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Abstract 
Investigation for minimizing energy consumption in data centers is increasing due to their heavy usage. In a data center, 
virtual machine placement is a procedure that maps virtual machines to physical machines. VMP problem is a complex 
combinatorial optimization problem with various constraints. In literature, the VMP problem is investigated with different 
objectives. In this paper, the problem is formulated as a single-objective optimization problem with the goal of minimizing 
energy consumption in cloud data centers. A metaheuristic evolutionary algorithm called the Duelist algorithm is designed 
to solve the VMP problem. Two variations are proposed with modifications in the winner's learning strategy. The proposed 
strategy improved the exploration capability of the Duelist algorithm. The performance of proposed variations is tested using 
15 datasets with varying problem sizes. Performance is evaluated using the best, mean, standard deviation, success rate, 
acceleration rate and convergence speed. Variation 1 and variation 2 are better than the basic Duelist algorithm on all 
measures. 
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1. Introduction

Cloud computing is a model for delivering computing 
resources over the Internet, allowing users to access and 
use computational power, storage, networking and 
software applications on-demand. These cloud services are 
available in different forms known as types of cloud 
services. The main cloud services are Software-as-a-
Service (SaaS), Infrastructure-as-a-Service (IaaS) and 
Platform-as-a-Service (PaaS). A cloud computing service 
paradigm called Infrastructure as a Service (IaaS) gives 
consumers access to virtualized computer resources 
including storage, networking, and processing power 
online. IaaS allows users to rent these resources from a 
cloud service provider on a pay-per-use basis, enabling 
them to scale up or down their infrastructure needs based 
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on their requirements [1]. The IaaS model offers numerous 
benefits to both data center providers and end-users, 
benefiting in cost savings and increased flexibility. 
Computing resources are sold by data center providers to a 
large number of customers, resulting in significant revenue 
generation opportunities. At the same time, end-users are 
able to purchase computing resources at lower costs than 
what would be required to maintain private infrastructure. 
However, in order to maximize profits, cloud providers 
must manage their resources and reduce deployed 
computer resources to the extent possible.  
The major IT infrastructure for cloud computing, which 
primarily consists of IT equipment for data processing, 
storage, and communication is called data center. To 
comply with the demands of cloud users, data centers 
operate continuously with a multitude of active hosts, 
servers, networking equipment and storage devices. The 
extensive use of energy in various operations is a 
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significant challenge for data centers [2]. According to 
estimates, approximately 3% of the world's electricity is 
currently consumed by data centers and that share is 
predicted to rise to 4% by year 2030. The typical 
hyperscale operation uses 20 to 50 MW of power annually, 
which could possibly power 37,000 households. Experts at 
Vertiv anticipate that in year 2023, this will lead to more 
governmental scrutiny [3]. Since year 2015, the amount of 
electricity used in data centers in Ireland has more than 
tripled and by year 2021, it took up 14% of all electricity 
used. By year 2025, it is anticipated that Denmark's data 
center energy use will have tripled, making up about 7% of 
the nation's electrical consumption [4]. The data center 
industry overview reveals that 10% of global IT 
organizations will go server-less before year 2023. 
According to forecasting data, upto year 2025 the data 
center industry will consume 20 percent of the total energy. 
Spending on IT data center will reach $222 billion in year 
2023 [5]. According to IEA [4], data center workload in 
year 2015 was 180 million and was 650 million in year 
2021 which significantly increased by +260% and data 
center energy usage in year 2015 was 200 TWh and was 
220-320 TWh in year 2021 which increased by +10-60%.
The energy consumption in cloud data centers is important
issue from environmental point of view. According to
reports, the operation of data center servers is responsible
for 0.5% of the world's CO2 emissions.
As a result, the research for minimising data center power
consumption and the Virtual Machine Placement (VMP)
problem in cloud infrastructure increased. Researchers
have examined a variety of strategies to lower data centers'
energy usage. The management of servers or physical
machines can be made easier by applying virtualization
technology. In the context of data centers, virtual machine
placement, also known as server consolidation, refers to the 
process of mapping multiple virtual machines (VMs) onto
physical machines (PMs) and allowing them to share
resources like CPU, storage, bandwidth and memory. This
technique enables efficient utilization of resources and is a
critical component of data center management. VMP
problem is a complex optimization problem in cloud
computing due to the dynamic and unpredictable nature of
cloud workloads and the numerous constraints involved in
placing virtual machines on physical hosts. The problem
involves optimizing multiple objectives such as
minimizing resource wastage, energy consumption and
achieving load balancing. VMP problem is NP, which
means it is computationally challenging to discover the
optimal solution in a reasonable length of time. The VMP
is regarded as a strategy for effectively managing physical
machine usage to lower the overall number of active
physical machines in the data centers [6]. The original
concept involved mapping virtual machines onto a number
of operational servers that are energy-efficient, followed by 
the deactivation of idle or underutilized hosts [7]. About
66% energy consumption is reduced by switching off
inactive PMs [8]. Several studies discussed the complexity
of the VMP problem. Despite the benefits of virtual
machine placement, there are significant challenges that

must be addressed. A primary concern is determining the 
optimal allocation or placement of virtual machines onto 
physical machines in a manner that minimizes the amount 
of energy used by data center. This is a crucial research 
problem that requires careful consideration. The primary 
aim of virtual machine placement algorithms is to achieve 
an optimal allocation of virtual machines to physical 
machines while considering specific design objectives.  
The Duelist algorithm is a population-based evolutionary 
algorithm where Duelist make improvements to win a 
fight. Every individual in a population is referred to as a 
duelist. To determine who wins and losses, each duelist 
engages in a fight with another duelist. Both winners and 
losers have different ways of improving themselves. The 
winner improves himself by learning from past mistakes. 
The loser learns from the winner thereby trying to gain 
some of the good skills of the winner. Some duelists will 
emerge as the best solutions to a set of challenges after 
numerous improvements and duels [9, 10].  
The main objectives for our study are as follows: 
• Design a Duelist algorithm to solve the cloud data

center’s virtual machine placement problem to
minimize energy consumption.

