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Abstract

This paper explains the role of Phasor Measurement Units (PMUs) in estimating the state of energy systems and suggests a
linear state estimator involving PMU current and voltage measurements for tracking the system state. The state estimator
carries out the estimation process in two phases. The first phase uses the conventional SCADA measurements and applies

the classical Weighted Least Square (WLS) approach for estimating the current system state, and the second phase corrects
and tracks the system state using the PMU measurements in the subsequent intervals. It provides simulation results of the
proposed method on IEEE 30 and 57 bus energy systems for exhibiting its superiority.
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1. Introduction

State Estimation (SE) is a computational process of
estimating the state of an energy system from the available
real-time measurements. The measurements such as
voltages, current flows, and bus powers, are measured
through current transformers and voltage transformers, and
transmitted through Supervisory Control And Data
Acquisition (SCADA) systems at a rate of 2-4 samples per
second to the control centre for estimating the system state
for effective monitoring, and control in addition to ensuring
safe, reliable, and economic operation of the modern energy
management system. The synchrophasor technology
introduced a new kind of measuring units, known as Phasor
Measuring Units (PMUs), which are employed to obtain
real-time voltage and current phasor measurements at a rate
of 10-120 samples per second. As PMUs are so very

expensive, they are placed only at selected locations and
may not provide redundant measurements for enabling state
estimation (SE). Both SCADA and PMU measurements are
in general combined for performing the SE in energy
systems [1].

Several approaches were suggested to optimally use the
available SCADA and scarce PMU measurements for
reconstructing the system state. Most of them were derived
from the classical Weighted Least Square (WLS), Fast
Decoupled WLS, and Weighted Least Absolute Value
(WLAV) criterions [2]. The on-line execution of a robust
SE algorithm was explained and its usability on a 400-node
network was illustrated [3]. A WLS SE based on
decomposition of singular value was proposed for ill-
conditioned power systems [4]. An efficient least absolute
value estimator using an iteratively reweighted least square
method was presented [5]. A multi-objective optimal PMU
placement was proposed using a fewer PMUs with a view

EAI Endorsed Transactions on
Energy Web
| Volume 12| 2025 |

< EAI |


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

S. Shanmugapriya et al.

of bringing down the uncertainty in voltage magnitude
estimation and lending guidance for static voltage
compensator [6]. A corrective action scheme was discussed
to decrease the curtailment of wind energy and the
excessive-load on the power lines [7]. A simple
decentralized derivative-free dynamic SE scheme for a
power system was developed [8]. A Cubature Kalman filter
based tracking SE involving synchronized phasor
measurements from PMUs was developed [9]. A quick
network parameter error correction scheme was suggested
based on detection of parameter errors [10]. The
performance of SE in electric cyber-physical system model
considering the false data attacks was assessed [11].

A forecasting-supported state estimator was proposed
to follow the states of an energy network [12]. The
motivations and engineering values of dynamic SE were
revealed, and a set of probable applications depending on
dynamic SE was discussed [13]. An analytical equation was
derived for examining the covariance of vigorous least
absolute value dynamic SE using influence function
approximation [14]. A robust SE method involving PMUs
was suggested for detecting online-attacks [15]. An ideal
distribution system SE technique based on the data lent by
smart meters for aiding voltage control strategies in actual
time was discussed [16]. A dynamic SE method based on
Kalman filtering was suggested and applied to a doubly fed
induction generator-based wind generator model [17]. A
load disturbance identification and enhancement scheme
that functions with other dynamic SE methodologies was
developed [18]. A PMU based bad data identification
scheme was suggested with a view of improving the PMU
data quality [19]. An original systematic proposal that
merged stochastic activity network's numerical computation
and modelling was suggested for investigating the reliability
of the 5G-based Wide Area Measurement Systems [20]. A
WLS linear algorithm involving SCADA and PMU
measurements was outlined for performing SE of power
systems with bad data detection scheme [21]. A 3-phase SE
based on an artificial neural networks and PMU
measurements was suggested for distribution networks [22].

