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Abstract 
INTRODUCTION: A proposed solution is presented to address the issue of rising energy loss resulting from inaccurate 
power prediction in the predictive energy management strategy for composite electric power electric ship. 
OBJECTIVES: The solution involves the development of a power prediction model that integrates Archimedes' algorithm, 
optimized variational modal decomposition, and BiLSTM. 
METHODS: Within the framework of Model Predictive Control, this predictive model is utilized for power forecasting, 
transforming the global optimization problem into one of optimizing the power output distribution among power sources 
within the predictive time domain, then the optimization objective is to minimize the energy loss of the composite electric 
power system, and a dynamic programming algorithm is employed to solve the optimization problem within the forecast 
time domain. 
RESULTS: The simulation findings demonstrate a significant enhancement in the forecast accuracy of the power prediction 
model introduced in this study, with a 52.61% improvement compared to the AOA-BiLSTM power prediction model. Con-
currently, the energy management strategy utilizing the prediction model proposed in this research shows a 1.02% reduction 
in energy loss compared to the prediction model control strategy based on AOA-BiLSTM, and a 15.8% reduction in energy 
loss compared to the ruler-based strategy. 
CONCLUSION: The simulation findings demonstrate a significant enhancement in the forecast accuracy of the power pre-
diction model introduced in this study. 
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Full Name Abbreviations 
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Model predictive control MPC 
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Bidirectional LSTM BiLSTM 
Variational mode decomposition VMD 
Archimedes optimization algorithm AOA 
Ultracapacitor UC 
State of charge SOC 
Intrinsic mode functions IMF 

1. Introduction

Composite electric power system is among the principal di-
rections in the development of current new-energy ships. The 
coupling of various power sources endows these systems 
with pronounced nonlinear characteristics, complicating the 
distribution of energy. A critical issue demanding resolution 
in their energy management strategy (EMS) is how to realize 
the efficient operation of each power source within these 
composite electric systems, thereby reducing system energy 
consumption and energy loss. 
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Currently, the ruler-based EMS is extensively employed 
in practical engineering applications. For example, Han 
achieved the goal of improving system efficiency by setting 
a ruler-based EMS based on determining the threshold value 
for a hybrid ship composed of fuel cells and batteries [1]. 
Unlike the deterministic ruler-based strategy proposed by 
Han, Halima proposed a fuzzy ruler-based EMS to optimize 
emissions for parallel hybrid electric vehicles. The control of 
different power supply operation modes and the control of 
battery charging states are realized by means of the affiliation 
function [2]. The ruler-based EMS is characterized by its 
ease of implementation and real-time performance. How-
ever, the determination of the threshold value in this strategy 
relies on engineering experience and actual calibration re-
sults, leading to limited adaptability to varying working con-
ditions. The working conditions of a ship encompass its var-
ious operational modes, such as cruising and mooring. This 
article examines these working conditions as indicators of 
power value and variability, with a specific emphasis on the 
management strategy derived from each power source. Con-
sequently, the system experiences significant energy losses, 
making the implementation of optimal control measures a 
difficult task [3]. To solve these problems caused by ruler-
based EMS, scholars have studied optimal EMS. While dy-
namic programming (DP) can achieve optimal control in 
global optimization strategies [4], it is important to note that 
it requires knowledge of future working conditions and in-
volves a significant computational burden. As a result, DP 
can only be optimized offline to serve as a reference for 
online strategies, rather than being directly implemented for 
online control [5]. The challenge in EMS research lies in 
achieving a balance between the control effect of the control 
strategy and real-time considerations. 

For the above reasons, some researchers proposed EMS 
focused on instantaneous optimization and aims to transform 
the energy management problem into a problem of finding 
extreme values for the objective function [6]. By simplifying 
the control object and optimizing the solution method, the 
computational load is reduced [7]. Consequently, this ap-
proach exhibits potential for practical implementation in en-
gineering applications. One of the strategies for minimizing 
energy consumption is the equivalent energy consumption 
minimization strategy. This strategy aims to reduce the en-
ergy consumption of each power source to a unified energy 
consumption index by introducing an equivalence factor [8]. 
For instance, Ge proposed the design of a fuzzy logic con-
troller that adaptively improves the equivalent consumption 
minimization control strategy. This controller adjusts the 
equivalent factor in real time, optimizes the operating points 
of the fuel cell system, and then achieves the goal of improv-
ing the system efficiency [9]. By doing so, the global optimi-
zation problem is transformed into the problem of minimiz-
ing instantaneous energy consumption at each sampling mo-
ment. The effectiveness of this strategy heavily relies on the 
appropriate setting of the equivalence factor. Despite Ge's ef-
forts to improve this issue using fuzzy logic controllers, the 
adaptive equivalent consumption minimization strategy sug-
gested by Ge heavily depends on a fuzzy logic control ap-
proach. The empirical nature of the fuzzy rules and affiliation 

functions in this strategy can result in heightened energy con-
sumption and loss, as well as exacerbate the challenges asso-
ciated with designing the equivalent consumption minimiza-
tion strategy [10]. To overcome this drawback, the research-
ers proposed another optimization-type EMS called model 
predictive control (MPC). The MPC transforms the problem 
of globally optimizing power allocation into a localized 
power optimization problem within a specified prediction 
time domain. This approach employs an optimization algo-
rithm to optimize power allocation within the prediction time 
domain. The effectiveness of this control strategy relies on 
the accuracy of power prediction, making power prediction 
the central and challenging aspect of the MPC strategy. 
Hence, the prediction model of power is the fundamental and 
challenging aspect of the MPC method. 