• Improve performance of Duelist algorithm with better
exploration by new learning strategies of winner
improvement.

• Fine-tune the algorithm-specific parameters of Duelist
algorithms.

The contribution of this paper is improvements in Duelist 
algorithm for solving VMP by adapting new learning 
strategies. The proposed variations reduced physical 
machines' energy usage.  
Section 2 presents the related work done in the area of 
virtual machine placement problem and Duelist algorithms. 
Virtual machine placement problem with objectives, 
assumptions and constraints is presented in section 3. 
Duelist algorithm, proposed variations, solution 
representation and fitness function is presented in section 
4. Section 5 is about experimental details, results and
discussion. Section 6 is about the conclusion.

2. Related Work

This section presents work done related to virtual
machine placement and duelist algorithm. Different 
objectives have been investigated in various studies of 
VMP, such as enhancing resource utilization, minimizing 
network traffic, achieving optimal placement, reducing 
power consumption, maximizing economical revenue, 
utilization rate and quality of service. Deterministic 
algorithms [11–13] and more intelligent metaheuristic 
algorithms [14, 15] are few of the approaches that have 
been suggested to deal with the VMP problem. 

Constraint programming based exact allocation and 
migration algorithms are used to solve VMP problems. 
These algorithms are proficient in decreasing the number 
of active physical machines (APMs) and lowering 
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migration costs. However, a major disadvantage of 
constraint-based algorithms is their extended search time 
[16]. Min-cut hierarchical clustering algorithms aimed to 
optimize the MLU by utilizing CPU, memory and 
bandwidth. One of the drawback is the higher cost of VM 
migration [17]. Paper [18] addressed the VMP problem as 
a linear programming (LP) problem. Their approach 
focused on minimizing energy and hardware costs by 
formulating linear programming formulations for server 
consolidation problems. The paper [19] focuses on load 
balancing and unbalancing techniques in cluster-based 
systems to achieve both power and performance 
optimization. It discusses the trade-offs between these two 
objectives and proposes a dynamic balancing approach that 
adapts to workload changes and takes into account the 
power consumption of each node in the cluster. Paper [20] 
reduced energy usage by switching off unused servers and 
used a statistical flip-flop filter to address the virtual 
machine placement problem. 

Stochastic bin packing algorithms based on group 
packing techniques proposed as a solution for virtual 
machine placement problems. These algorithms utilize 
random variables to forecast future bandwidth, which in 
turn helps in reducing the number of physical machines in 
data centres that are active [21]. The authors propose a 
dynamic consolidation approach that combines two 
heuristics, the first-fit decreasing (FFD) and best-fit 
decreasing (BFD) algorithms. They also introduce a 
power-aware load balancing technique called Local 
Regression (LR) that is used to determine the optimal 
utilization of the available resources. Additionally, the 
paper presents a Hybrid Threshold-Min-Migration 
(HTMM) algorithm that is designed to minimize the 
number of active servers while ensuring that the service 
level agreements (SLAs) are met. [22-23]. In literature, 
investigations are also done based on the Multiple 
Knapsack Problem and Best Fit Algorithm [24-25]. The 
paper [26] discusses the challenges associated with server-
storage virtualization and proposes a load balancing 
approach to address them. The proposed approach 
dynamically migrates virtual machines and storage 
resources to balance the workload across servers. The 
paper [27] proposes a novel virtual placement algorithm for 
virtual computing that aims to improve the placement of 
virtual machines (VMs) on physical servers to optimize the 
resource utilization and performance of the virtualized 
environment. The proposed algorithm takes into account 
the resource requirements and load of VMs, as well as the 
resource availability of physical servers to determine the 
optimal placement of VMs. Papers [28-29] used greedy 
algorithms to solve the problem.  
Various metaheuristic algorithms are proposed in the 
literature to solve the VMP problem, including simulated 
annealing [30] and ant colony optimization [14]. These 
algorithms aim to optimize the VM placement by 
iteratively improving solutions based on a set of rules or 
heuristics. The use of metaheuristic algorithms provides a 
promising approach for solving the VMP problem, as they 
are able to overcome some of the limitations of exact 