Most of the existing approaches combine both SCADA
and PMU measurements together into a single set and solve
the SE problem, but the SCADA and PMU measurements
are obtained at different rates of 2-4 samples/second (sub-
second time frames) 10-120 samples/second respectively. It
will be good and realistic, if both measurements are dealt
independently. The SCADA measurements can be used for
static SE and PMU measurements can be used for
correcting/tracking the systems state in the subsequent
instants. This article therefore develops a new realistic
tracking SE method that adopts the classical WLS approach
using SCADA measurements and a correction scheme
involving PMU measurements for tracking the system state.
The developed method has been studied on the standard
IEEE 14 and 30 bus power systems, and the results
presented.

Section 2 explains the proposed SE method, section 3
presents the simulation results and section 4 concludes.

2. Proposed Method

The proposed method has two phases of estimation. The
first phase performs conventional SE using SCADA
measurements, and the second phase corrects the estimated
state using PMU measurements, thereby tracking the system
state in the subsequent instants.

2.1. SE with SCADA measurements

In this phase, the classical WLS method processes the
SCADA measurements and estimates the system state in
polar form. The nonlinear functions, s(xP°!4"), connecting
the measurements M and the state vector, xP°%" = V28,
with errors, e, can be written as:

M = s(xPoT) t+ e (1)
The variance ajz indicates the uncertainty of the concerned
measurements. A large variance represents that the
concerned measurement is inaccurate. The measurement
error covariance matrix can be written by Eq. (2)

0,2
0,2

¢= . @

2
Onm

where nM denotes the number of measurements.

As the errors e are modelled by Gaussian noise, the
measurements M represent Gaussian distribution with mean
s(xP°@y and covariance C. The probability density

function of M is expressed as:
1
fM) = TR o
1
exp {_E [M _ S(xpolar)]TC—l[M _ S(xpolar)]}

The intend of the SE is to estimate the system state that
maximizes the probability of the true value being equal to
the measured quantity, that is, the system state maximizes
the probability density function of Eq. (3).

The exponential function within the braces of Eq. (3) is
equivalent to the reduction of the quadratic term as in Eq.

4. )
Minimize CF = 3 [M — s(xPole)|TC~ 1M

(4)
_ S(xpolar)]
nM 2
B 1 {Mj _ sj(xpolar)}
j=1

where

CF is the cost function to be minimized.

M is a set of measurements

s(xP°lamy is the set of measurement functions

C is the diagonal covariance matrix in terms of the variance
0;% of the measurements.

Eq. (5), representing the maximum likelihood criterion,
lowers the net squared errors weighted by the measurement
accuracy aj‘z, and is generally referred to as the WLS
estimation. The solution of this equation provides an
estimate xP°!%" that should satisfy the following condition:
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= ST M — s(en)] = 0 ©)
where S = 0s(xP°97)/9xP4T  represents  partial
derivatives of s(xP°'%") with respect to state variables
(xP°!7), referred to as Jacobian Matrix.
Newton’s technique is applied for solving Egs. (4) and (6)
as:

(STC18)AxPolar = STC~1AM (7)

xpolar(t + 1) — xpolar(t) + AxPpolar (8)
where AM = M — s(xP°!4") is the measurement mismatch
vector.
A SE solution is obtained by iteratively solving Egs. (7) and
(8) for xP°” yntil |AxP°"| becomes less than a small
tolerance value, say 0.001. Once converged, the values
given by Eq. (8) is the estimated system state (xP°'" (t +

1)).

2.2. Correction with PMU measurements

Though the estimated system state (xP°'%") from Eq. (8)
represents the current system state, it is considered as
pseudo measurements (VPS¢¥4%) in the subsequent instant,
and combined with the PMU voltage (VP™*) and current
(IP™*) measurements to form a new measurement set in
polar form (MP0!ar),

Mpolar — [Vpseudojvpmu’lpmu]T (9)
To derive a non-iterative SE process, all the measurements
must be converted into rectangular form (M7®¢") using a
transformation matrix (K).