Numerous studies have been conducted by scholars to 
forecast short-term power in the future. Linear regression is 
a conventional approach that has been shown to yield supe-
rior prediction outcomes for linear problems [11]. However, 
its applicability is limited when it comes to addressing non-
linear difficulties. The advancement of intelligent technology 
has led to the emergence of modern intelligent methods, in-
cluding neural networks, which possess enhanced processing 
capabilities in addressing nonlinear problems. Examples of 
such methods include BP neural network [12] and long and 
short-term memory (LSTM) neural network [13]. Hu em-
ployed a BP neural network for power prediction; neverthe-
less, it leads to underfitting because of its lack of generaliza-
tion capability [14]. Yan employed the LSTM neural net-
work to forecast power, successfully addressing the issue of 
gradient explosion and vanishing that occur during the train-
ing phase [15]. While according to Zhao's article, bidirec-
tional LSTM (BiLSTM) outperforms a single LSTM struc-
tural model in terms of data feature extraction efficiency and 
performance. Zhao used an estimate method for short-term 
demand of electricity based on WOA-BiLSTM in order to 
use the BiLSTM neural network layer for bidirectional time 
series feature learning [16]. Furthermore, Putz have en-
hanced the predictive accuracy by augmenting the network's 
depth [17], and Houran employed optimization algorithms to 
maximize the hyper-parameters [18]. These efforts have re-
sulted in a certain degree of improvement in accuracy. 

The working conditions of ships are intricate, and the 
power demands vary significantly under different scenarios. 
such as mooring, cruising, and power positioning. These var-
iations are complex, unpredictable, and lack regularity. Con-
sequently, accurately predicting future power requirements 
becomes more challenging due to the increased difficulty in 
anticipating these changes. The aforementioned study pri-
marily concentrates on enhancing the model's nonlinear fit-
ting capability from a modelling perspective, while disre-
garding the impact of power non-stationarity on prediction 
accuracy. Besides, although BiLSTM has the advantages of 
being able to learn time series features and solve the gradient 
vanishing problem, setting its appropriate internal parame-
ters is a difficult problem. Consequently, the extent to which 
prediction accuracy is improved remains limited.  

In response to the above problems with current research, 
some novel contributions to this research are proposed: 
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1. It improves the precision of subsequent power predic-
tion by utilizing variational mode decomposition (VMD) to 
extract potential data patterns from working condition data 
and decrease the non-stationarity of the power series. 

2. The proposed method involves optimizing the key pa-
rameters of VMD and BiLSTM. This research introduces an 
optimization approach that employs the Archimedes optimi-
zation algorithm (AOA) to improve power prediction accu-
racy. 

The proposed power prediction model, consists of two pri-
mary components: the decomposition model and the predic-
tion model. Unlike conventional direct prediction models 
that depend on power data, this study suggests an approach 
utilizing the AOA to optimize the parameters of VMD. The 
goal is to decompose the power sequence into multiple sub-
sequences to reduce the inherent non-smoothness of the 
power sequence. The power prediction is subsequently 
achieved via the BiLSTM model optimized by AOA. Fol-
lowing this, a predictive EMS is developed, based on the out-
comes of power prediction, within the model predictive con-
trol strategy architecture. This strategy involves conducting 
rolling optimization of the power allocation problem in the 
predictive time domain, aiming ultimately to minimize sys-
tem energy loss.  

Hence, this article commences by introducing the compo-
site power system model that incorporates a battery and ul-
tracapacitor (UC). Subsequently, an examination of the 
power combination prediction model is conducted, and the 
DP solver in MPC, which is proposed in this paper, is imple-
mented on its foundation. Subsequently, simulation experi-
ments are executed within the MATBLAB software. Com-
parative experiments are conducted utilizing both a ruler-
based approach and a global optimization approach. 

2. Composite Electric Power System 
Model 

The composite electric power system consists of battery and 
UC as dual power sources [19]. In this system, the battery 
serves as the primary power source, while the UC functions 
as the auxiliary power source. The structure of this system is 
depicted in Figure 1.  

UC

Battery

DC/DC

Motor

ucP

batP

DCP

reqP

 

Figure 1. Composite electric power supply system 
structure 

During navigation, the correlation between the power 
source and the motor's power requirement can be expressed 
using the following equations. 

( )uc

req bat uc

sign P
uc DC DC

P P P

P P η

= +


= ⋅
 (1) 

1        0
( ) 0        0

1      0

if x
sign x if x

if x

>
= =
− <

 (2) 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑃𝑃𝑢𝑢𝑢𝑢 and 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏  stands for the required power of the 
motor, the power of the UC and the power of the battery, re-
spectively, In equations (1) and (2). While 𝜂𝜂𝐷𝐷𝐷𝐷  is the 
DC/DC efficiency, 𝑃𝑃𝐷𝐷𝐷𝐷  is the power of DC/DC near the mo-
tor.  

Four types of ship propulsion working modes can be dis-
tinguished based on power consumption. Table 1 describes 
these modes and their power distribution. 

Table 1. The working mode and power relationship of 
electric ships 

Working Mode Power Management Strategy 
Battery Driven 0req bat ucP P P= =，  

Ultracapacitor Driven 0req uc batP P P= =，  

Hybrid Driven 0req bat uc ucP P P P= + >，  

Charging 0req bat uc ucP P P P= + <，  

2.1. Battery Model 

Equations (3) and (4) display the battery pack current and 
SOC calculation expressions, and the corresponding internal 
resistance model is established. 

2
_ _ 4

2
oc bat oc bat bat bat

bat
bat

U U R P
I

R
− − ⋅

=  (3) 

0
_

t

bat
bat bat init

bat

I dt
SOC SOC

Q
= − ∫  (4) 

The battery current, open circuit voltage, internal re-
sistance, initial SOC, and rated capacity are represented re-
spectively by the variables 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑈𝑈𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏 , 
𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏  in equations (3) and (4). Figure 2 il-
lustrates the link between battery SOC and 𝑈𝑈𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏, 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏. 
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Figure 2. Relationship between battery SOC, open 
circuit voltage and internal resistance 

2.2. Ultracapacitor Model 

The UC can be represented by an internal resistance 
model, which is analogous to that of the battery. The current 
and SOC of the UC can be calculated using the following 
equations (5) and (6). 

