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Abstract 

INTRODUCTION: As road traffic develops, energy-saving and efficient street lights have become a key research field for 
relevant professionals. 
OBJECTIVES: To reduce streetlights energy consumption, a fireworks algorithm is used to optimize the membership function 
parameters of fuzzy control and the initial parameters of PI control. 
METHODS: A fireworks algorithm improved adaptive fuzzy PI solar LED street light control system is designed. 
RESULTS: The results showed that in the calculation of Root-mean-square deviation and mean absolute error, the 
Root-mean-square deviation of the adaptive fuzzy PI control system improved by the fireworks algorithm was 0.213, 0.258, 
0.243, 0.220, and the Mean absolute error was 0.143, 0.152, 0.154, 0.139, respectively, which proved that the prediction accuracy 
was high, and the stability was good. In the calculation of the 1-day power consumption of the solar LED intelligent control 
system, the average power consumption of the designed solar LED intelligent control system was about 2000W, which was 
25.9%, 47.4%, and 42.9% lower than the other three control methods, respectively. 
CONCLUSION: This proves that its energy consumption is low, and its heat generation is low, and the battery service life is 
long. The research and design of an adaptive fuzzy PI control solar LED street light intelligent control system has good 
performance, which can effectively achieve intelligent management and energy conservation and emission reduction in smart 
cities. 
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1. Introduction

As social economy develops, energy conservation,
environmental protection, and low-carbon emission reduction 
have become the main directions for development in various 

countries [1]. Streetlights, as the infrastructure for urban road 
lighting, consume a large amount of energy and cause a lot of 
pollution during nighttime lighting. Therefore, exploring the 
intelligent lighting technology of urban streetlights is extremely 
important for building a smart city. The most important 
components of streetlights are light sources and street light 
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controllers. In terms of light sources, LED, as a new type of 
green and environmentally friendly light source, is currently 
widely used in urban streetlights. In terms of street light 
controllers, traditional control methods have low maintenance 
feedback efficiency and are difficult to manage when 
streetlights malfunction. The main development trend at this 
stage is towards intelligence [2]. Intelligent street lighting refers 
to the use of computer network technology to implement 
unmanned supervision, while improving the safety of street 
lighting and reducing costs, achieving green and 
environmentally friendly intelligent management [3]. In this 
context, the study first utilizes Maximum Power Point Tracking 
(MPPT) to obtain maximum output power, and then uses 
Fireworks Algorithm (FWA) to optimize the membership 
function parameters of fuzzy control and the initial parameters 
of PI control. A FWA improved adaptive fuzzy PI control 
system is designed, and finally applied to the solar LED street 
lighting system. The research content mainly includes five parts, 
with the first part being the background introduction. The 
second part is a review of the current research status of 
intelligence and digitization of street lighting systems both 
domestically and internationally. The third part proposes the 
design of an intelligent street lighting system. The first section 
constructs a solar LED street lighting system. The second 
section introduces the specific process and function design of 
the FWA algorithm. The third section designs an improved 
adaptive fuzzy PI control system for FWA. The fourth part is 
the system performance analysis. The first section is the effect 
analysis of FWA parameter optimization, and the second section 
is the actual effect analysis of FWA improved adaptive fuzzy PI 
control system. The fifth part is a summary of the previous text 
and proposes the shortcomings of the research. 

2. Related Works 

With the continuous promotion of smart city construction, 
the intelligence and digitization of street lighting systems have 
become the current development trend. Domestic and foreign 
scholars have made much progress in the design of street 
lighting intelligent systems. Chen X designed a highway anti 
fog intelligent street light control system based on Purple Bee 
technology to meet the lighting requirements of highways in 
foggy environments. The system used a system on chip solution 
as the core device, and automatically controlled the LED street 
lights on and off for lighting based on real-time temperature and 
humidity data collected. The results showed that the system had 
high practicality [4]. Researchers such as Smys D S designed an 
intelligent streetlight power management system based on 
artificial networks to reduce the energy consumption of street 
lighting systems. The system controlled the power of the 
lighting system through light intensity and weather conditions. 
The results showed that the system reduced the power 
consumption of streetlights [5]. Carli R and others designed a 
Dynamic programming algorithm based on decentralized 
control of large-scale lighting system energy transformation to 
artificially improve the energy utilization rate. It integrated 
discrete Dynamic programming with additive decomposition 
and value function, and the results showed an improved energy 