algorithms in terms of solution quality and computation 
time. The Genetic Algorithm Based Approach (GABA), 
which addresses multiobjective optimisation, is used to 
handle VMP problems [31]. Multi-objective virtual 
machine placement in a cloud environment focusing on 
maximising profits, balancing loads, and minimising 
resource wastage is presented. Performance of three 
algorithms namely GA, NSGA, and NSGA-II presented 
[32]. Paper proposed a multi-objective optimization 
approach using a non-dominated sorting genetic algorithm-
II (NSGA-II) to solve the virtual machine placement 
problem with objective maximize profits, minimize 
resource wastage and balance the load among physical 
machines. However, the proposed approach was evaluated 
only for small-sized problems having up to 60 VMs [33]. 
With the recent survey, virtual machine placement problem 
in cloud data center is classified in three ways as resource 
type, considered VM set and objectives [34]. To solve the 
power efficiency challenges, the Virtual Machine 
Placement Framework towards the Power Efficiency of 
Sustainable Cloud Environment (MV-PESC) technique is 
recommended [35]. Paper [36] presented an algorithm, 
FPNSO that optimizes resource usage and reduces energy 
consumption and carbon emissions in cloud data centers. 
The algorithm employs FPO and NSGA-II to find suitable 
physical server for assigning virtual machines. The 
algorithm is examined by Google Cluster Dataset (GCD). 
Results showed significant improvements in power 
consumption, carbon emissions and resource utilization 
compared to existing approaches. Paper [37] presented a 
new approach to improve the energy efficiency of VMP 
problem in cloud data centers. The proposed approach 
reduced the computational complexity of the genetic 
algorithm (GA) and accelerates its execution time by using 
a new data structure and an alternative fitness function. 
Paper [38] discussed the importance of efficient virtual 
machine (VM) placement in cloud computing, which aims 
to reduce energy consumption and increase resource usage. 
It introduces an enhanced version of the ABCSO algorithm 
that integrates an adaptive concept, combining the 
capabilities of Artificial Bee Colony (ABC) and Cat 
Swarm Optimization (CSO). In the paper [39], the authors 
propose an Ant Colony Optimization (ACO) algorithm for 
optimizing virtual machine placement in cloud computing 
environments. The algorithm aims to improve energy 
efficiency and consider traffic-awareness to enhance 
overall system performance. It offers a promising approach 
for effective resource allocation and management in cloud 
computing, addressing the challenges of energy 
consumption and network traffic in virtualized 
environments. Paper [40] provided a comprehensive 
review of virtual machine placement methods using 
metaheuristic algorithms in a cloud environment. It 
discusses the advantages and disadvantages of various 
methods and highlights the need for further research in this 
area.  
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3. Virtual machine placement problem

The The process of server virtualization involves mounting 
virtual machines on a collection of physical machines. This 
process is called virtual machine placement. VMP problem 
is a key challenge in cloud computing that involves 
determining the optimal allocation of virtual machines 
(VMs) to physical servers, also known as hosts or physical 
machine (PM) or nodes, within a cloud data center. The 
goal of VMP problem is to achieve efficient utilization of 
resources such as CPU, storage, memory and network 
bandwidth while minimizing operational cost and meeting 
performance requirements of the applications running on 
the VMs. VMP problem is a complex optimization problem 
with various constraints. Different objectives have been 
investigated in various studies, such as load balancing, 
response time, minimizing number of servers used, 
throughput, process maximum requests of customers, 
maximizing resource utilization and minimizing resource 
wastage, minimizing energy consumption and carbon 
footprint, maximizing profits and minimizing operational 
costs, minimizing the number of virtual machine 
migrations, maximizing the availability and reliability of 
the virtual machines [22, 33-35, 41]. In this study, the 
primary goal is to reduce energy consumption in cloud data 
centers by considering CPU as a promising resource. 
The VMP problem is addressed in this experiment as a bin 
packing problem, and the formulation of the problem is 
identical to that in [41].  The formulation of VMP problem 
is presented as, given a set of VMs and a set of PMs in a 
cloud data center. The goal is to assign VMs to PM with 
satisfying given constraints to achieve reduction in total 
energy usage of the data center. 
The following are the constraints, 
• All virtual machines must be allocated to physical

machine.
• Only one physical machine should be allocated to each

virtual machine.
• Physical machine must possess sufficient resources for 

allocated VMs.
The virtual machine placement problem is formulated as, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓(𝑝𝑝) =  �𝛼𝛼𝑗𝑗

𝑄𝑄

𝑗𝑗=1

× ��𝑃𝑃_𝑀𝑀𝑚𝑚𝑚𝑚𝑗𝑗
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  −  𝑃𝑃_𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�  × 𝑃𝑃𝑏𝑏𝑢𝑢𝑗𝑗

𝑐𝑐𝑐𝑐𝑏𝑏  +   𝑃𝑃_𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�    (1) 

 𝑃𝑃𝑏𝑏𝑢𝑢𝑗𝑗
𝑐𝑐𝑐𝑐𝑏𝑏 =  �𝛽𝛽𝑖𝑖𝑗𝑗  ×  

𝐶𝐶𝑃𝑃𝐶𝐶_𝑉𝑉𝑖𝑖
𝐶𝐶𝑃𝑃𝐶𝐶_𝑃𝑃𝑗𝑗

𝑉𝑉

𝑖𝑖=1

 (2) 

Where, 
i € {1,2,3,……,V} and j € {1,2,3,……,Q} 
𝑓𝑓(𝑝𝑝)  is total energy consumed by data center due to 
PMs  
 𝛼𝛼𝑗𝑗 show whether or not jth physical machine contains 
virtual machine 
𝑃𝑃_𝑀𝑀𝑚𝑚𝑚𝑚𝑗𝑗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  maximum energy consumption of PM 
𝑃𝑃_𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   minimum energy consumption of PM  
𝑃𝑃𝑏𝑏𝑢𝑢𝑗𝑗

𝑐𝑐𝑐𝑐𝑏𝑏   is  CPU utilization ratio of jth  physical machine

𝛽𝛽𝑖𝑖𝑗𝑗  is a binary that shows whether or not a virtual 
machine is assigned to a physical machine 
𝐶𝐶𝑃𝑃𝐶𝐶_𝑉𝑉𝑖𝑖 is virtual machine’s CPU demand 
𝐶𝐶𝑃𝑃𝐶𝐶_𝑃𝑃𝑗𝑗   is physical machine’s CPU capacity 

