two phases. The first phase uses the conventional SCADA measurements and applies 
the classical Weighted Least Square (WLS) approach for estimating the current system state, and the second phase corrects 
and tracks the system state using the PMU measurements in the subsequent intervals. It provides simulation results of the 
proposed method on IEEE 30 and 57 bus energy systems for exhibiting its superiority. 
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1. Introduction

State Estimation (SE) is a computational process of 
estimating the state of an energy system from the available 
real-time measurements. The measurements such as 
voltages, current flows, and bus powers, are measured 
through current transformers and voltage transformers, and 
transmitted through Supervisory Control And Data 
Acquisition (SCADA) systems at a rate of 2-4 samples per 
second to the control centre for estimating the system state 
for effective monitoring, and control in addition to ensuring 
safe, reliable, and economic operation of the modern energy 
management system. The synchrophasor technology 
introduced a new kind of measuring units, known as Phasor 
Measuring Units (PMUs), which are employed to obtain 
real-time voltage and current phasor measurements at a rate 
of 10-120 samples per second. As PMUs are so very  

expensive, they are placed only at selected locations and 
may not provide redundant measurements for enabling state  
estimation (SE).  Both SCADA and PMU measurements are 
in general combined for performing the SE in energy 
systems [1]. 

Several approaches were suggested to optimally use the 
available SCADA and scarce PMU measurements for 
reconstructing the system state. Most of them were derived 
from the classical Weighted Least Square (WLS), Fast 
Decoupled WLS, and Weighted Least Absolute Value 
(WLAV) criterions [2]. The on-line execution of a robust 
SE algorithm was explained and its usability on a 400-node 
network was illustrated [3]. A WLS SE based on 
decomposition of singular value was proposed for ill-
conditioned power systems [4]. An efficient least absolute 
value estimator using an iteratively reweighted least square 
method was presented [5]. A multi-objective optimal PMU 
placement was proposed using a fewer PMUs with a view 
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of bringing down the uncertainty in voltage magnitude 
estimation and lending guidance for static voltage 
compensator [6]. A corrective action scheme was discussed 
to decrease the curtailment of wind energy and the 
excessive-load on the power lines [7]. A simple 
decentralized derivative-free dynamic SE scheme for a 
power system was developed [8]. A Cubature Kalman filter 
based tracking SE involving synchronized phasor 
measurements from PMUs was developed [9]. A quick 
network parameter error correction scheme was suggested 
based on detection of parameter errors [10]. The 
performance of SE in electric cyber-physical system model 
considering the false data attacks was assessed [11]. 

A forecasting-supported state estimator was proposed 
to follow the states of an energy network [12]. The 
motivations and engineering values of dynamic SE were 
revealed, and a set of probable applications depending on 
dynamic SE was discussed [13]. An analytical equation was 
derived for examining the covariance of vigorous least 
absolute value dynamic SE using influence function 
approximation [14]. A robust SE method involving PMUs 
was suggested for detecting online-attacks [15]. An ideal 
distribution system SE technique based on the data lent by 
smart meters for aiding voltage control strategies in actual 
time was discussed [16]. A dynamic SE method based on 
Kalman filtering was suggested and applied to a doubly fed 
induction generator-based wind generator model [17]. A 
load disturbance identification and enhancement scheme 
that functions with other dynamic SE methodologies was 
developed [18]. A PMU based bad data identification 
scheme was suggested with a view of improving the PMU 
data quality [19]. An original systematic proposal that 
merged stochastic activity network's numerical computation 
and modelling was suggested for investigating the reliability 
of the 5G-based Wide Area Measurement Systems [20]. A 
WLS linear algorithm involving SCADA and PMU 
measurements was outlined for performing SE of power 
systems with bad data detection scheme [21]. A 3-phase SE 
based on an artificial neural networks and PMU 
measurements was suggested for distribution networks [22].  

