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Abstract 

 

INTRODUCTION: Power grid blackouts occur frequently, which significantly impacts social impact. Because these 

accidents are dynamic and random, predicting and evaluating them is challenging. 

OBJECTIVES: To explore the complexity of the power grid itself, analyzes the critical changes of the self-organizing 

model during power grid fault, extracts the data characteristics related to the steady-state maintenance of abnormal 

systems, and puts forward an effective outage prediction model. 

METHODS: Starting with cluster analysis, The authors can reduce data fluctuation and eliminate noise interference to 

optimize data. The evaluation indexes of initial fault occurrence possibility and fault propagation speed in the power grid 

are constructed. 

RESULTS: The validation of the outage forecasting model has produced promising results, achieving 96.4% forecasting 

accuracy and a meager error rate. In addition, the evaluation index developed in this study accurately reflects the 

possibility and spread speed of power outage accidents. 

CONCLUSION: The research proves the feasibility of establishing an outage prediction model based on the power grid 

system data characteristics. The model has high accuracy and reliability and is a valuable tool for power outage research 

and judgment. 
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1. Introduction 

As the power grid continues to expand and evolve, its 

security and reliability demands are steadily rising. Power 

outages represent one of the most prevalent issues in the 

power system, significantly impacting grid operations. As 

a result, the exploration, analysis, prediction, and control 

of power outage incidents are crucial research areas in the 

power network domain. These endeavors play a pivotal 

role in ensuring the consistent and stable operation of the 

power grid while enhancing user satisfaction. Among 

these endeavors, accurately and swiftly identifying the 

causes and extent of power outages holds immense 

practical significance. 

2. Model analysis 
2.1 Literature review 

Introduction: 

Power grid faults and outages have been subjects of 

extensive research, with various studies exploring 

predictive and analytical approaches. Fan Min et al. 

(2023) investigated distribution network fault-related 

power outages, identifying root causes based on outage 

fault data to enhance predictive models. They developed a 

random cost-sensitive Convolutional Neural Network 
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(CNN) using Mo Xingguo's approach and applied random 

sampling with replacement to mitigate false positives in 

abundant average data [1]. Li Guoqing et al. (2022) 

devised a prediction model for node outage risk in the 

new energy grid. They assessed power outage risks in the 

power grid system through real-time grid system pressure 

prediction and conducted case studies to validate model 

effectiveness [2]. Nan Dongliang et al. (2021) constructed 

a data-driven prediction model for distribution network 

power outages. This model balanced original data via k-

means clustering and employed the Adaboost algorithm 

for classification, significantly enhancing predictive 

accuracy [3]. Yu Qun et al. (2018) delved into the 

autocorrelation of power grid blackout incidents, 

analyzing decades of power outage data and identifying 

long-range autocorrelations within the loss load sequence. 

Their research facilitated time-series predictions of 

blackout incidents and associated loss loads [4]. 

These studies have tackled the issue of power outages in 

distribution networks from diverse angles and 

dimensions[5]. They have explored fault analysis and 

modeling using outage data, risk prediction based on new 

energy grid nodes, and data-driven analysis for 

distribution networks. By deconstructing power grid fault 

outage prediction models, they have offered effective 

solutions through various methodologies and technical 

approaches. While these studies have made significant 

theoretical and practical contributions, many models still 

grapple with false optimistic predictions stemming from 

inadequate sampling of power failure occurrences and an 

overabundance of standard samples[6]. 

In light of these challenges, this paper aims to explore the 

cascade effect of widespread faults in predictions from the 

perspective of self-organized criticality theory. 

2.2 Self-organized criticality theory 

The theory of self-organized criticality posits that many 

complex systems naturally exist in a critical state, where 

the system's behavior undergoes abrupt changes or phase 

transitions, exhibiting features such as instability, 

diffusion, and long-range correlation. These 

characteristics serve as essential foundations for the self-

organization and fractal patterns observed in the system. 

Power outage accidents, shaped by the interplay of 

multiple factors within the power grid, exemplify the 

typical traits of self-organized critical state 

transformations[7]. This article builds upon this analysis 

to mine the data characteristics within the grid system. 

Self-organization manifests in the similarity and scale 

invariance of a system's properties across different time 

scales. Leveraging these phenomena, researchers have 

equated mathematical models and computational methods 

to simulate and predict a wide array of natural and 

societal occurrences. Some scholars have examined the 

self-organized criticality of power grid fault outages in 

prior research. For instance, Yu Qun and Guo Jianbo 

(2006) systematically organized data on significant power 

outages in China's power grid, delving into their self-

organized criticality traits[8]. Xinyao L et al. (2014) 

introduced a novel cascading fault prediction 

methodology rooted in self-organized criticality 

principles, dissecting the typical progression of cascading 

faults[9]. Drawing from the non-uniform self-organized 

criticality characteristics, they proposed an assessment 

index for estimating the overall self-organized critical 

line. This index incorporates state and structural 

transformations following power failures, enabling the 

prediction of cascading failures within clusters of self-

organizing essential lines based on a composite margin 

index. 