4. Duelist algorithm and proposed
variations for VMP

The Duelist algorithm is metaheuristic evolutionary 
optimization algorithm. It uses the principles of genetic 
algorithms and is designed to mimic the fighting and 
learning capabilities of humans. It is based on the concept 
of ‘dueling,’ where two potential solutions are pitted 
against each other and evaluated based on their fitness. 
Based on the fighting capabilities and luck of the duelist 
the champions, winner and loser are determined. Each of 
these categories have their own way of enhancement. 
Champion trains a new duelist which is similar as himself, 
winner learns from himself to be more advance and loser 
learns from winner from whom it lost the duel. Then post 
qualification is done where worst duelists are eliminated to 
maintain the pool of duelist. This process is repeated until 
an optimal solution is found [9,10]. Figure 1 shows 
flowchart of basic duelist algorithm. Several real world 
problems in different domains have been solved by using 
duelist algorithm in refinery crude preheat train cleaning 
scheduling [42], optimization of oil production in CO2 
enhanced oil recovery, operating conditions of steam 
injection in enhanced oil recovery [43]. This algorithm is 
hybridized with other algorithms to solve the problems 
such as response surface methodology along with Duelist 
algorithm for optimizing the dimensional surface quality 
and material removal rate in turing [44], Duelist algorithm 
along with Killer-Whale and Rain-Water algorithms for 
optimization of energy efficiency and conservation in 
green building design [45], using Duelist algorithm for 
optimization of PID controller tuning parameters for 
multivariable system [46]. Optimization of petlyuk 
distillation column design [27]. 
Following are the steps of duelist algorithm. 
a) Registration of duelist candidate: It is an initialization

step. 1D array is used to register each duelist in a
duelist set. In a duelist algorithm, it is referred to as a
skillset.

b) Pre-Qualification: Each duelist must pass a pre-
qualification test to assess their fighting capacity based 
on their skill set.

c) Determination of champion’s board: In order to keep
the best duelist in the game, the board of champions is
determined. Each champion will train a new duelist
which will have the same capabilities as the champion.
The game's champion would be replaced by these new
duelists, who would then participate in the subsequent
duel.
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d) Duel between each duelist: The fight between the
duelists is set randomly. Each duelist will participate
in the fight utilizing their fighting skills and luck to
determine who will win and who will lose. Duelist A
wins if his fighting ability combined with his luck is
greater than duelist B's, and vice versa. To avoid local
optimum, the luck of the duelist is completely
determined by random function.

e) Duelist’s improvement: Each duelist is categorized
into winner and loser after the fight. Each loser is
trained by winner. Learning means that the loser may
acquire a portion of the winner's array or skill set. The
second method is for the winners. Each winner would
develop their own skills, where it mutates to be more
advance.

f) Elimination: Due to certain new duelists joining the
game, an elimination is necessary to maintain the
predetermined number of duelists. Based on each
duelist's individual duelling abilities, they are
eliminated. The duelist who performs the worst in a
duel is eliminated.

Figure 2 displays the solution representation used to solve 
the virtual machine placement problem. The term “VM” is 
virtual machine and “PM” is physical machine. The 
solution is represented by a one-dimensional array. The 
number of virtual machines determines the size of the 
solution. Consider there are 7 virtual machines and 3 
physical machines. The representation of solution is given 
as, 

PM3 PM1 PM1 PM2 PM3 PM2 PM2 

VM1 VM2 VM3 VM4 VM5 VM6 VM7 

Figure 2. Solution Representation 

Figure 1. Flowchart of basic Duelist algorithm 

Pseudocode for Duelist algorithm for VMP 
Input: no_pm, vm_instance_req_cpu, no_pm, pm_cpu, pm_energy_busy_cpu 
Output: Minimum fitness value (energy) 
Initialization:  
Registration of duelists 
Randomly initialize the solution matrix 
Pre-qualification of registered duelist using fitness (objective)  function using equation 1 
Procedure: 
Begin 
  While generation< max_generation+1 do 
         Determine board of champions (best duelists based on fitness value) 
         Champion will train the duelist 
         for i=1: (no_of_champions) 

    for j = 1: no_vm 
  if random(0,1) < mutation_probability 
        matrix[j,i]=random (1,no_pm) 
  fi 

    end 
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        end 

        Dueling procedure  
        While i< no_vm do 

    If (i== no_vm-1) 
         winner_loser[i]=1 
   else: 

   compute battle score for each of the two duelist. based on fitness and luck 
      battlescore[i]=fitness *(1+(luck+(random (0,1)* luck))) 
     battlescore[i+1]=fitness *(1+(luck+(random (0,1)* luck))) 
 compare battle score and indicate winner and loser 
  if(battlescore[i]> battlescore[i+1]): 

       winner_loser[i]=1 
      winner_loser[i+1]=0 

 else: 
      winner_loser[i]=0 
      winner_loser[i+1]=1 

    fi 
fi 

        od  

         Duelist improvement procedure 
         for j = 0:no_vm: 

 for i=0:population size:      
      if winner_loser[i]==1:   

if random(0,1)<innovation probability: 
train[i,j]=random(1, no_pm) 

     else: 
if random (0,1)<learning probability: 

if (i%2==0): 
       train[i,j] = matrix[i+1,j] 
else: 
      train[i,j] = matrix[i-1,j] 

  fi 
 fi 

    end 
         end 

        Elimination of worst duelists 
  od 
End 

Pseudocode for VMP objective function 
Input: no_pm, vm_instance_req_cpu, no_pm, pm_cpu, pm_energy_busy_cpu 