2
_ _ 4

2
oc uc oc uc uc uc

uc
uc

U U R P
I

R
− − ⋅

=  (5) 

_

_

oc uc
uc

uc max

U
SOC

U
=  (6) 

The UC current, open circuit voltage, maximum voltage, 
and internal resistance are represented by the variables 𝐼𝐼𝑢𝑢𝑢𝑢, 
𝑈𝑈𝑜𝑜𝑜𝑜_𝑢𝑢𝑢𝑢, 𝑈𝑈𝑜𝑜𝑜𝑜_𝑚𝑚𝑚𝑚𝑚𝑚 , and 𝑅𝑅𝑢𝑢𝑢𝑢 in equations (5) and (6), respec-
tively. Figure 3 illustrates the relationship between 𝑈𝑈𝑜𝑜𝑜𝑜_𝑢𝑢𝑢𝑢, 
𝑅𝑅𝑢𝑢𝑢𝑢, and UC SOC. 
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Figure 3. Relationship between UC SOC, open circuit 
voltage and internal resistance 

 

2.3. Bidirectional DC/DC converter model 

This paper solely examines the DC/DC's operational effi-
ciency, ignoring the intricate internal mechanism changes. 
Figure 4 illustrates how power affects its efficiency. 
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Figure 4. DC/DC efficiency and power relationship 
curve 

3. Power Combination Prediction Model 

3.1. Construction of Power Combination Pre-
diction Model 

Due to the non-stationarity of ship operational condition time 
series, a single prediction model is insufficient in terms of 
prediction accuracy. Although its mapping ability can be en-
hanced through optimization algorithms, the improvement is 
limited and the prediction accuracy remains unsatisfactory, 
impacting the effectiveness of control outcomes. Therefore, 
to enhance the accuracy of power prediction, a combined pre-
diction model based on AOA-optimized VMD and BiLSTM 
is proposed, as illustrated in Figure 5. The power prediction 
process of this model is as follows: 

1. Decomposition: Initially, the power series undergoes 
decomposition through the AOA-VMD algorithm into N dis-
tinct modal components. A comprehensive explanation of 
this algorithm is available in Section 3.5; 

2. Prediction: Subsequently, normalization is applied to 
each modal component, followed by the establishment of in-
dividual AOA-BiLSTM prediction models. The AOA algo-
rithm is instrumental in optimizing the hyperparameters as-
sociated with the BiLSTM neural network, extensively de-
tailed in Section 3.6; 

3. Fusion: Finally, the predictive outputs from each com-
ponent are aggregated and synthesized to formulate the com-
prehensive power prediction outcome. 
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Figure 5. Power prediction flow chart 

3.2. VMD Feature Extraction Algorithm 

VMD is a decomposition method that breaks down signals 
into a series of simple modal components [20]. The process 
of power prediction in this model is illustrated through the 
following steps: 

1. Decomposing the original signal into several modal 
components. This is based on the principle that the sum of 
the decomposed components should equal the original sig-
nal, aiming to minimize bandwidth. The calculation formula 
is as shown in Equation (7): 

{ } { }
( ) ( )

( ) ( )
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−

⋅
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=

      ∂ + ∗      


=


∑

∑
 (7) 

where K represents the total number of decompositions 
performed, 𝜕𝜕𝑡𝑡 is utilized to denote a gradient operation and 
the symbol ∗ is a convolution operation and 𝛿𝛿(𝑡𝑡) refers to 
the pulse signal. {𝑢𝑢𝑘𝑘} and {𝜔𝜔𝑘𝑘} are modal and center fre-
quency sets, respectively. Lastly, 𝑓𝑓(𝑡𝑡) symbolizes the orig-
inal signal; 

2. In order to solve the problem of vulnerability to con-
straints, the Lagrange multiplication operator 𝜆𝜆(𝑡𝑡) and the 

multiplication factor 𝛼𝛼 are introduced, and the calculation 
method is shown in equation (8); 
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(8) 

Where 𝛼𝛼  represents the penalty factor. The penalty 
factor of VMD plays a role in balancing the signal-to-noise 
ratio and decomposition accuracy in the decomposition pro-
cess. 

3. Each modal component and centre frequency are cal-
culated and the expression is shown in equation (9): 
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 (9) 

where 𝑢𝑢�𝑛𝑛+1(𝜔𝜔) and 𝜔𝜔𝑘𝑘
𝑛𝑛+1  are the k-th modal compo-

nent and centre frequency of centre frequency 𝜔𝜔  at the 
(n+1)-th iteration, respectively. 

3.3. BiLSTM Model 

In addition to addressing the issues of gradient eruption and 
vanishing, LSTM possesses the selective memory capability, 
which confers additional benefits when processing lengthy 
time sequences. It is composed of an output gate 𝑜𝑜𝑡𝑡, an up-
dating gate 𝑖𝑖𝑡𝑡 , and a forgetfulness gate 𝑓𝑓𝑡𝑡 . The schematic 
representation of the structure is illustrated in Figure 6. 
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Figure 6. LSTM structure diagram 

In Figure 6, 𝑥𝑥𝑡𝑡  is the input at moment t, 𝑊𝑊𝑓𝑓,𝑖𝑖,𝑐𝑐,𝑜𝑜  and 
𝑏𝑏𝑓𝑓,𝑖𝑖,𝑐𝑐,𝑜𝑜 are the weights and biases of the corresponding gates, 
respectively. 𝜎𝜎 is the Sigmoid activation function, 𝑐𝑐𝑡𝑡 is the 
cell state at moment t. 𝑐𝑐𝑡𝑡−1 and ℎ𝑡𝑡−1 are the cell state and 
the hidden state at the moment t-1. As can be seen from Fig-
ure 6, the output ℎ𝑡𝑡 of LSTM are jointly determined by 𝑥𝑥𝑡𝑡, 
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𝑐𝑐𝑡𝑡−1 and ℎ𝑡𝑡−1. First, the 𝑓𝑓𝑡𝑡 , 𝑖𝑖𝑡𝑡  and 𝑜𝑜𝑡𝑡  can be calculated 
from 𝑥𝑥𝑡𝑡  and 𝑐𝑐𝑡𝑡−1. Then, the ℎ𝑡𝑡 can be calculated based on 
the output result of 𝑐𝑐𝑡𝑡  and gate. The LSTM computation 
process is shown in equations (10) to (14). 