This paper endeavors to uncover and analyze the inherent 

self-organized criticality within power grid outages, 

shedding light on data characteristics that can enhance our 

understanding and predictive capabilities in managing 

grid system disruptions. 

2.3 Distribution of blackout accidents 

To analyze power grid fault outage incidents through the 

lens of self-organized criticality theory, the initial step 

involves organizing the historical time series data about 

these outages.   In this context, the study conducted by Yu 

Qun and Guo Jianbo (2006) presented critical information 

concerning major power outages, including factors such 

as load loss and frequency.   Upon meticulous 

organization and categorization of this raw data, the 

following results emerged: 

Table 1. Statistics on the scale of power outage loss load 

in China's power grid 

power outage loss load (MW) quantity frequency 

100＜Q＜200 96 32.0% 

200＜Q＜300 74 24.7% 

300＜Q＜400 40 13.3% 

400＜Q＜500 30 10.0% 

500＜Q＜600 21 7.0% 

600＜Q＜700 15 5.0% 

700＜Q＜800 13 4.3% 

800＜Q 11 3.7% 

Among these findings, it is worth highlighting that R-

squared (R2) equals 0.9696, indicating a notably 

improved predictive performance of the model. This 

result substantiates the observed patterns in accident 

frequency and underscores their regularity. 
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Figure 1. The fitting results of the scale statistics of power 

outage loss load in ChinaThe appropriate results of the 

scale statistics of power outage loss load in China 

 

This data can be further corroborated by examining 

blackout occurrences at the scale of power system 

blackout events[10]. When assessed on this broader 

observational scale, the frequency of blackout phenomena 

exhibits notable stability[11]. This validation reinforces 

the efficacy of the analysis conducted using the overall 

data characteristics of the system. 

3. Model Construction 
3.1 Introduction of Initial Failure 
Power grid fault blackouts often originate from specific 

initial fault causes. Let's assume there are multiple types 

of responsibility causes and the probability of the i-th 

fault cause occurring is denoted as 𝑃𝑖
𝑎 . If there are b lines, 

the probability of the j-th line failing is represented as 𝑃𝑗
𝑏 , 

and the occurrence probability of the i type of failure is 

𝑃𝑖𝑗
𝑏  . If the line j is further divided into c sections, then the 

probability 𝑃𝑘
𝑐 Of faults occurring in section k is: 

𝑃𝑘
𝑐 =

𝑓𝑘

∑ 𝑓𝑘
𝑐
𝑘=1

    (1) 

Now, assuming the existence of an incompatible fault 

type d, where the probability of occurrence of the s type 

of fault is 𝑃𝑠
𝑑, there are: 

 ∑ 𝑃𝑠
𝑑𝑑

𝑠 = 1    (2) 

Consequently, the probability of fault s occurring in 

segment k of line j, caused by the i-th fault cause, is 

computed as: 

P(𝑖, 𝑗, 𝑘, 𝑠) = 𝑃𝑖
𝑎𝑃𝑗

𝑏𝑃𝑘
𝑐𝑃𝑠

𝑑  (3) 

This model establishes the essential simulation state based 

on the initial failures' probabilities. It can analyze the 

likelihood of failure at each key stage resulting from 

various shortcomings and their chain reactions. Cascading 

failures, induced by multiple random factors, lead to 

overall failure and power outage incidents. 

3.2 Fault creep assessment 

The model constructs initial faults using the 

aforementioned random process and designs multiple 

fault propagation paths based on it to analyze propagation 

speeds on specific lines.   These propagation paths are 

defined as: 

                   T =
1

N(ECAS)
                                                   (4) 

HereN(ECAS),  represents the number of sequential circuit 

breaks in the specific fault-cascading process. 

Simultaneously, the model also considers the extent of 

fault spread, i.e., the proportion of skipped lines in the 

total power grid, as follows: 

 S =
NUM(ECAS)

N
    (5) 

Here NUM(ECAS) ,  is the number of line jumps in a 

specific fault cascading process, and N is the number of 

lines in the power grid. 

The overall characteristics of fault development can be 

established by assessing the original fault and propagation 

scenario, which allows for distinguishing different fault 

propagation processes and analyzing the fault propagation 

path leading to power outage incidents[12]. 

However, during this analysis, the model encounters 

substantial environmental noise points caused by initial 

faults that do not trigger further diffusion and defects that 

do not propagate.    Similarly, fault outage predictions 

based on many average values in actual sample data often 

result in false positives, which can be attributed to the 

probability impact of such non-diffusing fault propagation 

and fault outage incidents[13].    Therefore, additional 

noise processing is required for data generated based on 

monitoring and simulation. 