Output: Minimum fitness value (energy) 

function f(*g): 
    c = g 
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    fitness_value = 0.0 
    temp_pm_cpu = pm_cpu[:] 
    for vm, pm in enumerate(c): 
        temp_pm_cpu[pm-1] = temp_pm_cpu[pm-1] - vm_instance_req_cpu[vm] 
    for i in temp_pm_cpu: 
        if i <= 0: 

   fitness_value = 100000000 
   return fitness_value 

    ph_has_vm = [0 for i in range(1, no_pm+1)] 
    rows, cols = (no_vm, no_pm) 
    vm_assign_to_pm = [[0 for i in range(cols)] for j in range(rows)] 
    k = 0 
    for j :1, no_pm+1: 
        for i : 0,no_vm: 

   if c[i] != j and 0: 
 ph_has_vm[k] = 0 

   elseif c[i] == j: 
 ph_has_vm[k] = 1 

        k += 1 
    for j ; 0,no_pm: 
        for i:0:no_vm: 

   if c[i] == j+1: 
       vm_assign_to_pm[i][j] = 1 

    calculate_p_idle() 
    for j:0,no_pm: 
        cpu_utilization = 0.0 
        for i:0:no_vm: 

    cpu_utilization += (vm_assign_to_pm[i][j] * vm_instance_req_cpu[i]) 
     pm_cpu_utilization[j] = (cpu_utilization / pm_cpu[j]) 

    for j:0,no_pm: 
 fitness_value += ph_has_vm[j] * (((pm_energy_busy_cpu[j] - pm_energy_idle_cpu[j]) * 
pm_cpu_utilization[j]) + pm_energy_idle_cpu[j]) 

 return fitness_value 

function calculate_p_idle(): 
    for j:0,no_pm: 
        pm_energy_idle_cpu[j] = 0.6 * pm_energy_busy_cpu[j] 

Pseudocode for duelist algorithm and proposed fitness for 
solving virtual machine placement is presented. In the 
algorithm no_vm is number of virtual machines, 
vm_instance_req_cpu is CPU values of virtual machines, 
no_pm is number of physical machines, pm_cpu is CPU 
values of physical machines, pm_energy_busy_cpu is and 
CPU values at busy state of physical machine. The 
algorithm involves a set of duelist solutions that compete 
with each other through a series of duels to improve their 
virtual machine placement solutions. The algorithm starts 
by randomly initializing the solution matrix and pre-
qualifying the duelist solutions based on their fitness score. 
The duelist solutions then engage in a dueling procedure 
where they compete based on their fitness and luck. The 
winner of each duel has the opportunity to improve its 
solution by mutating its innovating its placement solution. 
Loser learns from winner by transferring the information. 
Again post qualification is done and based on fitness value 

duelist who performed worst are eliminated. This process 
continues till last iterations.  
Proper balance of exploration and exploitation is important 
for any evolutionary algorithm. Improper balance leads to 
premature convergence. In the basic Duelist algorithm, the 
solution improvement is done with updating on winner and 
loser. Each loser is trained by winner. Learning means that 
the loser may acquire a portion of the winner's array or skill 
set. It works for exploring the new search space. The 
second updating method is for the winners. Each winner 
would develop their own skills, where it mutates to be more 
advance. It works like exploitation of search space. Paper 
presents two variations of Duelist algorithm. Figure 3, 
shows the flowchart for proposed variations in Duelist 
algorithm that focused on Duelist’s improvement. In 
proposed variation 1, winner learns from best champion to 
get more skills. In variation 2, winner learns from group of 
champion also known as board of champions. 
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(a) 

(b) 

Figure 3. Flowchart of Duelist’s improvement step 
with proposed (a) variation 1 (b) variation 2 

5. Experimental details, Results and
Discussion

5.1. Simulation details 

This section presents simulation details required for 
conducting the experiments to examine the performance of 
algorithms and various datasets used for virtual machine 
placement problem. The performance of duelist algorithm 
and proposed variations tested with 15 different datasets. 
These datasets are generated using a python program which 
generates a dataset for the problem with different 
characteristics. Datasets have a diverse number of VMs and 
PMs. Based on the number of physical and virtual 

machines these datasets are classified as small, medium, 
and large datasets. Maximum number of PMs are 450 and 
VMs are 600. The minimum number of PMs are 35 and 
minimum number of VMs are 35. Virtual machine CPU 
values considered are between 50 and 150 to generate the 
dataset. By meeting the restriction of having smaller Vcpu 
values than the available Pcpu capacities, these VM 
resources are produced. Two python programs are written 
to generate dataset. Inputs are generated randomly by the 
first programme, and it creates random CPU values for 
virtual machines within a specific range. Five datasets are 
generated by this method. Remaining ten are generated by 
the second program which generates inputs by normal 
distribution. It generates distributed VM’s CPU values 
normally. Some of parameter's values are set fixed as per 
the standards.  
Table 1 represents specifications for virtual machine and 
physical machines with their values. The unit of CPU is 
Million Instructions per Second abbreviated as MIPS. 
Table 2 describes dataset details used in experiments. Total 
15 datasets are used for evaluating performance of the 
algorithms, these datasets are categorized as small, medium 
and large datasets based on number of physical and virtual 
machines. It also describes method of generation whether 
the dataset is randomly generated or generated by normal 
distribution. 

Table 1. VM and PM specifications 

PM CPU 1000 (MIPS) 
VM CPU Usage 50-150 (In MIPS)
PM CPU at busy rate 250 (MIPS) 

Table 2. Dataset description 

Dataset No. of 
PM:VM Size Method of 

generation 
1 35:50 

Small 

Random 
2 40:100 Random 
3 50:120 Random 
4 70:150 Random 
5 100:200 

Medium 

Random 
6 150:200 Normal 
7 150:300 Normal 
8 200:300 Normal 
9 250:300 Normal 
10 290:400 Normal 
11 300:450 Normal 
12 350:500 

Large 

Normal 
13 400:500 Normal 
14 450:600 Normal 
15 500:700 Normal 

For experimentation, heterogeneous virtual machines and 
homogeneous physical machines are used. The number of 
VMs, virtual machine’s CPU values, number of physical 
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machines, physical machine’s CPU values and CPU values 
at busy state of physical machine are given as input to the 
algorithm. The input file for the dataset has the information 
as given in figure 4. 