Mreet — [K] [Mpolar]T (10)
where,
[cos 6, 0 0 —|V;|sin6, 0 0]
| 0 cosf, 0 0 —|V,|sin#6, OI
_|1 0 0 : 0 0 :
sin 8, 0 0 |Vi|cos6, 0 0 (11)
0 sinf, 0 0 |V3]cosf, 0O
0 0 : 0 0 :
[Vil, V5], ... |V,| denote the voltage magnitudes.
01,0,, ..... 0, represent voltage angles.
The error covariance matrix (CPS€%4%) of pseudo

measurements must also be converted into rectangular form
using Eq. (12).

Cl =K- Cpseudo . KT (12)
Similarly, the error covariance matrix of PMU
measurements must also be converted into rectangular form
using Eq. (13).

c2=K.crmu. KT (13)
Thus, the new covariance matrix (C") can be formed as:
_[Ct 0
c=4 o (14)

WLS algorithm for this new measurement set and
covariance matrix can be formed as:

(SITCI—lsl)Axrect = §'TC'-1pMmrect (15)
where S’ = 3s'(x"¢")/dx"®* represents the new Jacobian
Matrix containing the partial derivatives of measurement
functions s'(x"®*) of the measurement set (M"¢*) with
respect to state variables (x"¢°").

2 EA

Ipq

Yp() YqO

Fig. 1: 71 - model of a transmission line

In the Jacobian matrix (S”), the elements corresponding
to VPSeudo apnd  VP™ are simply 0’s and 1’s, while the
Jacobian elements corresponding to IP™* can be derived
from the © - model of a transmission line as in Fig. 1.

The line current (Ipq) can be written as

Ipg = VpYpo t+ (Vp - Vq)qu (16)
where
V, and V; are the p-th and g-th bus voltages respectively.

Y,q denotes the admittance (G + jB) of the transmission line
connected between buses p and q.

Yy, is the half line charging admittance (G, + jByo)-

The above equation in terms of rectangular coordinates can
be written as:

Vpreal
[I;Sal] _ [(G + Gpo) _(B + Bpo) -G B ]| lmag| (17)
Lol LB+ B) (G4 Gpo) B G Vj

imag

where the superscripts real and imag denote the real and
imaginary parts of the concerned variable.
The partial derivatives of Eq. (17) with respect to real and
imaginary parts of voltages yield constants only in terms of
conductance and susceptance of the transmission lines.
Therefore, the resulting Jacobian matrix (S') contains only
constant terms, that is they have only 0’s, 1’s, susceptance,
and conductance of transmission lines, and makes Eq. (15)
linear and non-iterative. This equation is solved for Ax"¢°,
and the state vector is updated using Eq. (18).

xrect — xrect —+ Axrect (18)

2.3. Algorithm

1. Obtain the SCADA measurements.
2. Solve Egs. (7) and (8) iteratively.
state.

3. Obtain the real-time PMU measurements.

4. Combining xP°!%" and PMU measurements as a single set
of measurements, solve Eq. (15) for Ax"®¢,

5. Update the system state using Eq. (18). x"®* is the
current system state.

6. Repeat steps (3)-(5) in the subsequent instants for
continuously updating/tacking the system state, till the next

xP°lar is the system
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SCADA measurements are available. If SCADA

measurements are available, go to step (1).

3. Simulation results

The proposed SE method was studied on IEEE-14 and -30
bus power systems [23]. The power flow was carried out
and a small percent (1-10%) of random noises were added
to obtain the noisy SACDA and PMU measurements, whose
locations were chosen to evenly spread across the system to
ensure observability of the system.

e The estimated system state at the end of two phases of
both systems are given in Tables 1 and 2 for 14 and 30
bus systems respectively.

e Figs. 2 & 3 displays voltage angle estimate errors
using SCADA and PMU measurements respectively

for 14 bus system.

e Figs. 4 & 5 displays voltage magnitude estimate errors
using SCADA and PMU measurements respectively
for 14 bus system.

e Figs. 6 & 7 displays voltage angle estimate errors
using SCADA and PMU measurements respectively
for 30 bus system.

o Figs. 8 & 9 displays voltage magnitude estimate errors
using SCADA and PMU measurements respectively
for 30 bus system.