Most of the existing approaches combine both SCADA 
and PMU measurements together into a single set and solve 
the SE problem, but the SCADA and PMU measurements 
are obtained at different rates of 2-4 samples/second (sub-
second time frames) 10-120 samples/second respectively.  It 
will be good and realistic, if both measurements are dealt 
independently. The SCADA measurements can be used for 
static SE and PMU measurements can be used for 
correcting/tracking the systems state in the subsequent 
instants. This article therefore develops a new realistic 
tracking SE method that adopts the classical WLS approach 
using SCADA measurements and a correction scheme 
involving PMU measurements for tracking the system state. 
The developed method has been studied on the standard 
IEEE 14 and 30 bus power systems, and the results 
presented. 

Section 2 explains the proposed SE method, section 3 
presents the simulation results and section 4 concludes.  

2. Proposed Method 

The proposed method has two phases of estimation. The 
first phase performs conventional SE using SCADA 
measurements, and the second phase corrects the estimated 
state using PMU measurements, thereby tracking the system 
state in the subsequent instants. 

2.1. SE with SCADA measurements 

In this phase, the classical WLS method processes the 
SCADA measurements and estimates the system state in 
polar form. The nonlinear functions, 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), connecting 
the measurements 𝑀𝑀 and the state vector, 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑉𝑉∠𝜃𝜃, 
with errors, 𝑒𝑒,  can be written as:  
 𝑀𝑀 = 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝑒𝑒 (1) 
The variance 𝜎𝜎𝑗𝑗2 indicates the uncertainty of the concerned 
measurements. A large variance represents that the 
concerned measurement is inaccurate. The measurement 
error covariance matrix can be written by Eq. (2) 

 𝐶𝐶 =

⎣
⎢
⎢
⎡𝜎𝜎1

2

𝜎𝜎22

⋱
𝜎𝜎𝑛𝑛𝑛𝑛2⎦

⎥
⎥
⎤
 (2) 

where 𝑛𝑛𝑛𝑛 denotes the number of measurements. 
As the errors 𝑒𝑒 are modelled by Gaussian noise, the 
measurements 𝑀𝑀 represent Gaussian distribution with mean 
𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and covariance 𝐶𝐶. The probability density 
function of 𝑀𝑀 is expressed as:    

 
𝑓𝑓(𝑀𝑀) =

1
(2𝜋𝜋)𝑛𝑛𝑛𝑛/2|𝐶𝐶|1/2  × 

𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

[𝑀𝑀 − 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)]𝑇𝑇𝐶𝐶−1[𝑀𝑀 − 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)]� 
(3) 

The intend of the SE is to estimate the system state that 
maximizes the probability of the true value being equal to 
the measured quantity, that is, the system state maximizes 
the probability density function of Eq. (3). 
The exponential function within the braces of Eq. (3) is 
equivalent to the reduction of the quadratic term as in Eq. 
(4). 

 Minimize  𝐶𝐶𝐶𝐶 =
1
2

[𝑀𝑀 − 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)]𝑇𝑇𝐶𝐶−1[𝑀𝑀
− 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)] 

(4) 

                            = � 
1
2
 
�𝑀𝑀𝑗𝑗 − 𝑠𝑠𝑗𝑗(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)� 2

𝜎𝜎𝑗𝑗2

𝑛𝑛𝑛𝑛

𝑗𝑗=1

 (5) 

where 
𝐶𝐶𝐶𝐶 is the cost function to be minimized. 
𝑀𝑀 is a set of measurements 
𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is the set of measurement functions 
𝐶𝐶 is the diagonal covariance matrix in terms of the variance 
𝜎𝜎𝑗𝑗2 of the measurements. 
Eq. (5), representing the maximum likelihood criterion, 
lowers the net squared errors weighted by the measurement 
accuracy 𝜎𝜎𝑗𝑗−2, and is generally referred to as the WLS 
estimation. The solution of this equation provides an 
estimate 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  that should satisfy the following condition: 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 State Estimation of Power System Using PMU Devices 