120 Number of VMs 
… CPU values of 120 virtual machines 

50 Number of PMs 
… CPU values of 50 PMs 
… Pbusy values of PMs 

Figure 4. Sample input file 

The duelist algorithm and its variations are executed using 
the ‘Python’ programming language. The algorithm 
programs executed on system with an Intel(R) Core(TM) 
i5-6300U CPU -2.50GHz - 2.40 GHz and 8 GB RAM. 

5.2. Results and Discussion 

The performance of each of the three algorithms, Basic 
Duelist algorithm (DA), variation 1, and variation 2 for all 
15 dataset instances are examined.  Luck coefficient is luck 
factor of duelist used to introduce randomness, mutation 
probability is used in champion training. Based on 
innovation probability winner learns and based on learning 
probability loser learns from winner. The parameter values 
considered are number of 100 generation, 100 population,  
0.01 luck coefficient, 0.1 mutation probability, 0.3 
innovation probability, 0.6 learning probability and 5 
number of champions. All algorithms have executed 10 
times by using same parameter values and results are 
obtained. 
For evaluation of the performance of all the algorithms, this 
paper considers best, mean and standard deviation values. 
Best fitness value is the optimal value generated by the 

program among all 10 executions.  Mean is average of 
fitness value of all population obtained at 100th iteration 
and standard deviation is standard deviation of that 
population. Paper [48] have provided six matrices for 
assessing effectiveness of algorithms. The success rate 
(SR), the number of function evaluations (NFEs), 
convergence graph, the improvement and acceleration rate 
(AR). Following equations are used to calculate the results. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆 𝑟𝑟𝑚𝑚𝑟𝑟𝑀𝑀  

=

(𝑀𝑀𝑆𝑆𝑀𝑀𝑛𝑛𝑀𝑀𝑟𝑟 𝑜𝑜𝑓𝑓 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆 𝑣𝑣𝑚𝑚𝑣𝑣𝑆𝑆𝑀𝑀 𝑜𝑜𝑛𝑛𝑟𝑟𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑜𝑜 𝑀𝑀𝑆𝑆 
𝑔𝑔𝑟𝑟𝑀𝑀𝑚𝑚𝑟𝑟𝑀𝑀𝑟𝑟 𝑟𝑟ℎ𝑚𝑚𝑀𝑀 𝑚𝑚𝑣𝑣𝑀𝑀𝑟𝑟𝑚𝑚𝑔𝑔𝑀𝑀 𝑜𝑜𝑓𝑓  𝑚𝑚𝑣𝑣𝑣𝑣 𝑀𝑀𝑚𝑚𝑀𝑀𝑆𝑆𝑆𝑆𝑟𝑟𝑀𝑀𝑜𝑜𝑀𝑀)
𝑀𝑀𝑆𝑆𝑀𝑀𝑛𝑛𝑀𝑀𝑟𝑟 𝑜𝑜𝑓𝑓 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆 𝑚𝑚𝑣𝑣𝑔𝑔𝑜𝑜𝑟𝑟𝑀𝑀𝑟𝑟ℎ𝑀𝑀 𝑀𝑀𝑚𝑚𝑀𝑀𝑆𝑆𝑆𝑆𝑟𝑟𝑀𝑀𝑜𝑜  (3) 

𝑁𝑁𝑁𝑁𝑁𝑁
=  𝑃𝑃𝑜𝑜𝑝𝑝𝑆𝑆𝑣𝑣𝑚𝑚𝑟𝑟𝑀𝑀𝑜𝑜𝑀𝑀
× 𝑁𝑁𝑆𝑆𝑀𝑀𝑛𝑛𝑀𝑀𝑟𝑟 𝑜𝑜𝑓𝑓 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑚𝑚𝑟𝑟𝑀𝑀𝑜𝑜𝑀𝑀𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑜𝑜𝑀𝑀𝑜𝑜 𝑓𝑓𝑜𝑜𝑟𝑟 𝑆𝑆𝑜𝑜𝑀𝑀𝑣𝑣𝑀𝑀𝑟𝑟𝑔𝑔𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀  (4) 

𝐴𝐴𝑆𝑆𝑆𝑆𝑀𝑀𝑣𝑣𝑀𝑀𝑟𝑟𝑚𝑚𝑟𝑟𝑀𝑀𝑜𝑜𝑀𝑀 𝑟𝑟𝑚𝑚𝑟𝑟𝑀𝑀 =  
𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑆𝑆𝑀𝑀𝑜𝑜 𝑣𝑣𝑚𝑚𝑟𝑟𝑀𝑀𝑚𝑚𝑟𝑟𝑀𝑀𝑜𝑜𝑀𝑀

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑛𝑛𝑚𝑚𝑆𝑆𝑀𝑀𝑆𝑆 𝐷𝐷𝐴𝐴  (5) 

𝐼𝐼𝑀𝑀𝑝𝑝𝑟𝑟𝑜𝑜𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟 =  � 𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑢𝑢ℎ𝑖𝑖𝑒𝑒 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑒𝑒𝑜𝑜𝑐𝑐𝑜𝑜𝑏𝑏𝑖𝑖𝑖𝑖�  

×  
100

𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑢𝑢ℎ𝑖𝑖𝑒𝑒
 (6) 

Table 3 show the performance of three algorithms based on 
best, mean and standard deviation on 15 datasets. For all 
three categories of dataset, the proposed variations 1 and 2 
outperforms the basic Duelist algorithm. Variation 2 gives 
reasonably good outcomes than variation 1. It shows that 
variation 1 and variation 2 obtained an average 41.45 % 
and 50.36% improvement with respect to basic DA 
respectively. In literature, it is reported that performance of 
some evolutionary reduces with increase in problem size 
and problem complexity. Results in table 3 show that the 
performance improvement in proposed Duelist variations 
are consistent. There is no performance degradation in 
Duelist variation1 and 2 with respect to problem size. 