[ ]( )1,t f t t ff W h x bσ −= × + (10) 

[ ]( )1,t i t t fi W h x bσ −= × + (11) 

[ ]( )-1 1tanh ,t t t t c t t cc f c i W h x b−= ⋅ + ⋅ × + (12)

[ ]( )1,t o t t oo W h x bσ −= × + (13)

( )tanht t th o c= ⋅ (14)
The structure diagram of BiLSTM is presented in Figure 

7. It comprises a bidirectional LSTM, which differs from the
unidirectional LSTM in that it learns from both the forward
and backward sequences. By leveraging the bidirectional
structure, BiLSTM is able to effectively utilize the data and
enhance the accuracy of predictions, as compared to the sole
utilization of forward-to-backward learning in LSTM.

1h


1h


2h




2h


mh


1p 2p np

mh


⋅ ⋅ ⋅

⋅ ⋅ ⋅

1x 2x nx⋅ ⋅ ⋅

Figure 7. BiLSTM structure diagram 

3.4. AOA algorithm 

After determining the decomposition and prediction models, 
it is necessary to further ascertain the key parameters of these 
models. For instance, in the VMD model, choosing parame-
ters such as the number of decomposition layers and penalty 
coefficients, and in the BiLSTM model, selecting the number 
of hidden nodes and the learning rate significantly influences 
prediction accuracy. Relying solely on experience to deter-
mine these parameters can compromise the models' general-
izability and reliability. Therefore, this paper employs the 
AOA method to optimize the key parameters of both the 
VMD and BiLSTM models. 

The AOA algorithm is derived from Archimedes' princi-
ple and shares similarities with other optimization algo-
rithms. Like its counterparts, the AOA algorithm encom-
passes an initiation phase, a search phase, and a position up-
dating process. The precise processes of the algorithm are 
outlined as following steps: 

Initialization 

( )
( )

i i i i

i i i i

i i

i i

x lb rand ub lb

acc lb rand ub lb
den rand
vol rand

 = + ⋅ −


= + ⋅ −


=
 =

(15) 

where 𝑥𝑥𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  are the position and acceleration of 
the i -th object; 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 and 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖  are the density and volume 
of the first object; 𝑢𝑢𝑢𝑢𝑖𝑖  and 𝑙𝑙𝑙𝑙𝑖𝑖  are the upper and lower 
bounds of the search space; and rand is a random number in 
the range of [0,1]. 

The position 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, the optimal density 𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, the op-
timal volume 𝑣𝑣𝑣𝑣𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and the optimal acceleration 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
of the object with optimal adaptation are obtained according 
to the adaptation evaluation function. 

4. Density and volume update

( )
( )

1

1

t t t
i i best i

t t t
i i best i

den den rand den den

vol vol rand vol vol

+

+

 = + × −


= + × −
(16) 

5. Calculation of the transfer operator T and the density
factor d 

Following the occurrence of the collision between the ob-
jects, a process of progressive equilibration takes place, re-
sulting in the cessation of further collisions. This equilibra-
tion is determined through the calculation of variables T and 
d, as expressed in equation (17): 

max

max

1

max

exp

t

t tT
t
td T

t
+

  −
=  

  
 = −

 (17) 

6. Development and search
If 𝑇𝑇 > 0.5, there is no collision between the objects for

development and the acceleration is updated using the fol-
lowing equation (18): 

1
1 1

t best best best
i t t

i i

den vol accacc
den vol

+
+ +

+ ⋅
=

+ (18) 

A collision between objects takes place when 𝑇𝑇 ≤ 0.5. In 
such a case, a search is executed, a random object is chosen, 
and the acceleration is modified utilizing equation (19): 

1
1 1

t mr mr mr
i t t

i i

den vol accacc
den vol

+
+ +

+ ⋅
=

+ (19) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚 , 𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚 , and 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚  are the density, vol-
ume, and acceleration of a randomly selected object. 

Equation (20) can be obtained by normalizing equations 
(18) and (19):

1
1 min

max min

t
t i
in

acc accacc u l
acc acc

+
+ −
= × +

−
(20) 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑡𝑡+1 is the result of acceleration normalization; 
u and l are set constants; 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 are the max-
imum and minimum values of acceleration.

7. Object position update
If 𝑇𝑇 > 0.5, the updated expression for the position of the

i-th object in the development phase is:
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( )1 1
1

t t t t
i best in best ix x F C rand acc d D x x+ += + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −   (21) 
 If 𝑇𝑇 ≤ 0.5, the updated expression for the position of the 

i-th object in the development phase is: 
( )1 1

2
t t t t
i i in rand ix x C rand acc d x x+ += + ⋅ ⋅ ⋅ ⋅ −  (22) 
 where 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the random object position; 𝐶𝐶1 and 𝐶𝐶2 

are constants; D is defined as the product of constants 𝐶𝐶3 
and T; and F is the position update flag with the expression: 

1       0.5
1     

if P
F

else
≤

= −
 (23) 

 In equation (23), there is 𝑃𝑃 = 2 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐶𝐶4  and 𝐶𝐶4 
is constant. 