efficiency of street lighting system [6]. Khandagale H P et al. 
designed a street light controller technology based on the global 
mobile communication system to make the control of 
streetlights simpler. It utilized users' mobile devices to send 
commands to the street light application system through SMS. 
The results showed that this technology provided reliable 
remote access for people [7]. Ahmad S and other researchers 
designed an IoT based street light automation model to meet the 
power demand of solar streetlights. The model used pressure 
sensors to generate electricity through pressure or load, 
reducing the power generation load of solar streetlights [8]. 
Kumar N et al. designed a traffic light control system based on 
fuzzy reasoning to improve the control efficiency. The duration 
of the traffic light was dynamically adjusted by taking real-time 
traffic information as input. The results show that the system 
has good performance [9]. 

Kornaga V I and other scholars designed an LED driver 
intelligent lighting system with a flyback topology structure to 
improve street light systems performance. It utilized the drive 
topology to reduce costs, and the results showed that the system 
had high efficiency [10]. Researchers such as de Oliveira Reis 
OA designed an intelligent lighting system based on the 
Android platform and the Internet of Things to achieve remote 
control of streetlights. The model was built through the Internet 
of Things, automation, microcontroller, and Android platform, 
and the results showed that the system had multifunctionality [11]. 
JIA R et al. designed an intelligent street lighting system based 
on motion sensors to reduce the energy consumption of 
streetlights at night. After users entered the street and were 
detected by motion sensors, they transmited messages through 
wireless networks to improve lighting intensity. The results 
showed that the system can effectively achieve energy 
conservation [12]. Scholars such as Gong S designed an 
intelligent lighting control system based on OpenCV image 
processing technology to improve the control efficiency. The 
system captured the driving route and pedestrian vehicle density 
through a camera, and compared them through image 
processing, effectively obtaining traffic density [13]. To reduce 
street lighting power consumption, Abdullah A and other 
researchers designed an intelligent energy-saving system based 
on infrared sensors and controllers, which was composed of 
Photoresistor, infrared sensors, batteries and LEDs. The light 
and darkness of the lights depended on the speed of the detected 
object movement. The results showed that the system had a 
good energy-saving effect [14]. 

In summary, many scholars have achieved a series of 
achievements in the field of intelligent street lighting, but there 
is relatively little research on solar LED street light control. In 
view of this, a FWA improved adaptive fuzzy PI control system 
is designed using FWA to optimize the membership function 
parameters of fuzzy control and the initial parameters of PI 
control, to improve solar LED streetlights performance. 

3. Adaptive Fuzzy PI Control for Solar LED 
Street Lamp Intelligent Control 

The first section of this chapter mainly introduces the 
construction of the solar LED street lighting system, the second 
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section introduces the FWA algorithm, and the third section 
mainly focuses on FWA improved adaptive fuzzy PI control 
system construction and related function design. 

 
3.1 Solar LED Street Lighting System 
 

Solar LED streetlights are a new type of energy-saving and 
environmentally friendly streetlight powered by solar energy, 
and they support remote control and can use control systems to 
achieve intelligent management. The solar LED streetlight used 
in the study consists of a solar battery pack, power controller, 
battery, control system, wireless communication module, and 
LED light. The basic system structure is shown below. 