Table 3. Best, mean, standard deviation and improvements in algorithm 

Dataset Basic DA Variation 1 Variation 2 Improvement in 
variation 1 (in %) 

Improvement in 
variation 2 (in %) 

1 
Best 2681 2231 1931 

54 60 Mean 2960 2381 2081 
SD 56 0 0 

2 
Best 5023 4123 3973 

55 50 Mean 5578 4273 4213 
SD 77 0 73 

3 
Best 6600 5250 4950 

42 50 Mean 7282 5395 5250 
SD 77 33 0 

4 
Best 8861 6461 6161 

33 33 Mean 9737 6854 6311 
SD 58 94 0 
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5 
Best 12747 10047 9897 

21 30 Mean 13776 10424 10173 
SD 76 102 69 

6 
Best 17951 13751 13151 

56 80 Mean 19163 13971 13712 
SD 117 129 146 

7 
Best 20175 16575 15225 

17 36 Mean 21324 17124 15766 
SD 90 150 157 

8 
Best 23025 17625 17325 

47 43 Mean 24540 18567 18096 
SD 153 172 207 

9 
Best 25275 19125 17475 

52 57 Mean 27126 20293 18636 
SD 172 208 258 

10 
Best 32880 25530 22830 

12 34 Mean 34498 26382 24057 
SD 64 199 233 

11 
Best 35699 30749 28649 

51 61 Mean 37472 31824 29828 
SD 189 258 255 

12 
Best 40883 34883 33233 

47 65 Mean 42839 36247 34395 
SD 103 311 234 

13 
Best 43133 36983 32784 

48 57 Mean 45496 38498 34001 
SD 74 267 277 

14 
Best 50857 43507 41557 

31 45 Mean 53116 44854 42458 
SD 155 279 277 

15 
Best 48981 45682 44632 

50 50 Mean 50974 47135 45864 
SD 87 373 280 

Table 4. Average, best value and success rate 

Dataset Category 
Basic DA Variation 1 Variation 2 

Average Best SR Average Best SR Average Best SR 
1 Small 2801 2681 40 2231 2231 100 2051 1931 60 
2 Small 5203 5023 60 4198 4190 60 4153 3973 60 
3 Small 6690 6600 40 5220 5220 60 5100 4950 60 
4 Small 8951 8861 40 6771 6461 60 6581 6161 40 
5 Medium 13017 13017 40 10647 10047 60 10009 9897 60 
6 Medium 18101 17951 60 14163 13701 60 13901 13151 60 
7 Medium 20265 20175 40 16755 16125 60 15225 16125 60 
8 Medium 23226 23025 40 18555 17625 40 18135 17325 80 
9 Medium 25575 25225 60 19515 19125 60 17475 19005 60 

10 Medium 32850 32580 60 27030 25530 60 25490 22830 60 
11 Medium 35849 35699 40 31949 30749 40 29549 28649 60 
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12 Large 40973 40883 40 35633 34883 60 33533 33233 60 
13 Large 43343 43133 40 37853 36983 40 35123 32784 60 
14 Large 51307 50857 60 44527 43507 60 42757 41557 60 
15 Large 49192 48981 60 46582 45682 60 45921 44632 60 

Table 5. Comparison of results using function evaluations and acceleration rate 

Dataset Function evaluations Acceleration rate wrt basic DA 
Base fitness value Basic DA Variation1 Variation 2 Variation 1 Variation 2 

1 2681 8700 4000 3600 2.17 2.41 

2 5023 9800 4400 4900 2.22 2.00 

3 6600 5000 2900 2500 1.72 2.00 

4 8861 6800 4500 4500 1.51 1.51 

5 13017 5500 4300 3800 1.27 1.44 

6 17951 9100 4000 1800 2.28 5.05 

7 20175 4700 3900 3000 1.20 1.50 

8 23025 6700 3500 3800 1.91 1.76 

9 25225 9100 4300 3900 2.11 2.33 

10 33030 5000 4400 3300 1.13 1.56 

11 35699 9300 4500 3600 2.06 2.58 

12 40883 6300 3300 2200 1.91 2.86 

13 43133 7600 3900 3200 1.95 2.38 

14 50857 6000 4100 3300 1.46 1.89 

15 48981 7800 3900 3900 2.00 2.00 

Figure 5. Convergence curve of three algorithms for 
dataset 1  

Figure 6. Convergence curve of three algorithms for 
dataset 3 
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Figure 7. Convergence curve of three algorithms for 
dataset 7 