3.5. AOA-optimized VMD 

In the process of signal decomposition using VMD, it is im-
perative to predefine certain parameters, including the modal 
number K, penalty factor 𝛼𝛼, and time step. Among these pa-
rameters, K and 𝛼𝛼 significantly impact the outcomes of the 
decomposition. However, setting these parameters manually 
poses challenges in ensuring the accuracy of the decomposi-
tion results and achieving optimal decomposition efficacy. 
Hence, this research suggests utilizing the envelope entropy 
as the adaptation function in order to decrease it, while em-
ploying AOA to determine the ideal values of K and 𝛼𝛼. 

This work examines the concept of envelope entropy (𝐸𝐸𝑝𝑝) 
as a measure of the sparsity of a signal. Additionally, it ex-
plores the relationship between the amount of heavy infor-
mation contained in the intrinsic mode functions (IMF) com-
ponent after decomposition and the inverse proportionality to 
𝐸𝐸𝑝𝑝. The inverse relationship between the size of 𝐸𝐸𝑝𝑝 and the 
amount of information it contains is evident. Conversely, an 
increase in noise is observed as 𝐸𝐸𝑝𝑝 increases. This relation-
ship can be expressed as the following equation (24): 

( ) ( )

( ) ( )
( )

1

1

lgN
p i

N

i

E i i

a i
i

a i

ε ε

ε

=

=

 = −



=


∑

∑
 (24) 

where 𝑎𝑎(𝑖𝑖) is the envelope signal of K components after 
Hilbert demodulation; 𝜀𝜀(𝑖𝑖) is the form of normalized prob-
ability distribution of 𝑎𝑎(𝑖𝑖); N is the number of sampling 
points. 

The merit seeking process is shown in the Figure 8 below 
with the following steps: 

1. Initialize parameters such as object position in AOA 
algorithm, range of K and 𝛼𝛼; 

2. Power decomposition using VMD and calculation of 
adaptation values; 

3. Update various individual positions using AOA algo-
rithms and calculate and update minimum adjustment values; 

4. Repeat steps 2 and 3 until the iterative convergence 
condition is satisfied or the maximum number of iterations is 
reached and then output the optimal K and 𝛼𝛼 parameters; 

5. Execute power decomposition while setting the K and 
alpha of the VMD to the optimal K and 𝛼𝛼 parameter values 
obtained in step 4. 
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volumes and densities

Reconstruct VMD using 
optimal parameters

VMD decomposes 
and calculates fitness 
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Figure 8. AOA-optimized VMD flow chart 

3.6. AOA-optimized BiLSTM 

Since BiLSTM parameters have a direct impact on the preci-
sion of prediction outcomes, their optimization is required. 
This paper describes the utilization of AOA to optimize the 
learning rate, L2 regularization coefficients, and number of 
hidden nodes in a BiLSTM network. The detailed procedure 
is illustrated in Figure 9, and it consists of the following 
steps: 

1. Initialize the object location of the AOA algorithm and 
the ranges of the three selected hyperparameters; 

2. Employ the mean square error as the adaptation value 
when training the BiLSTM model and calculating the adap-
tation value; 

3. Implementing the AOA algorithm to modify the posi-
tions of multiple individuals while simultaneously compu-
ting and revising the minimum fitness value; 

4. Proceed with steps 2 and 3 iteratively until the iterative 
convergence condition is fulfilled or until the maximum 
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number of iterations is completed and the optimal hyperpa-
rameters are output; 

5. Train the BiLSTM model using the middle optimiza-
tion parameter of BiLSTM as the optimal parameter output 
from step 4. 
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using optimal parameters

BiLSTM trains 
and calculates fitness
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Update the current object parameters 
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Figure 9. AOA-optimized BiLSTM flow chart 

3.7. Power Prediction Model 

For power prediction, the expression is shown in equation 
(25): 

( )1 2 1 1
ˆ ˆ ˆ[ , , ] , ,

BiLSTM

k k k k k k k
t t t p t t d tP P P f P P P+ + + − − +=L L  (25) 

where p and d are the length of the prediction time domain 
and the length of the input power sequence respectively; 
𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘  is the BiLSTM prediction model corresponding to 
the k-th component; 𝑃𝑃𝑡𝑡−1𝑘𝑘 ,𝑃𝑃𝑡𝑡−𝑑𝑑+1𝑘𝑘 ,∙∙∙ 𝑃𝑃𝑡𝑡𝑘𝑘  and  𝑃𝑃�𝑡𝑡+1𝑘𝑘 ,𝑃𝑃�𝑡𝑡+2𝑘𝑘 ,∙∙∙
𝑃𝑃�𝑡𝑡+𝑝𝑝𝑘𝑘  are the prediction input sequence and the prediction re-
sult sequence. 

 
 

4. Predictive EMS Based on Model Predic-
tive Control  

Predictive control is characterized by an indeterminate global 
working condition, which precludes the determination of the 
global optimal energy allocation. However, rolling optimiza-
tion enables the identification of a nearly optimal energy al-
location. Figure 10 illustrates the architectural components 
of the MPC-based EMS described in this paper, categorized 
by sampling moment. The sequence of phases is as follows: 

1. Observe the current state of the system, including the 
SOC of the battery and UC;   

2. Apply the power prediction model to forecast the 
power and determine the power demand during the interval; 

3. Determine the optimal control sequence and use DP to 
solve the optimization problem within the power prediction 
interval at the current sampling moment; update the system 
state with the initial element of the sequence; 

4. Reiterate steps 1 through 3 immediately thereafter to 
maintain continuous optimization until the simulation con-
cludes. 

Simulation conditions

Observe the system state at time t

Future demand power forecast

DP solves optimization problems 
in the forecast time domain

Obtain the first element of the optimal 
control sequence

Update system status

Output
k=k+1

 

Figure 10. MPC calculation flow chart 

The UC SOC is selected as the state variable and 𝑃𝑃𝐷𝐷𝐷𝐷  as 
the control variable, and its state transfer equation is as fol-
lows: 

( )
2

_ _

_

1 ( )

4
2

uc uc uc

oc uc oc uc uc uc
uc

uc oc uc uc

SOC k SOC k SOC t

V V R P
SOC

R V C

 + = + ⋅ ∆


− − ⋅
=

⋅ ⋅




 (26) 

where 𝐶𝐶𝑢𝑢𝑢𝑢 is the rated capacity of the UC; K is the time 
step; ∆𝑡𝑡 is the sampling time interval. 