Solar panels

control system

Storage battery

Power controller LoRa node

LoRa Gateway

LED lamp

wireless communication module

Controller  
 

Figure 1. Structure of solar LED streetlamp system 
 
In Figure 1, after energy conversion, due to the unstable 

voltage of the electricity generated by solar energy, directly 
charging the battery will cause damage to the battery. Therefore, 
it is first transmitted to the controller to stabilize the voltage, and 
then stored in the battery. To maximize the energy conversion 
and achieve maximum power output, MPPT algorithm can 
increase the output power. Then, centralized control and remote 
monitoring of streetlights are achieved through wireless 
communication modules. Currently, commonly used IoT 
communication technologies include narrowband IoT, LoRa 
gateway, and Purple Bee gateway. Among them, the 
narrowband IoT has a transmission distance of over 10km, a 
node capacity of about 200000 bytes for single network access, 
a theoretical battery life of 10 years, a module cost of about 
5-10 US dollars, a paid frequency band, and a transmission 
speed of 160-250 kbps. The transmission distance of LoRa 
gateway in cities is 1-2km, and it is 20km in suburbs. The 
capacity of the access node is about 60000 bytes, the theoretical 
battery life is 10 years, the module cost is about $5, the 
frequency band used is free, and the transmission speed is 
0.3-50kbps. The transmission distance of the Purple Bee 
Gateway is 10m~100m, the capacity of a single network node is 
about 60000 bytes, the theoretical battery life is 2 years, the 
module cost is about 1-2 US dollars, the frequency band used is 
free, and the transmission speed is 250kbps. Comparing the 
three gateway technologies comprehensively, LoRa technology 
has the characteristics of long communication transmission 
distance, long battery life, use of free frequency bands, and low 
cost. Therefore, the LoRa gateway is studied as a wireless 
communication module for street light systems. The network of 
streetlights is connected in parallel, and the current finally 
reaches the LED lights to provide lighting. The structure of 
charging solar LED lights is shown in Figure 2. 

PWM module
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x2

x1 * / *
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MPPT controller

Buck converter
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U

LED load

Solar cell

 
Figure 2. Specific structure of solar LED lamp charging 

 
In Figure 2, the maximum output power is obtained by 

passing the voltage through the MPPT. Due to the rapid 
opening and closing action of the circuit's switch valve, a pulse 
width modulation power drive module is used to adjust the 
driving current according to changes in load to obtain an 
appropriate duty cycle, in order to achieve the purpose of 
switching voltage stabilization. The current is input to the 
step-down converter for step-down transformation and load 
charging [15]. MPPT can simulate the output power curve of 
solar panels based on the current environment, continuously 
adjust the output power of streetlights, detect the number of 
parallel interleaving modules, read the sampling voltage and 
current values, and obtain the maximum output power. The 
relationship between voltage, current, and impedance after buck 
conversion is shown in equation (1). 
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In equation (1), D  represents the duty cycle, 0U  
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represents load voltage, iU  and iI represent the output 
voltage and current of the solar cell, iR  represents the 
equivalent input impedance of the step-down converter, and 

LR  represents load resistance. The relationship between input 
voltage and output voltage during circuit operation is shown in 
equation (2). 

D b

D s

U UD
U U

′

′

+′ =
+

              (2) 

 
In equation (2), D′  represents the duty cycle of the circuit 
switch, bU  represents battery voltage, sU  represents solar 
panel output voltage, and DU ′  represents the turn-on voltage 
drop of the LED. 
 

3.2 FWA Algorithm and Function Design 

As a non-biomimetic swarm intelligence algorithm, FWA 
improves the population adaptability to the environment 
through interactive transmission of information, thereby 
obtaining the global optimal solution [16]. The basic framework 
of FWA is shown in Figure 3. 

 

4
1
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3

FWA

Explosive operator

Fireworks variation

Mapping Rules

Selection policy

 
Figure 3. Basic framework diagram of FWA 

 
In Figure 3, FWA includes four steps: fireworks explosion, 

fireworks mutation, mapping rules, and selection strategies [17]. 
Firstly, the fireworks population is initialized, and individual 
fireworks' fitness value is calculated. The fitness function is 
shown in equation (3). 