Figure 8. Convergence curve of three algorithms for 
dataset 9 

Figure 9. Convergence curve of three algorithms for 
dataset 13 

Figure 10. Convergence curve of three algorithms 
for dataset 15 

Figure 5 and 6 show the convergence curves of two small 
datasets.  Figure 7 and 8 show the convergence curves for 
two medium datasets. Figure 9 and 10 show the 
convergence curves for two large datasets. The results 
show that proposed variations of Duelist algorithm 
outperforms basic Duelist algorithm. Proposed variations 
show faster convergence than basic Duelist algorithms for 
all six datasets with varying sizes. The basic Duelist 
algorithm stuck into local optima. The proposed two 
variations show consistent progress towards optimal 
solution with fast convergence speed. 
Duelist algorithm and its variations have different 
parameters as discussed in above section. In literature it is 
reported that algorithms specific parameters values have 
significant impact on the performance of algorithm. This 
sub-section presents results of impact of mutation 
probability, innovation probability, learning probability 
and luck coefficient parameter values of Duelist algorithm 
and proposed variations. In this investigation, number of 
generations, population size and number of champions are 
kept constant. Number of generations, population size and 
number of champions are 100, 100 and 5 respectively. For 
fine tuning the parameters we have taken one dataset from 
small, medium and large category and experimented with 
different parameter values. Table 6, 7 and 8 shows the 
results of parameter tuning on dataset number 2, 8 and 13 
respectively. Results show that for all selected datasets of 
varying size, proposed variations of Duelist algorithms 
performs better than basic Duelist algorithm. Four values 
are tested for luck parameter. There is no significant change 
in performance of basic Duelist algorithm for tested luck 
parameter value. For proposed two variations the 0.2 luck 
value gives best results. Mutation probability value 0.05 
gives better results for all the three algorithms. Lower 
mutation probability is better for algorithm convergence. 
Higher value of innovation probability is not suitable for 
performance of all three algorithms 
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Table 6 Results of parameter tuning on dataset 
number 2  

Parameter Parameter 
value 

Basic 
DA 

Variation 
1 

Variation 
2 

Luck 

0.01 5233 4183 4063 
0.07 5173 4213 4093 
0.15 5173 4333 4033 
0.2 5293 4183 3973 

Mutation 
probability 

0.05 4903 4153 4123 
0.1 5293 4183 3973 
0.2 5323 4273 4243 
0.3 5353 4243 4223 

Innovation 
probability 

0.2 5203 4153 4123 
0.3 5203 4273 3973 
0.45 5293 4453 4303 
0.6 5233 4513 4423 

Learning 
probability 

0.5 5263 4243 4063 
0.6 5203 4273 3973 
0.75 5203 4183 4243 
0.9 5053 4543 4153 

Table 7 Results of parameter tuning on dataset 
number 8 

Parameter Parameter 
value 

Basic 
DA 

Variation 
1 

Variation 
2 

Luck 

0.01 23355 18645 18585 
0.07 23175 17805 17025 
0.15 23145 17565 18165 
0.2 23175 17265 16815 

Mutation 
probability 

0.05 22575 16455 16215 
0.1 23265 16725 16715 
0.2 23385 17865 17845 
0.3 23385 18525 19125 

Innovation 
probability 

0.2 22485 17115 16665 
0.3 22575 16455 16215 
0.45 22785 16425 16335 
0.6 22515 18255 18295 

Learning 
probability 

0.5 22725 16935 16185 
0.6 22575 16455 16215 
0.75 22605 16485 16515 
0.9 21555 17775 17925 

Table 8 Results of parameter tuning on dataset 
number 13 

Parameter Parameter 
value 

Basic 
DA 

Variation 
1 

Variation 
2 

Luck 

0.01 43553 38393 36593 
0.07 43613 34913 36023 
0.15 43463 34734 34013 
0.2 43253 34703 33413 

Mutation 
probability 

0.05 42653 33113 33053 
0.1 43463 34703 33413 
0.2 43733 35333 36623 
0.3 44004 34493 36653 

Innovation 
probability 

0.2 42443 33923 35123 
0.3 42653 33113 32303 
0.45 43104 32513 32093 
0.6 43133 34223 34193 

Learning 
probability 

0.5 42533 33413 33413 
0.6 42653 33113 32303 
0.75 41783 33713 33453 
0.9 41873 34973 34553 

5. Conclusion

The paper presents virtual machine placement problem in 
cloud computing with the objective of minimization of 
energy consumption in cloud data centers. Energy usage is 
strongly impacted by the allocation of virtual machines to 
physical machines. This paper presents an enhanced dualist 
algorithm with improved exploration for optimizing energy 
efficiency in virtual machine placement. The Duelist 
algorithm and its two variations are designed to solve the 
problem. The proposed variations focused on increasing 
exploration of the Duelist algorithm by changing the 
learning strategy of the winner. In the basic Duelist 
algorithm, the winner learns from himself to be more 
advance. In the first variation, winner learns from one best 
champion and in the second variation, winner learns from 
a group of champions.  
Fifteen datasets with varying sizes are generated using 
random and normal distribution. The datasets are 
categorized into small, medium and large datasets. The 
proposed variations shows proper balance in exploration 
and exploitation which avoided premature convergence 
and shows consistent improvements. For all three 
categories of the dataset, the proposed variations 1 and 2 
outperform the basic Duelist algorithm. Variation 2 gives 
reasonably good outcomes than variation 1. It shows that 
variation 1 and variation 2 obtained an average of 41.45 % 
and 50.36% improvement with respect to basic DA 
respectively. Variation 1 and variation 2 have an average 
success rate of more than 58% for all 15 datasets. The 
success rate of proposed variations for small, medium and 
large datasets is better than the basic Duelist algorithm. 
Results of the acceleration rate show that the proposed 
variations convergence speed is higher than the basic 
Duelist algorithm. Proposed variations show faster 
convergence than basic Duelist algorithms for all six 
datasets with varying sizes. The basic Duelist algorithm is 
stuck into local optima. The proposed two variations show 
consistent progress towards an optimal solution with fast 
convergence speed. 
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