In the prediction time domain, the system objective func-
tion is: 
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( ) ( )( )min 1
k p

loss uc
t k

J E t SOC tϕ
+

=

 = + + ∑  (27) 

where 𝜔𝜔�𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢(𝑡𝑡)�  is the penalty function that con-
strains the UC SOC from falling below the reference value 
and has the following expression: 

( )( )
( ) ( )

( ) ( )( )
( ) ( )

_

_

_

0,     

,   

        

uc uc ref

uc uc uc ref

uc uc ref

SOC t SOC t

SOC t SOC t SOC t

SOC t SOC t

ω α

≥
= −


<

   (28) 

where 𝛼𝛼 is the normal number; 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the energy loss 
of the composite electric power system, which consists of the 
sum of the real-time energy loss of the battery, UC and 
DC/DC, and the specific expression is as follows: 

( ) ( ) ( ) ( ), , / ,loss bat loss uc loss DC DC lossE k E k E k E k= + +  (29) 
where 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐸𝐸𝑢𝑢𝑢𝑢,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐸𝐸𝐷𝐷𝐷𝐷/𝐷𝐷𝐷𝐷,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are the energy 

losses of battery, UC and DC/DC respectively. The expres-
sions for calculating the energy loss of each part are as fol-
lows: 

( )

2
,

2
,

/ ,
uc

bat loss bat bat

uc loss uc uc

sign P
DC DC loss uc uc dcdc

E I R t

E I R t

E P P tη

 = ⋅ ⋅ ∆
 = ⋅ ⋅ ∆


= − ⋅ ⋅ ∆

 (30) 

Also, the following system constraints need to be satisfied: 
( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

_ min _ max

_ min _ max

_ min _ max

_ min _ max

uc

req bat DC

sign P
DC uc DC

bat bat bat

DC DC DC

uc uc uc

uc uc uc

P k P k P k

P k P k k

P P k P

P P k P

P P k P

SOC SOC k SOC

η

= +


= ⋅


≤ ≤


≤ ≤
 ≤ ≤
 ≤ ≤

 (31) 

where min and max are the minimum and maximum val-
ues of the corresponding variables. 

5. Ruler-based Control Strategies  

In contrast to the strategies based on DP and MPC, a ruler-
based strategy is also formulated, as illustrated in Figure 11, 
and includes the threshold value parameters and correspond-
ing explanations presented in Table 2. 

Pbat = Preq

Puc = 0

SOCuc > SOCuc_min

Pbat = 0
Puc = Preq /ηDC

Pbat = Pchg_bat

Puc = (Preq – Pbat ) ×ηDC

Preq >Pchg_limit

SOCuc and Preq 

Preq >PDC_min

Preq >PDC_max

Puc = PDC_max  /ηDC

Pbat = Preq–Puc

Y Y

Y

N

N N Y

 

Figure 11. Flowchart of ruler-based EMS 

 
Table 2. threshold parameters of ruler-based strategies 

Parameters Description Value Unit 
_ minucSOC  Minimum SOC for UC participation in the drive 0.5 - 

_ minDCP  Minimum DC/DC output power when UC is driven alone 15 kW 
_ maxDCP  Maximum DC/DC output power when UC is driven alone 30 kW 

chg_batP  Battery operating power point in charging mode 20 kW 
chg_limitP  Transition to charge mode demand power threshold 10 kW 

reqP  The request power of motor - kW 

ucSOC  Current SOC of UC - - 
DCη  DC/DC efficiency - - 
batP  Battery Power - kW 
ucP  UC Power - kW 
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6. Simulation results analysis

To assess the efficacy of the prediction model and the MPC-
based energy management method presented in this study, 
simulations are conducted using the MATLAB platform. The 
sampling interval in the predictive control method is config-
ured as 1 second, while the prediction time domain is set to 
5 seconds. This configuration allows for consideration of 
both optimization effects and calculation time. Simultane-
ously, the beginning values of both the UC and battery are 
set to 0.75, while the termination reference value for the UC 
is 0.5. Table 3 displays the primary parameters of the ship's 
components. 