3 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑆𝑆𝑇𝑇𝐶𝐶−1[𝑀𝑀 − 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)] = 0 (6) 

where 𝑆𝑆 = 𝜕𝜕𝜕𝜕(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝜕𝜕𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄  represents partial 
derivatives of  𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) with respect to state variables 
(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), referred to as Jacobian Matrix. 
Newton’s technique is applied for solving Eqs. (4) and (6) 
as: 

(𝑆𝑆𝑇𝑇𝐶𝐶−1𝑆𝑆)𝛥𝛥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑆𝑆𝑇𝑇𝐶𝐶−1𝛥𝛥𝛥𝛥 (7) 
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝛥𝛥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (8) 

where 𝛥𝛥𝛥𝛥 = 𝑀𝑀 − 𝑠𝑠(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is the measurement mismatch 
vector. 
A SE solution is obtained by iteratively solving Eqs. (7) and 
(8) for 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  until |𝛥𝛥𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝| becomes less than a small
tolerance value, say 0.001. Once converged, the values
given by Eq. (8) is the estimated system state (𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 +
1)).

2.2. Correction with PMU measurements 

Though the estimated system state (𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) from Eq. (8) 
represents the current system state, it is considered as 
pseudo measurements (V𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) in the subsequent instant, 
and combined with the PMU voltage (V𝑝𝑝𝑝𝑝𝑝𝑝) and current 
(I𝑝𝑝𝑝𝑝𝑝𝑝) measurements to form a new measurement set in 
polar form (𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝).  

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = [V𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , V𝑝𝑝𝑝𝑝𝑝𝑝 , I𝑝𝑝𝑝𝑝𝑝𝑝]𝑇𝑇 (9) 
To derive a non-iterative SE process, all the measurements 
must be converted into rectangular form (𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) using a 
transformation matrix (𝐾𝐾).   

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = [𝐾𝐾][𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]𝑇𝑇 (10) 
where, 

𝐾𝐾 =

⎣
⎢
⎢
⎢
⎢
⎡
cos𝜃𝜃1 0 0 −|𝑉𝑉1| sin𝜃𝜃1 0 0

0 cos𝜃𝜃2 0 0 −|𝑉𝑉2| sin𝜃𝜃2 0
0 0 ⋮ 0 0 ⋮

sin𝜃𝜃1 0 0 |𝑉𝑉1| cos𝜃𝜃1 0 0
0 sin𝜃𝜃2 0 0 |𝑉𝑉2| cos𝜃𝜃2 0
0 0 ⋮ 0 0 ⋮ ⎦

⎥
⎥
⎥
⎥
⎤

 (11) 

|𝑉𝑉1|, |𝑉𝑉2|, … . . |𝑉𝑉𝑛𝑛| denote the voltage magnitudes. 
𝜃𝜃1,𝜃𝜃2, … . .𝜃𝜃𝑛𝑛 represent voltage angles. 
The error covariance matrix (𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) of pseudo 
measurements must also be converted into rectangular form 
using Eq. (12).   
 𝐶𝐶1 = 𝐾𝐾 ⋅ 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝐾𝐾𝑇𝑇 (12) 
Similarly, the error covariance matrix of PMU 
measurements must also be converted into rectangular form 
using Eq. (13).   
 𝐶𝐶2 = 𝐾𝐾 ⋅ 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝐾𝐾𝑇𝑇 (13) 
Thus, the new covariance matrix (𝐶𝐶′) can be formed as: 

𝐶𝐶′ = �𝐶𝐶
1 0

0 𝐶𝐶2
� (14) 

WLS algorithm for this new measurement set and 
covariance matrix can be formed as:   
 (𝑆𝑆′𝑇𝑇𝐶𝐶′−1𝑆𝑆′)𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑆𝑆′𝑇𝑇𝐶𝐶′−1𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (15) 
where 𝑆𝑆′ = 𝜕𝜕𝜕𝜕′(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 𝜕𝜕𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄  represents the new Jacobian 
Matrix containing the partial derivatives of measurement 
functions  𝑠𝑠′(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) of the measurement set (𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) with 
respect to state variables (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). 