1
1 2

1
( ) ( )

N

i
i

f accζ ω η ω−

=

= × + ×∑         (3) 

In equation (3), ( )if ζ  represents i 's fitness value, N  
represents the total number of features, 1ω  represents the 
weight of features, acc  represents classification accuracy, 

2ω  represents classification accuracy weight, η  represents 
whether the feature is selected, the selected value is 1, and the 
unselected value is 0. Then carried out the fireworks explosion 
operation. If the fireworks explosion generates sparks, the 
explosion intensity and amplitude, and displacement need to be 
calculated. The explosion intensity refers to the number of 
sparks and individual fireworks explosion radius. The 
calculation formula for the explosion radius is shown in 

equation (4). 
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In equation (4), ir  represents the explosion radius, r′  
represents the explosion radius adjustment constant, minY  
represents the optimal fitness value, and λ  represents the 
parameter that prevents the denominator from being 0 [18]. The 
number of sparks is calculated in equation (5). 

max

max
1

( )

[ ( )]

i
i N

i
i

Y fs s
Y f

ζ λ

ζ λ
=

− +′= ×
− +∑

         (5) 

In equation (5), is  represents the number of sparks, maxY  
represents the worst fitness value, and s′  represents the 
constant number of sparks. In the calculation, the number of 
sparks is limited, as shown in equation (6). 
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In equation (6), a  and b  represent constants, 
1a b< < , and round  represent rounding functions. The 

calculation formula for explosion amplitude is shown in (7). 
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In equation (7), iA  represents the explosion amplitude, 
and A′  represents the amplitude adjustment constant. The 
calculation method for displacement operation is shown in 
equation (8). 

( , )k k
i i i ix x u A A= + −               (8) 

In equation (8), k
ix  represents i 's position in k  

dimension, and ( , )i iu A A−  is a random number within 
( , )i iA A−  range. The calculation formula for explosive sparks 
obtained from explosive operations is shown in equation (9). 

( ) ( 1,1)k k
i i ie x x r rand= + × −         (10) 

In equation (9), represents the explosive spark generated 
by the explosion, and ( 1,1)rand −  represents a random 
number located within the range of [-1,1]. The next step is to 
perform the fireworks mutation operation, and the specific 
calculation method is shown in equation (10). 

ˆ ( )i best best ix x c x x= + × −            (10) 
In equation (10), ˆix  represents the mutation spark, bestx  

represents the fireworks at the current optimal position, and c  
represents the learning factor. The next step is to process sparks 
beyond the boundary through mapping rules, and the 
calculation formula is shown in equation (11). 

(0,1) ( )k k k k
i l u lx x rand x x= + × −          (11) 

In equation (11), k
lx  represents k -th dimensional 
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position lower boundary of the fireworks, k
ux  represents the 

upper boundary of the k -th dimensional fireworks position, 
and (0,1)rand  represents the random number within the [0,1] 
interval. Finally, the next generation of fireworks individuals is 
selected through a selection strategy, and the calculation 
formula is shown in equation (12). 

1

1 1

( )

K

i j
j

i K K

i j
i j

x x
p x

x x

=

= =

−
=

−

∑

∑∑
            (12) 

In equation (13), ( )ip x  represents probability, K  

represents all individual fireworks, and i jx x−  represents 
the Euclidean distance between fireworks. The FWA process is 
shown in Figure 3. 
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Y
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Figure 4. FWA algorithm flowchart 
 
In Figure 4, after inputting data, the population number 

and parameters of the fireworks are first initialized, and fitness 
values are calculated. Then, fireworks explosion operations are 
carried out based on fitness, and explosion intensity, amplitude, 
and displacement are calculated respectively to generate 
explosion sparks. Fireworks quantity is limited through 
restriction methods, and fireworks are mutated to ensure 
population diversity. Finally, the optimal solution of the 
population is calculated to determine whether the conditions are 
met, If satisfied, terminate; otherwise, return to continue 
iteration. The parameters of the FWA algorithm include the 
number of fireworks set off, explosion radius, mutation 
probability, and maximum iteration number. When selecting 
FWA parameters, factors such as population size, explosion 
coefficient, attenuation factor, number of iterations, probability 
of crossover and mutation should be considered. Therefore, the 
study selects and adjusts parameters based on the complexity of 
the problem, the complexity of computational resources, and 
experience. 