Table 3. threshold parameters of simulation ship 

Component Parameter Value 

Battery 

Rated capacity/Ah 100 
Peak power of dis-

charge/kW 40 

Peak power of charge/kW 36 

Ultracapacitor 

Rated capacity/F 300 
Maximum voltage/V 
Peak power of dis-

charge/kW 
Peak power of charge/kW 

403 
45 
30 

DC/DC Maximum power/kW 40 

6.1. Power prediction results and analysis 

As depicted in Figure 12 (a), the power data were collected 
from the motors in the laboratory with simulated working 
conditions. Figure 12 (b) shows the division of training and 
test data. Set the number of objects in the AOA to 5 and the 
maximum number of iterations to 100. The K and 𝛼𝛼 ranges 
are specified as [2,6] and [0,2000], respectively. The optimal 
K and 𝛼𝛼 values are determined to be 6 and 4, respectively. 
Following AOA to VMD optimization in the training set, the 
minimum envelope entropy is obtained at 7.9812. Based on 
these settings, the results of AOA optimized VMD are visu-
ally represented in Figure 13. 
The decomposition results of the training set are displayed in 
Figure 14. It is evident that the IMF1 amplitude is the high-
est, closely resembling the original signal, and amplitude of 
each other IMF gradually decreases. As observed in Figure 
14-(b), the IMF1 to IMF4 components, which constitute the 
main components, exhibit minimal fluctuations and display 
a strong regular pattern. This regularity is advantageous for 
the power prediction model to learn the power characteris-
tics. On the other hand, the IMF5 and IMF6 components ex-
hibit significant fluctuations but have relatively small ampli-
tudes. Despite the significant variations in IMF5 and IMF6, 
the magnitude of the components is minimal, therefore ex-
erting small impacts on the prediction outcomes. 
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Figure 12. Training set and test set data 
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Figure 13. Results of AOA optimized VMD 
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Figure 14. Results of VMD decomposition for the training set of operational conditions 
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Figure 15. Results of power prediction 
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To assess the efficacy of the prediction model developed 
in this research, it is compared to the AOA-BiLSTM predic-
tion model. The prediction outcomes of both models are de-
picted in Figure 15. Based on the Figure 15, it is evident that 
both prediction models exhibit improved accuracy in predict-
ing power. However, the suggested prediction model in this 
research demonstrates a closer approximation to the genuine 
value during local power peaks. The power error depicted in 
Figure 15-(b) indicates that the prediction error of the pro-
posed prediction model in this paper is primarily focused 
within the range of -2 to 2 kW. This range is significantly 
smaller compared to the power prediction error of -5 to 5 kW 
observed in the AOA-BiLSTM model. Additionally, the 
peak error of the AOA-VMD-BiLSTM model is considera-
bly smaller than that of the AOA-BiLSTM model. 

To facilitate a fair comparison of prediction results, the 
power prediction results are quantitatively evaluated using 
the Root Mean Squared Error (RMSE) as the evaluation met-
ric. A higher RMSE value indicates lower prediction accu-
racy. The expression is as follows: 

( ) ( )( )2

1 1RMSE

pN

p t
k i

P k i P k i

N p
= =

+ − +
=

×

∑∑ (32) 

where 𝑃𝑃𝑝𝑝(𝑘𝑘 + 𝑖𝑖)  and 𝑃𝑃𝑡𝑡(𝑘𝑘 + 𝑖𝑖)  are the predicted and 
true power at i moments after k moments, respectively; p and 
N are the predicted time domain length and the working con-
dition length. 

The RMSE evaluation index of the two prediction models 
is presented in Table 4. It is evident from the table that the 
RMSE value of the AOA-VMD-BiLSTM prediction model, 
proposed in this study, is significantly lower than that of the 
AOA-BiLSTM model, which serves as the reference bench-
mark for evaluation. The prediction accuracy has been en-
hanced by 52.61%, thereby confirming the effectiveness of 
the proposed prediction model. 

Table 4. Power prediction evaluation metrics 

Prediction model Power 
RMSE/kW 

Enhancement of pre-
cision/% 

AOA-BiLSTM 1.3846 - 
AOA-VMD-BiLSTM 0.6561 52.61 

6.2. Comparison of MPC simulation results 
based on two prediction models 

Simulations were performed to examine the control effec-
tiveness of the MPC based on two prediction models. The 
MPC utilizing AOA-VMD-BiLSTM and AOA-BiLSTM 

power prediction models are referred to as MPC-AOA-
VMD-BiLSTM and MPC-AOA-BiLSTM, respectively. 

The simulation results of the MPC, which are based on 
two prediction models, are displayed in Figures 16-18. The 
figures demonstrate that the SOC variations in the battery 
and UC are comparable under both MPC strategies, with mi-
nor discrepancies. This similarity arises from the fact that the 
two MPC strategies impose similar constraints on the SOC 
reference trajectory, resulting in similar discharge patterns 
and power outputs. Consequently, the SOC variations and 
energy loss changes are also closely aligned. 

The comparison of UC power between the MPC-AOA-
VMD-BiLSTM strategy and the MPC-AOA-BiLSTM strat-
egy, as depicted in Figure 19, reveals that both strategies ex-
hibit similar discharging patterns before 600s. After 600s, the 
range of UC SOC changes becomes small due to the limita-
tions imposed by the reference trajectory. The effectiveness 
of the control depends on the accurate prediction of power, 
which varies in accuracy depending on the prediction results. 
Consequently, this leads to significant differences in control 
outcomes. 
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Figure 16. UC SOC variation curves based on two 
prediction models 
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prediction models 
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Figure 18. Variation curves of energy loss under two prediction models 
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Figure 19. UC power difference under two prediction 
models 

Table 5 presents a comparison of the control effects of two 
MPC strategies. It is evident from the table that at the con-
clusion of the simulation, the SOC of the UC and the battery 
in the MPC-AOA-VMD-BiLSTM strategy are marginally 
greater than those in the MPC-AOA-BiLSTM strategy. Sim-
ultaneously, the energy loss has decreased by 1.02%. This 
reduction can be attributed to the higher prediction accuracy 
of the AOA-VMD-BiLSTM power prediction model pro-
posed in this study. The predicted power results closely align 
with the actual power, enabling more accurate and optimized 
control variable solutions. The projected power results are 
closer to the real power, enhancing the accuracy of the con-
trol variable solution and boosting the optimization impact. 
This also demonstrates that enhancing the accuracy of power 
prediction can enhance the control effect of the MPC method. 