Ypq 

Yq0 Yp0 

Vp 

Ipq 

Vq 

Fig. 1: π - model of a transmission line 

In the Jacobian matrix (𝑆𝑆′), the elements corresponding 
to V𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and  V𝑝𝑝𝑝𝑝𝑝𝑝 are simply 0’s and 1’s, while the 
Jacobian elements corresponding to I𝑝𝑝𝑝𝑝𝑝𝑝 can be derived 
from the π - model of a transmission line as in Fig. 1. 
The line current �𝐼𝐼𝑝𝑝𝑝𝑝� can be written as 
 𝐼𝐼𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑝𝑝𝑌𝑌𝑝𝑝𝑝𝑝 + �𝑉𝑉𝑝𝑝 − 𝑉𝑉𝑞𝑞�𝑌𝑌𝑝𝑝𝑝𝑝 (16) 
where 
𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑞𝑞  are the p-th and q-th bus voltages respectively. 
𝑌𝑌𝑝𝑝𝑝𝑝 denotes the admittance (𝐺𝐺 + 𝑗𝑗𝑗𝑗) of the transmission line 
connected between buses p and q.  
𝑌𝑌𝑝𝑝𝑝𝑝 is the half line charging admittance (𝐺𝐺𝑝𝑝𝑝𝑝 + 𝑗𝑗𝐵𝐵𝑝𝑝𝑝𝑝). 
The above equation in terms of rectangular coordinates can 
be written as:  

�
𝐼𝐼𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐼𝐼𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = �

�𝐺𝐺 + 𝐺𝐺𝑝𝑝𝑝𝑝� −�𝐵𝐵 + 𝐵𝐵𝑝𝑝𝑝𝑝�
�𝐵𝐵 + 𝐵𝐵𝑝𝑝𝑝𝑝� �𝐺𝐺 + 𝐺𝐺𝑝𝑝𝑝𝑝�

   −𝐺𝐺 𝐵𝐵
−𝐵𝐵 −𝐺𝐺�

⎣
⎢
⎢
⎢
⎢
⎡ 𝑉𝑉𝑝𝑝

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑉𝑉𝑝𝑝
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑉𝑉𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑉𝑉𝑞𝑞
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

⎦
⎥
⎥
⎥
⎥
⎤

 (17) 

where the superscripts 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 denote the real and 
imaginary parts of the concerned variable.  
The partial derivatives of Eq. (17) with respect to real and 
imaginary parts of voltages yield constants only in terms of 
conductance and susceptance of the transmission lines.  
Therefore, the resulting Jacobian matrix (𝑆𝑆′) contains only 
constant terms, that is they have only 0’s, 1’s, susceptance, 
and conductance of transmission lines, and makes Eq. (15) 
linear and non-iterative. This equation is solved for 𝛥𝛥𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 
and the state vector is updated using Eq. (18). 

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛥𝛥𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (18) 

2.3. Algorithm 

1. Obtain the SCADA measurements.
2. Solve Eqs. (7) and (8) iteratively.  𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the system
state.
3. Obtain the real-time PMU measurements.
4. Combining 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and PMU measurements as a single set
of measurements, solve Eq. (15) for  𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 .
5. Update the system state using Eq. (18). 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the
current system state.
6. Repeat steps (3)-(5) in the subsequent instants for
continuously updating/tacking the system state, till the next
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SCADA measurements are available. If SCADA 
measurements are available, go to step (1).  

3. Simulation results 

The proposed SE method was studied on IEEE-14 and -30 
bus power systems [23]. The power flow was carried out 
and a small percent (1-10%) of random noises were added 
to obtain the noisy SACDA and PMU measurements, whose 
locations were chosen to evenly spread across the system to 
ensure observability of the system.  
• The estimated system state at the end of two phases of 

both systems are given in Tables 1 and 2 for 14 and 30 
bus systems respectively.  