 
 
 
 
 
 

3.3 Adaptive Fuzzy PI Control System Based 
on FWA Improvement 

Due to the inconsistent parameters of various modules in 
the staggered parallel power supply system used for solar LED 
streetlights, the current shared by each module will be uneven, 
which can cause some problems in the circuit. At times, it can 
cause modules to be lightly loaded, unloaded, overloaded, or 
overloaded, thereby affecting the normal operation of the entire 
electrical circuit. At times, it can cause module damage and 
create safety hazards. The current sharing control method is 
currently the mainstream method for average current. 
Traditional current sharing control techniques mainly include 
model prediction, fuzzy control, automatic average current 
sharing method, master-slave control current sharing method, 
and output impedance method. However, these methods all 
have some drawbacks. PI control is a control method with a 
simple structure and high stability, which has been widely used 
in control circuits. However, due to its linear control and the 
fact that the power system is usually nonlinear, it is difficult to 
obtain accurate PI parameters, resulting in poor control 
performance [19-20]. To solve these problems, a current sharing 
control technology combining fuzzy and PI control is studied 
for system stability. Fuzzy PI control parameters are optimized 
through FWA, and the FWA adaptive fuzzy PI control structure 
is shown below. 
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Figure 5. Adaptive fuzzy PI control structure diagram 

In Figure 5, using FWA to optimize the membership 
function parameters of fuzzy control and the initial parameters 
of PI controller, among which the membership function 
parameters of fuzzy control include shape, size, position, etc. 
Function of. The initial parameters of PI control include 
proportional gain and integral gain. The calculated controller 
deviation and deviation change rate after optimization are input 
into the fuzzy controller for fuzzy processing. The input is 
reasonably inferred through fuzzy rules, and the PI parameters 
are adjusted in real-time using the inferred results in the PI 
controller to achieve adaptive control [21]. The objective function 
of the FWA optimized adaptive fuzzy PI control applied to the 
streetlamp power supply system is shown in equation (13). 

2

0

( )( )
( )

T e TF T dt
EI T
 

=  
 
∫    (13) 

In equation (13), ( )F T  represents the objective function, 
T  represents the iterations, ( )e T  represents the error, 

( )EI T  represents the expected value of street light 

illumination, and dt  represents differentiation. After 
optimizing parameters through FWA, the fitness function 
transformation form is shown in equation (14). 

2

1

1 ( )( )
( )

N

i
i

EI Tf
N e T

ζ
=

 ′ =  
 

∑  (14) 

In equation (14), ( )if ζ ′  represents the optimized fitness 
value. The specific expression form of PI control is shown in 
equation (15). 

[ ]
0

( ) ( ) ( )
k

p iy k e k K K e k= × + ×∑   (15) 

In equation (15), ( )y k  represents the output, ( )e k  
represents the error, and pK  and iK  represent the PI 
coefficients. The flow chart of FWA optimized adaptive fuzzy 
PI control current sharing technology is shown in Figure 6. 

Start Initialize particle 
velocity and positionInitialization Settings Calculate 

particle fitness 
values

Building a 
model based 

on FWA

Detect the number of 
parallel modules

Read sampling voltage

Read current value

Output Results

Output ResultsOutput Results

C
TCurrent deviationCalculate the duty cycleEnd

Figure 6. Adaptive fuzzy PI control structure diagram 

In Figure 6, the settings are first initialized, a fuzzy PI 
controller is constructed based on the fireworks position, the 
output power of the streetlights is adjusted, the number of 
parallel interleaving modules is detected, and the sampling 
voltage and current values are read. Then the voltage deviation 
is calculated and input into the fuzzy PI voltage loop controller, 

the total current reference value is calculated, the current is 
evenly distributed to each module, and the deviation of each 
current path is calculated. Finally, each deviation is input to the 
PI Current loop controller, and the duty cycle of each output is 
calculated to achieve current sharing. The designed adaptive 
fuzzy PI control system uses the maximum output power and 
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other environmental parameters to adjust and optimize the 
output power of the streetlamps in real time, so as to maximize 
the power of the solar panels. 