Table 5. Comparison of the results of two MPC strategies 

Strategy Ultracapacitor 
SOC final value 

Battery SOC final 
value 

Total energy loss/kW Energy loss reduction Ratio/% 

MPC-AOA-BiLSTM 0.5032 0.6555 243.03 - 
MPC-AOA-VMD-BiLSTM 0.5037 0.6558 240.55 1.02 

6.3. Comparison of the results of the Ruler, 
DP and MPC strategies 

To assess the efficacy of the integrated prediction model-
based predictive EMS presented in this study, it is juxtaposed 
with the ruler-based and DP-based strategy. The simulation 
outcomes for each of the three approaches are illustrated in 
Figures 20-24. The variation curves of the UC SOC (0-300s) 
and battery SOC as shown in Figure 20 and Figure 21 illus-
trate that the ruler-based strategy results in a rapid decrease 
in the UC SOC to 0.5 within 0-300s, followed by fluctuations 
around 0.5. In contrast, the battery SOC decreases gradually 
from 0-300s, but accelerates significantly after 300s. In the 

first 600 seconds, the UC SOC of the DP strategy as a global 
optimization and the MPC strategy as a local transient opti-
mization exhibit a comparable trend of change. After 600 
seconds, the UC SOC returns to its reference trajectory when 
employing the MPC strategy. However, it remains above the 
reference trajectory due to significant limitations imposed by 
the penalty term in the objective function on the extent of its 
decline. Consequently, the UC SOC fluctuates within a nar-
row range, which distinguishes it significantly from the UC 
SOC change observed in the DP strategy. 
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Figure 20. UC SOC Variation Curve 
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Figure 21. Battery SOC Variation Curve 

Figures 22 and 23 depict the power variation curves of the 
UC and battery. These curves reveal that the UC under ruler-
based strategy plays a significant role in the driving work 
during the first 300 seconds. On the other hand, UC under 
the DP and MPC strategy is engaged in the middle and high 
loads, where the required power exceeds 25kW. They oper-
ate at approximately 20kW, utilizing a cooperative driving 
mode for propulsion. After 300 seconds, when the SOC of 
the UC following a ruler-based strategy falls below 0.5, a 
portion of the UC power becomes negative to keep the SOC 
above 0.5. Simultaneously, when the SOC of the UC falls 
below 0.5, it ceases to contribute to the driving function. 
Consequently, only the battery drive is utilized, even when 
there is a high load demand of 30 kW. The variations in UC 
and battery power changes for the DP and MPC strategies are 
similar but not identical. This discrepancy can be attributed 
to three main factors. Firstly, the presence of certain errors in 
power prediction leads to differences in optimization results. 
Secondly, the DP strategy aims for global optimization, 
while the MPC strategy focuses on local optimization search. 
Lastly, the reference trajectory of UC SOC is not the optimal 
control trajectory. 
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Figure 22. Variation in UC power curve 
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Figure 23. Variation in battery power curve 

Figure 24 illustrates the curve depicting the variation in 
energy loss. The figure reveals that the ruler-based strategy 
results in a gradual and slow increase in battery energy loss 
within the 0-300s timeframe. Conversely, the UC and 
DC/DC energy loss experience a rapid increase. Beyond 
300s, the battery energy loss exhibits a larger increase, while 
the growth rate of the UC and DC/DC energy loss decreases. 
This observation aligns with the power change. As a result of 
the UC's low SOC after 300 seconds, it has minimal involve-
ment in the driving process and is unable to effectively man-
age the battery's power. Consequently, the battery operates at 
a higher power level, leading to a quick increase in energy 
loss. The UC operates within the range of 18-23kW under the 
DP and MPC methods, primarily focusing on power de-
mands of 25kW or above. This range allows for efficient uti-
lization of the UC and battery power, resulting in reduced 
energy loss. 

The energy losses of the battery, UC, and DC/DC compo-
nents are higher in the ruler-based strategy compared to the 
DP and MPC strategies. The energy losses of the DP and 
MPC strategies are similar to each other. The total energy 
losses of the ruler-based, MPC, and DP strategies are 
285.7Wh, 240.55Wh, and 227Wh, respectively. The DP and 
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MPC strategies have lower energy losses compared to the 
ruler-based strategy, with reductions of 20.55% and 15.8%, 
respectively. Comparing the energy loss of the MPC strategy 

to that of the DP strategy reveals an increase of only 5.97%, 
this approximates the global optimal control effect and 
demonstrates the efficacy of the MPC-based EMS. 
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Figure 24. Energy loss variation curve 

7. Conclusions

This work introduces a novel power prediction model that 
combines AOA optimized VMD with BiLSTM. The purpose 
is to address the issue of low forecast accuracy caused by the 
non-stationarity of the power of ship motor. Furthermore, the 
efficacy of the proposed prediction model is validated using 
a comparative simulation, resulting in a 52.61% enhance-
ment in prediction accuracy for the combined prediction 
model compared to the AOA-BiLSTM prediction model un-
der the test scenario. Moreover, the efficacy of the MPC is 
evaluated by comparing its control effect using two predic-
tion models. The findings suggest that enhancing the accu-
racy of power prediction can lead to a reduction in energy 
loss. Ultimately, the EMS based on MPC is contrasted and 
examined in relation to energy management strategies based 
on ruler-based and DP approaches. The findings indicate that 
the MPC method merely increases energy loss by 5.97% 
compared to the DP strategy but diminishes it by 15.8% in 
comparison to the ruler-based strategy. 

As a result of constraints in experimental conditions, this 
study presently employs simulation experiments exclusively 
and not physical experimentation. While this partially sub-
stantiates the efficacy of the suggested EMS, there remain 
disparities when compared to the physical ship during mari-
time navigation, including hardware charging and discharg-
ing limitations and CPU processing speed restrictions. Fur-
ther research should prioritize the implementation of hard-
ware-in-the-loop systems, in which the controlled compo-
nents are virtual while the controller is physical, in order to 
conduct semi-physical simulation experiments. Subsequent 
investigation into the viability of conducting physical exper-
iments on a larger scale is warranted. 

The EMS proposed in this research is not only applicable 
to maritime ships but also to future vehicles with Level 4 au-
tonomous driving technologies. Level 4 autonomous driving 
technology is capable of completing driving tasks and 

monitoring the driving environment under certain specific 
conditions and environments, which are often characterized 
by their continuity, stability, and predictability. Therefore, 
the EMS introduced in this paper can theoretically reduce the 
energy loss of electric vehicles during these specific working 
conditions. This could aid in the development of the autono-
mous driving technology field and also have a positive im-
pact on the new energy vehicle industry. 
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