3.3 Noise processing 

Many existing models used by various research 

institutions for power outage research and assessment 

encounter the challenge of data characteristic noise 

interference, resulting in issues like low accuracy and 

high time consumption. Researchers use various methods 

to filter data and enhance models to address this. This 

paper proposes a data feature noise analysis technique for 

power outage research and assessment. By identifying and 

analyzing characteristic noise points in the data, people 

perform data clustering and subsequently conduct model 

predictions based on the clustered data, thus improving 

the accuracy and efficiency of power outage research and 

assessment[14]. People employ DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) for noise 

analysis.  

Given the original dataset: 

 mxxxD ,,, 21 =
   

(6) 

Where element 𝑥𝑗  in D contains all the points in D  

whose distance from 𝑥𝑗 is not greater than ε is ε . i.e., 

( ) ( )  = jijj xxdistDxxN ,
  (7) 

Among these, core points are defined as: 
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( ) PtsxN j min

                       (8) 

In the above equation, core points are defined as 𝑥𝑗 . 

If 𝑥𝑗 It is located in ε, whose core object is 𝑥𝑖, then  𝑥𝑗 is 

said to be directly reachable by the density of 𝑥𝑖. 

Set up a sample sequence: 
  𝑝1, 𝑝2, ⋯ , 𝑝𝑛   

 (9) 

Here, where  𝑝1 is 𝑥𝑖, 𝑝𝑛,  is 𝑥𝑗 , and the sample sequence 

meets the requirement that any 𝑝𝑖 can meet the 

requirement that 𝑝𝑖+1 F can be directly reached by 𝑝𝑖  

density, then  𝑥𝑗 and 𝑥𝑖  They are said to be density-

reachable. When both 𝑥𝑗 and 𝑥𝑖can reach the density of 𝑥𝑘 

, it is said that 𝑥𝑗 and  𝑥𝑖 Are connected in density. 

The DBSCAN clustering algorithm requires an input 

point set, given a radius. (𝑒𝑝𝑠) and a minimum number of 

points min(Pts) . 

The algorithm first arbitrarily selects a point if the number 

of points is less than (𝑒𝑝𝑠)  is greater than or equal to 

min(Pts) , the specific point arbitrarily selected by the 

algorithm is first marked as a cluster, and then all topics 

are recursively processed. Therefore, the DBSCAN 

clustering algorithm starts from the core point and 

expands to all density-reachable εfields. In the process of 

the ε field, the obtained area is maximized, and any two 

regional issues maintain a density-connected relationship. 

If the given number of points is less than (𝑒𝑝𝑠)  is less 

than the min(Pts) limit, the resulting points that cannot be 

included in the cluster are classified as noise points. 

4. Model Fitting and Data Analysis 
4.1 Noise Analysis Results 

Drawing from the preceding analysis, the author 

constructed a model and utilized power grid monitoring 

data for noise analysis. As a result, the author has 

organized and generated 14 indicators to participate in the 

model construction. The DBSCAN clustering results are 

as follows: 

Table 2. Classification results of bicluster centers 

variable Cluster species 1 Cluster species 2 

x1 0.05787037 0.168595041 
x2 0.08912037 0.181818182 
x3 0.540509259 0.228099174 
x4 0.142361111 0.256198347 
x5 0.148148148 0.000000000 
x6 0.278935185 0.000000000 
x7 0.000000000 1 
x8 0.399305556 0.000000000 
x9 0.091435185 0.117355372 

x10 0.22337963 0.244628099 
x11 0.31712963 0.262809917 
x12 0.243055556 0.252892562 
x13 0.116898148 0.137190083 
x14 0.128472222 0.14214876 

As the table above shows, the model's classification 

results exhibit minimal variations across most variables. 

The author can organize these results into a scatter plot 

for a more precise visual representation. The scatter plot 

reveals the following patterns: 

 
Figure 2. Classification results of bicluster centers 

 

As illustrated in the figure above, noise analysis results 

reveal that certain variables, including x3, x6, x7, x8, and 

others, exhibit notable data discrimination. This 

observation suggests that the sample data has been 

partitioned into distinct groups based on two cluster 

centers, allowing for the identification of noise data. This 

methodology effectively removes noise while preserving 

information unrelated to the noise within the original 

dataset. Consequently, it enhances the validity and 

reliability of the data for predictive analysis, ensuring that 

the information essential for research remains intact. 