4. Intelligent Control Results Analysis for 
Solar LED Street Lights Based on FWA 
Improved Adaptive Fuzzy PI Control 

The first section of this chapter mainly analyzes the 
performance of the MPPT algorithm and the effect of FWA 
parameter optimization. The second section mainly analyzes the 
actual effect of FWA improved adaptive fuzzy PI control 
system. 

4.1 MPPT Algorithm and FWA Parameter 
Optimization Performance Analysis 

The study first verifies the performance of the MPPT 
algorithm in the street lighting system. The parameters of the 
solar cell pack used are as follows: E has a rated power of 15W, 
a rated voltage of 18.05W, a rated current of 0.83A, an open 
circuit voltage of 21.6V, and a short circuit current of 0.9A. The 
battery parameters are as follows: the rated voltage is 12V, the 
Nameplate capacity is 120AH, and the temperature 
compensation coefficient is -3.3Mv/℃/CELL. Using the 
measured output voltage and current values of solar cells 
collected from 8 am to 6 pm during the day, the power changes 
of solar cells with and without the MPPT algorithm are shown 
in Figure 7. 
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Figure 7. Power changes of solar cells with and without MPPT algorithm 
 
From Figure 7, it can be seen that from 8:00 in the 

morning to 2:00 in the afternoon, the light intensity gradually 
increases with time. The power of both MPPT algorithm and 
non MPPT algorithm gradually increases, reaching its 
maximum power at 2:00. The maximum power with MPPT is 
12.4W, and that without MPPT is 11.3W. From 2:00 pm to 6:00 
pm, the power of both MPPT algorithm and non MPPT 
algorithm decreased, but the power of MPPT algorithm 
decreased slower. Overall, the power curve with MPPT has 
been consistently above power curve without MPPT. The 
MPPT algorithm can improve the utilization rate of solar panel 
power generation. Then, parameter optimization was performed 
using FWA in four datasets: Ionosphere, Wine, Sonar, and 
German, and compared with GA and PSO. The results are 
shown in Table 1. 

From Table 1, it can be seen that in the Ionosphere dataset, 
the number of features selected by FWA is 13.8 ± 3.47, with a 
classification accuracy of 95.87 ± 1.58, the number of features 
selected by genetic algorithm is 12.9 ± 3.26, with a 
classification accuracy of 92.62 ± 1.97, and the number of 
features selected by particle swarm optimization algorithm is 
11.7 ± 2.93, with a classification accuracy of 94.86 ± 1.95. In 
the Wine dataset, the number of features selected by the three 
algorithms is 4.9 ± 0.53, 4.7 ± 0.62, 3.51 ± 1.75, and the 
classification accuracy is 97.24 ± 1.15, 93.89 ± 2.01, and 96.85 
± 1.87, respectively. In the Sonar dataset, the number of features 

selected by the three algorithms is 23.7 ± 3.40, 23.2 ± 3.53, and 
21.5 ± 3.04, respectively, with classification accuracy of 97.01 ± 
1.98, 92.77 ± 2.43, and 93.86 ± 5.04. In the German dataset, the 
number of features selected by the three algorithms is 13.1 ± 
1.98, 11.7 ± 3.01, 12.3 ± 3.30, and the classification accuracy is 
86.90 ± 2.03, 81.01 ± 1.88, and 81.95 ± 1.82, respectively. In 
the three datasets, the number of features selected by FWA is 
smaller than that of other algorithms, and the classification 
accuracy is higher than other algorithms, indicating that the 
optimization effect of FWA parameters is good. Finally, the 
performance of the FWA adaptive fuzzy PI controller is tested 
and compared with the fuzzy PI controller, and considering the 
changes in parameters, temperature, and voltage fluctuations of 
the control system. The step curve can evaluate the stability and 
response speed of the control system. Their step curves are 
shown below. 
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Table 1. Four Algorithms for Predicting Results on A Dataset 