• Figs. 2 & 3 displays voltage angle estimate errors 
using SCADA and PMU measurements respectively 
for 14 bus system. 

• Figs. 4 & 5 displays voltage magnitude estimate errors 
using SCADA and PMU measurements respectively 
for 14 bus system. 

• Figs. 6 & 7 displays voltage angle estimate errors 
using SCADA and PMU measurements respectively 
for 30 bus system. 

• Figs. 8 & 9 displays voltage magnitude estimate errors 
using SCADA and PMU measurements respectively 
for 30 bus system. 

The Figs. 2-9 clearly indicate that there is significant 
reduction error components with PMU measurements in 
the subsequent estimation process. This reduction in 
estimation errors clearly indicate that the estimate is more 
accurate and refined in the subsequent estimation process 
with PMU measurements for both the systems.  It is also 
seen that the accuracy of the SE method slightly lowers 
with increase in the system size. 

  Table 1: Estimated Solution for 14 bus system 

 
Bus No 

True 
Estimated State 
without PMU 

(Phase-1) 

Estimated State 
with PMU 
(Phase-2) 

Voltage 
Magnitude 

(p.u.) 

Voltage 
 Angle 

(degree) 

Voltage 
Magnitude 

(p.u.) 

Voltage  
Angle 

(degree) 

Voltage 
Magnitude 

(p.u.) 

Voltage 
Angle 

(degree) 
1 1.0600 0.0000 1.0068 0.0000 1.0584 0.0000 

2 1.0450 -4.9891 0.9899 -5.5265 1.0451 -5.0258 

3 1.0100 -12.7492 0.9518 -14.2039 1.0046 -12.7546 

4 1.0132 -10.2420 0.9579 -11.4146 1.0083 -10.2142 

5 1.0166 -8.7601 0.9615 -9.7583 1.0118 -8.7264 

6 1.0700 -14.4469 1.0185 -16.0798 1.0700 -14.4443 

7 1.0457 -13.2368 0.9919 -14.7510 1.0457 -13.2372 

8 1.0800 -13.2368 1.0287 -14.7500 1.0800 -13.2371 

9 1.0305 -14.8201 0.9763 -16.5125 1.0305 -14.8206 

10 1.0299 -15.0360 0.9758 -16.7476 1.0299 -15.0364 

11 1.0461 -14.8581 0.9932 -16.5397 1.0461 -14.8553 

12 1.0533 -15.2973 1.0009 -17.0203 1.0533 -15.2946 

13 1.0466 -15.3313 0.9940 -17.0583 1.0466 -15.3285 

14 1.0193 -16.0717 0.9647 -17.8967 1.0193 -16.0727 
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Fig. 2: Voltage angle estimation errors with SCADA 
measurements for 14 bus system. 

 

Fig. 3: Voltage angle estimation errors with PMU 
measurements for 14 bus system. 

 

Fig 4: Voltage magnitude estimation errors with 
SCADA measurements for 14 bus system 

 

Fig 5: Voltage magnitude estimation errors with 
PMU measurements for 14 bus system 

 

Fig. 6: Voltage angle estimation errors with SCADA 
measurements for 30 bus system. 

 

Fig. 7: Voltage angle estimation errors with PMU 
measurements for 30 bus system. 
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Table 2: Estimated Solution for 30 bus system 

 
Bus 
No 

True 
Estimated State 
without PMU 

(Phase-1) 

Estimated State 
with PMU 
(Phase-2) 

Voltage 
Magnitude 

(p.u.) 

Voltage 
 Angle 

(degree) 

Voltage 
Magnitude 

(p.u.) 

Voltage  
Angle 

(degree) 

Voltage 
Magnitude 

(p.u.) 