The Figs. 2-9 clearly indicate that there is significant
reduction error components with PMU measurements in
the subsequent estimation process. This reduction in
estimation errors clearly indicate that the estimate is more
accurate and refined in the subsequent estimation process
with PMU measurements for both the systems. It is also
seen that the accuracy of the SE method slightly lowers
with increase in the system size.

Table 1: Estimated Solution for 14 bus system

Estimated State

Estimated State

True without PMU with PMU
(Phase-1) (Phase-2)

Bus No Voltage Voltage Voltage Voltage Voltage Voltage
Magnitude Angle Magnitude Angle Magnitude Angle

(p-u.) (degree) (p-u.) (degree) (p-u.) (degree)

1 1.0600 0.0000 1.0068 0.0000 1.0584 0.0000

2 1.0450 -4.9891 0.9899 -5.5265 1.0451 -5.0258

3 1.0100 -12.7492 0.9518 -14.2039 1.0046 -12.7546

4 1.0132 -10.2420 0.9579 -11.4146 1.0083 -10.2142

5 1.0166 -8.7601 0.9615 -9.7583 1.0118 -8.7264

6 1.0700 -14.4469 1.0185 -16.0798 1.0700 -14.4443

7 1.0457 -13.2368 0.9919 -14.7510 1.0457 -13.2372

8 1.0800 -13.2368 1.0287 -14.7500 1.0800 -13.2371

9 1.0305 -14.8201 0.9763 -16.5125 1.0305 -14.8206

10 1.0299 -15.0360 0.9758 -16.7476 1.0299 -15.0364

11 1.0461 -14.8581 0.9932 -16.5397 1.0461 -14.8553

12 1.0533 -15.2973 1.0009 -17.0203 1.0533 -15.2946

13 1.0466 -15.3313 0.9940 -17.0583 1.0466 -15.3285

14 1.0193 -16.0717 0.9647 -17.8967 1.0193 -16.0727
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Voltage Angle Estimation Error without PMU
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Fig. 2: Voltage angle estimation errors with SCADA
measurements for 14 bus system.

Voltage Angle Estimation Error with PMU
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Fig. 3: Voltage angle estimation errors with PMU
measurements for 14 bus system.
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Fig 4: Voltage magnitude estimation errors with
SCADA measurements for 14 bus system
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Fig 5: Voltage magnitude estimation errors with
PMU measurements for 14 bus system
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Fig. 6: Voltage angle estimation errors with SCADA
measurements for 30 bus system.
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Fig. 7: Voltage angle estimation errors with PMU
measurements for 30 bus system.
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Table 2: Estimated Solution for 30 bus system