Data set 
FWA GA PSO 

Number of features ACC (%) Number of features ACC (%) Number of features ACC (%) 

Ionosphere 13.8±3.47 95.87±1.58 12.9±3.26 92.62±1.97 11.7±2.93 94.86±1.95 

Wine 4.9±0.53 97.24±1.15 4.7±0.62 93.89±2.01 3.51±1.75 96.85±1.87 

Sonar 23.7±3.40 97.01±1.98 23.2±3.53 92.77±2.43 21.5±3.04 93.86±5.04 

German 13.1±1.98 86.90±2.03 11.7±3.01 81.01±1.88 12.3±3.30 81.95±1.82 
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Figure 8. Step curves of two controllers 

From Figure 8, output response of FWA improved 
adaptive fuzzy PI controller and fuzzy PI controller both rapidly 
increases between 0 and 0.1 seconds. From 0.1s to 0.15s, the 
step curve of FWA improved adaptive fuzzy PI control 
decreases slightly and gradually flattenes, while the step curve 
of the other is still in the upward stage. From 0.15s to 0.4s, the 
step curve of the adaptive fuzzy PI controller gradually 
decreases, then rises, and then gradually stabilizes, but there are 
still small fluctuations afterwards. The step curve of the FWA 
improved system has reached a horizontal state. The FWA 
improved system has fast response speed and high stability. 

4.2 Solar LED Intelligent Control System Effect 
Analysis 

To test the performance of FWA improved control system, 
FWA improved control system is evaluated by 
Root-mean-square deviation and mean absolute error and 
compared with the fuzzy PI control system in Table 2. 

Table 2. Root-mean-square deviation and mean absolute error 

Model Index First month The second month The third month The fourth month 

FPI 
RMSE 0.237 0.266 0.274 0.245 

MAE 0.148 0.162 0.167 0.154 

FWA-FPI 
RMSE 0.213 0.258 0.243 0.220 

MAE 0.143 0.152 0.154 0.139 
It can be seen from Table 2 that in four months, the 

Root-mean-square deviation of the fuzzy PI control system is 
0.23, 0.266, 0.274, 0.245, the Mean absolute error is 0.148, 
0.162, 0.167, 0.154, the Root-mean-square deviation of fuzzy 
PI control system improved by FWA is 0.213, 0.258, 0.243, 
0.220, and the Mean absolute error is 0.143, 0.152, 0.154, 0.139, 

respectively. The two index values of the FWA improved 
adaptive fuzzy PI control system are higher, indicating high 
prediction accuracy and good stability. Then data are collected 
from 50 sampling points for two months and the solar panel 
power generation in two systems is calculated in Figure 9. 
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Figure 9. Step curves of two controllers 

It can be seen from Figure 9 (a) that when the sampling 
point is between 0 and 20, the power and real power obtained 
by two systems are both increasing; when the sampling point is 
between 20 and 50, the power and real power obtained by two 
systems are both decreasing. From Figure 9 (b), it can be seen 
that the trend between the power obtained by two systems and 
the actual power is consistent with Figure 9 (a). The FWA 
improved system has a higher fit with the real power curve, 
indicating a higher accuracy of the system. Finally, the power 
consumption of the solar LED intelligent control system 
designed during the day is tested and compared with the fuzzy 
PI control system, fuzzy control, and PI control in Figure 10. 
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Figure 10. Power consumption of solar LED intelligent 
control system 

From Figure 10, it can be seen that the lighting 
consumption power curve of the designed solar LED intelligent 
control system is below other curves, with an average 
consumption power of about 2000W for 24 hours, 2700W for 
fuzzy PI control, 3800W for fuzzy control, and 3500W for PI 
control. The designed solar LED intelligent control system 
reduces power consumption by 25.9%, 47.4%, and 42.9% 
compared to the other three control methods, respectively, 
indicating that the system consumes less power and reduces 
heat generation, extending the service life of the battery. 