4.2 Model prediction results 

Feature extraction is carried out using the preprocessed 

data mentioned above, focusing on extracting crucial 

characteristic parameters that reflect the operational state 

of the power system, which will be used for model 

predictions[15]. In this process, 70% of the sample data is 

allocated for training to optimize the model's 

performance. Another 15% is earmarked for validation, 

assessing the model's convergence and termination during 

training. The final 15% is reserved for testing, crucial for 

evaluating the model's predictive performance. 

A noteworthy trend is observed in the gradient descent 

process during model training and optimization. This 

trend illustrates the iterative progression towards 

enhancing model performance. 

 
Figure  3. Gradient downward trend curve in iteration 
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The figure above vividly illustrates a critical trend. As the 

number of iterations increases, the curve within the figure 

showcases a gradual reduction in fluctuations, which 

signifies that when the model parameters are fine-tuned 

using the gradient descent method, the model's deviation 

from the optimal point diminishes[16]. Consequently, the 

model's performance undergoes gradual optimization, 

reducing the disparity between the model's predictions 

and the actual values. With increasing iterations, the 

model parameters steadily converge toward the optimal 

point, leading to a smoother and more refined 

optimization process[17]. 

Simultaneously, during this iterative process, changes in 

the validation set's performance (val fal) are observed: 

 
Figure  4. Validation checks result in iteration 

4.3 Model prediction performance 

Next, let's delve into the organization of the model's 

prediction performance, particularly concerning the ROC 

curve for the training samples: 

 
Figure  5. ROC curve 

 

As depicted in the figure above, the ROC curve for the 

training samples showcases several noteworthy 

characteristics. The curve reveals a strong hit rate 

performance, with a limited increase in the false positive 

rate as the actual rate increases. This implies that the 

model maintains relatively tight control over the false 

positive errors resulting from its predictive accuracy. 

Even when managing the false positive rate effectively, 

the model retains a commendable hit rate. Furthermore, 

when striving for a high hit rate of 100%, the overall false 

positive rate generated by the model's predictions on the 

sample data remains below 20%, demonstrating 

significant practical applicability[18]. The model's 

prediction performance on the validation samples exhibits 

slightly lower results than the training samples. However, 

it's important to note that the model's predictive ability 

remains valid and reliable, demonstrating its capacity to 

generalize beyond the training data. The model's 

performance on the test samples slightly improved 

compared to the validation samples[19]. This outcome 

reaffirms the model's optimization results and indicates 

that it has successfully avoided the negative impact of 

overfitting, which can sometimes occur when training on 

the training samples. The ROC curve of the total sample 

data is smoothed, and based on this, the balance between 

the false positive rate and the false negative rate can be 

precisely analyzed. 

4.4 Model Performance Comparison 

To assess the model's predictive prowess, the author 

compares it with a traditional model's performance. 

Organize it into a visualization result, including: 

 
Figure 6. The prediction performance of the model used 

in this paper is compared with the traditional model 

 

 

As illustrated in the figure above, the model prediction 

results indicate that the traditional model's predictive 

efficacy falls significantly short. Notably, the 

conventional power outage prediction model exhibits a 

substantially lower accuracy rate, resulting in a notably 

high false positive rate and undermining the overall 

performance of the model's prediction results[20]. This 

disparity in accuracy rates underscores the limitations of 

the existing analysis methods, highlighting the potential 

for the noise analysis technique employed in this study, as 

introduced by Benne, to be refined and optimized for 

superior performance, particularly in terms of F1 score. 
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The model developed in this paper displays distinct 

characteristics in comparing the three model types[21]. It 

excels in predicting training samples but performs poorly 

when applied to verification and test samples. This 

observation suggests that there is significant room for 

further optimization in existing models, offering 

promising opportunities for the refinement and expansion 

of this model in practical applications. 

5. Conclusion 

The conclusions drawn from this comprehensive research 

can be summarized as follows: The outage prediction 

model developed in this study achieves an impressive 

accuracy rate of 96.4%, underscoring its practical utility 

and potential to provide a more dependable safeguard for 

power system safety. This research introduces a novel 

approach to power outage analysis and assessment, 

leveraging data characteristic noise analysis technology. 

The application of this technology substantially enhances 

the accuracy and efficiency of power outage research and 

evaluation. Effective data preprocessing and feature 

extraction techniques are essential for successfully 

applying this methodology. Additionally, practical 

considerations such as data timeliness and accuracy must 

be addressed when implementing this approach in real-

world applications. Building upon this technological 

foundation, future work could focus on optimizing data 

preprocessing and feature extraction techniques to 

enhance algorithm performance and accuracy further. 

Model optimization remains an area of consideration as 

well. Addressing practical challenges such as data 

timeliness and accuracy is paramount, especially for real-

time power system monitoring. To meet the demands of 

real-time power system monitoring, this technology can 

be integrated with existing power system safety 

monitoring technologies to establish a comprehensive 

power system safety monitoring system. 
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