Voltage 
Angle 

(degree) 
1 1.0600 0.0000 0.9865 0.0000 1.0574 0.0000 
2 1.0430 -5.3543 0.9700 -6.2635 1.0430 -5.3904 
3 1.0196 -7.5308 0.9474 -8.8420 1.0234 -7.6313 
4 1.0104 -9.2840 0.9384 -10.9021 1.0141 -9.3750 
5 1.0100 -14.1738 0.9335 -16.4941 1.0101 -14.1795 
6 1.0096 -11.0581 0.9395 -12.9975 1.0152 -11.1708 
7 1.0020 -12.8649 0.9287 -15.0443 1.0054 -12.9316 
8 1.0100 -11.8193 0.9449 -13.9608 1.0201 -11.9941 
9 1.0392 -14.0644 0.9667 -16.4813 1.0424 -14.1441 

10 1.0215 -15.6706 0.9472 -18.3445 1.0248 -15.7384 
11 1.0820 -14.0644 1.0093 -16.4813 1.0821 -14.1425 
12 1.0496 -15.1245 0.9746 -17.6918 1.0517 -15.1645 
13 1.0710 -15.1245 0.9954 -17.6918 1.0711 -15.1638 
14 1.0320 -16.0018 0.9559 -18.7137 1.0344 -16.0404 
15 1.0251 -16.0084 0.9491 -18.7299 1.0277 -16.0537 
16 1.0304 -15.6251 0.9555 -18.2800 1.0331 -15.6746 
17 1.0188 -15.8687 0.9441 -18.5714 1.0219 -15.9313 
18 1.0114 -16.6067 0.9352 -19.4195 1.0144 -16.6575 
19 1.0066 -16.7658 0.9306 -19.6063 1.0097 -16.8193 
20 1.0095 -16.5502 0.9339 -19.3581 1.0127 -16.6068 
21 1.0082 -16.2178 0.9328 -18.9821 1.0115 -16.2801 
22 1.0120 -15.9811 0.9372 -18.7111 1.0156 -16.0477 
23 1.0085 -16.2294 0.9331 -18.9957 1.0118 -16.2845 
24 0.9991 -16.3007 0.9231 -19.0788 1.0030 -16.3609 
25 1.0032 -16.0720 0.9270 -18.7784 1.0082 -16.1429 
26 0.9852 -16.5038 0.9070 -19.2593 0.9904 -16.5709 
27 1.0145 -15.6559 0.9395 -18.2962 1.0202 -15.7365 
28 1.0078 -11.7163 0.9398 -13.7910 1.0143 -11.8374 
29 0.9944 -16.9077 0.9177 -19.7604 1.0003 -16.9710 
30 0.9828 -17.8067 0.9051 -20.8172 0.9888 -17.8592 

 
 

 

Fig 8: Voltage magnitude estimation errors with 
SCADA measurements for 30 bus system 

 

 

Fig 9: Voltage magnitude estimation errors with 
PMU measurements for 30 bus system 
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4. Conclusion 

The proposed SE algorithm involving two phases was 
developed with SCADA and PMU measurements. The 
first phase considered only the SCADA measurements 
and estimated the system state. The second phase 
transformed the phase-1 results as pseudo measurements, 
and combined with the PMU measurements and corrected 
the previous system state through a non-iterative solution 
process.  The second phase continuously tracks the system 
state in real-time according to the continuously available 
PMU measurements. The study of the proposed algorithm 
on two standard IEEE systems revealed the following: 
• The phase-1 estimation process is iterative and 

takes more time for estimation, as Jacobian and 
gain matrices must be recomputed during the 
iterative process.  

• The phase-2 equations are linear due to constant 
Jacobian and gain matrices, and the solution 
process is non-iterative. Moreover, the Jacobian 
and gain matrices can be made readily available for 
a given system with a given set of PMU 
measurements at the beginning of the estimation 
process, and need not be computed during the 
solution process, thereby lowering the computation 
time.  

• The voltage angle and magnitude errors are getting 
corrected and reduced in the subsequent estimation 
process with PMU measurements, compared to that 
of the initial estimation with SCADA 
measurements.   

• The inclusion of PMU measurements does not 
introduce any complexity in the SE process.  

• The accuracy of the SE method slightly lowers 
with increase in system size.  
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