However, when applying the system to actual urban 

lighting infrastructure, there may be technical implementation, 
compatibility issues, sensor accuracy, power supply, 
maintenance and management, as well as security and privacy 
issues and challenges. Although the designed intelligent lighting 
system is based on theoretical design and simulation 
optimization, technical implementation issues may be 
encountered in practical applications, such as the distribution 
and layout of streetlights, which may affect the overall 
performance of the system. And the system may need to be 
compatible with existing urban infrastructure and control 
systems, which may require additional technology conversion 
or interface development to ensure smooth integration into the 
existing system. In addition, sensor accuracy may affect the 
performance of the system. If the sensor accuracy is insufficient, 
it may lead to system misjudgment, thereby affecting the correct 
operation of streetlights. The intelligent street light system 
requires power supply. If the power supply is unstable or 
interrupted, it may affect the normal operation of the streetlight, 
so it is necessary to ensure a stable power supply. Compared to 
traditional streetlight control systems, intelligent streetlight 
control systems require more maintenance and management, 
such as regular inspections and maintenance of sensors, 
electronic devices, and communication systems. Therefore, 
more resources and manpower are needed to maintain and 
manage this system. Finally, an intelligent street light system 
may include a large number of sensors and cameras, which may 
collect a large amount of personal information and sensitive 
data. Therefore, additional measures need to be taken to ensure 
the security and privacy protection of this data. In addition to 
the above factors, there may also be some external factors that 
may affect the performance of the system, such as weather 
conditions, urban environment and layout, traffic safety, energy 
supply, etc. When implementing intelligent lighting systems, it 
is necessary to fully consider these factors and take 
corresponding measures to solve these problems to ensure the 
normal operation and performance of the system. 

Intelligent Control of Solar LED Street Lamp Based on Adaptive Fuzzy PI Control 

EAI Endorsed Transactions on 
Energy Web 

| Volume 10 | 2023 |



G. Weng 

  10      
 

5. Conclusion 

With the acceleration of urbanization, how to make street 
lighting systems more environmentally friendly has become a 
focus of concern for relevant personnel. Under the condition of 
meeting the maximum output power of the solar cell pack, to 
reduce its energy consumption and extend its usage time, the 
MPPT is studied to obtain the maximum output power. The 
parameters of the membership function of the fuzzy control and 
the initial parameters of the PI control are optimized using FWA, 
and an FWA modified adaptive fuzzy PI control system is 
designed. The results showed that in the output power of solar 
cells, the maximum power with the addition of MPPT 
algorithm was 12.4W, and the maximum power without the 
addition of MPPT algorithm was 11.3W, indicating that MPPT 
algorithm can improve the utilization efficiency of solar panel 
power generation. During parameter optimization, the number 
of features selected by FWA in the Ionosphere dataset was 13.8 
± 3.47, with a classification accuracy of 95.87 ± 1.58. The 
number of features selected by FWA in the Wine dataset was 
4.9 ± 0.53, with a classification accuracy of 97.24 ± 1.15. The 
number of features selected by FWA in the Sonar dataset was 
23.7 ± 3.40, with a classification accuracy of 97.01 ± 1.98. The 
number of features selected by FWA in the German dataset was 
13.1 ± 1.98, with a classification accuracy of 86.90 ± 2.03. This 
indicates that the optimization effect of FWA parameters is 
good. In the comparison of step curves, the FWA improved 
adaptive fuzzy PI control system reaches its maximum value 
faster and reaches a stable state quickly, indicating its fast 
response speed and high stability. In the calculation of solar 
panel power generation, the FWA improved adaptive fuzzy PI 
control system has a higher fitting degree with the real power 
curve, indicating its high accuracy. The above results indicate 
that the FWA improved adaptive fuzzy PI control system has 
the characteristics of fast response speed, high stability, accurate 
prediction, and high accuracy. At the same time, the system 
exhibits better performance in terms of energy consumption and 
heat generation, while extending the service life of the battery. 
However, without considering the complexity of algorithms and 
models, it may affect the performance and feasibility of 
practical applications and will continue in this area in the future. 
For example, the neural network architecture can be optimized 
to reduce the number of hidden layers and reduce the 
complexity of the model. 
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