Estimated State

Estimated State

True without PMU with PMU
Bus (Phase-1) (Phase-2)
No Voltage Voltage Voltage Voltage Voltage Voltage
Magnitude Angle Magnitude Angle Magnitude Angle
(p-u.) (degree) (p-u.) (degree) (p-u.) (degree)
1 1.0600 0.0000 0.9865 0.0000 1.0574 0.0000
2 1.0430 -5.3543 0.9700 -6.2635 1.0430 -5.3904
3 1.0196 -7.5308 0.9474 -8.8420 1.0234 -7.6313
4 1.0104 -9.2840 0.9384 -10.9021 1.0141 -9.3750
5 1.0100 -14.1738 0.9335 -16.4941 1.0101 -14.1795
6 1.0096 -11.0581 0.9395 -12.9975 1.0152 -11.1708
7 1.0020 -12.8649 0.9287 -15.0443 1.0054 -12.9316
8 1.0100 -11.8193 0.9449 -13.9608 1.0201 -11.9941
9 1.0392 -14.0644 0.9667 -16.4813 1.0424 -14.1441
10 1.0215 -15.6706 0.9472 -18.3445 1.0248 -15.7384
11 1.0820 -14.0644 1.0093 -16.4813 1.0821 -14.1425
12 1.0496 -15.1245 0.9746 -17.6918 1.0517 -15.1645
13 1.0710 -15.1245 0.9954 -17.6918 1.0711 -15.1638
14 1.0320 -16.0018 0.9559 -18.7137 1.0344 -16.0404
15 1.0251 -16.0084 0.9491 -18.7299 1.0277 -16.0537
16 1.0304 -15.6251 0.9555 -18.2800 1.0331 -15.6746
17 1.0188 -15.8687 0.9441 -18.5714 1.0219 -15.9313
18 1.0114 -16.6067 0.9352 -19.4195 1.0144 -16.6575
19 1.0066 -16.7658 0.9306 -19.6063 1.0097 -16.8193
20 1.0095 -16.5502 0.9339 -19.3581 1.0127 -16.6068
21 1.0082 -16.2178 0.9328 -18.9821 1.0115 -16.2801
22 1.0120 -15.9811 0.9372 -18.7111 1.0156 -16.0477
23 1.0085 -16.2294 0.9331 -18.9957 1.0118 -16.2845
24 0.9991 -16.3007 0.9231 -19.0788 1.0030 -16.3609
25 1.0032 -16.0720 0.9270 -18.7784 1.0082 -16.1429
26 0.9852 -16.5038 0.9070 -19.2593 0.9904 -16.5709
27 1.0145 -15.6559 0.9395 -18.2962 1.0202 -15.7365
28 1.0078 -11.7163 0.9398 -13.7910 1.0143 -11.8374
29 0.9944 -16.9077 0.9177 -19.7604 1.0003 -16.9710
30 0.9828 -17.8067 0.9051 -20.8172 0.9888 -17.8592
L N K T L e e e e MU
L A 5
E . F‘ Lot ‘:" T "! I E 0 q‘ !!‘ :\J \h
% “a lfl R quV’ ! i'l % od ‘l_,' ! ‘."'."""n
% e l|:1 J ll: 5-05 . ‘t ; “‘mﬁ-u
I S " 3 v
g Vi . g: 1 i
s . :
6.5 D 15

12345678 91011121314151617181920212223 24252627 282930
Bus Number

123456 78 91011121314151617181920212223 24252627 282930
Bus Number

Fig 8: Voltage magnitude estimation errors with
SCADA measurements for 30 bus system
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Fig 9: Voltage magnitude estimation errors with
PMU measurements for 30 bus system
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4. Conclusion

The proposed SE algorithm involving two phases was
developed with SCADA and PMU measurements. The
first phase considered only the SCADA measurements
and estimated the system state. The second phase
transformed the phase-1 results as pseudo measurements,
and combined with the PMU measurements and corrected
the previous system state through a non-iterative solution
process. The second phase continuously tracks the system
state in real-time according to the continuously available
PMU measurements. The study of the proposed algorithm
on two standard IEEE systems revealed the following:

The phase-1 estimation process is iterative and
takes more time for estimation, as Jacobian and
gain matrices must be recomputed during the
iterative process.

The phase-2 equations are linear due to constant
Jacobian and gain matrices, and the solution
process is non-iterative. Moreover, the Jacobian
and gain matrices can be made readily available for
a given system with a given set of PMU
measurements at the beginning of the estimation
process, and need not be computed during the
solution process, thereby lowering the computation
time.

The voltage angle and magnitude errors are getting
corrected and reduced in the subsequent estimation
process with PMU measurements, compared to that
of the initial estimation with SCADA
measurements.

The inclusion of PMU measurements does not
introduce any complexity in the SE process.

The accuracy of the SE method slightly lowers
with increase in system size.
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