
EAI Endorsed Transactions
on Energy Web Research Article

1

Comparison between LightGBM and other ML
algorithms in PV fault classification
Paulo Monteiro1,*, José Lino1, Rui Esteves Araújo2 and Louelson Costa3

1Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
2INESC TEC and Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
3INESC TEC, Campus FEUP, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract

In this paper, the performance analysis of Machine Learning (ML) algorithms for fault analysis in photovoltaic (PV)
plants, is given for different algorithms. To make the comparison more relevant, this study is made based on a real dataset.
The goal was to use electric and environmental data from a PV system to provide a framework for analysing, comparing,
and discussing five ML algorithms, such as: Multilayer Perceptron (MLP), Decision Tree (DT), K-Nearest Neighbors
(KNN), Support Vector Machine (SVM) and Light Gradient Boosting Machine (LightGBM). The research findings
suggest that an algorithm from the Gradient Boosting family called LightGBM can offer comparable or better performance
in fault diagnosis for PV system.

Keywords: Photovoltaic faults, Fault diagnostics, Fault classification, Data-driven, Machine Learning

Received on 11 November 2023, accepted on 07 January 2024, published on 16 January 2024

Copyright © 2024 P. Monteiro et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/ew.4865

1. Introduction

Detecting and identifying faults in PV systems plays a
crucial role in the efficient and reliable operation of these
systems [1]. Unidentified faults and inadequate
maintenance issues can have several negative
consequences, including environmental impacts, monetary
losses, energy loss and reduced efficiency of the systems.
In the environmental scope, the early detection of faults in
PV systems can result in significant environmental
impacts. Undetected failures, such as degradation of solar
cells or failure to track the sun, can lead to a reduction in
renewable energy production. This results in a greater
reliance on conventional energy sources such as fossil
fuels, which contributes to greenhouse gas emissions and
global warming. Poor detection mechanisms of faults in
PV systems can also have a significant financial impact.
Unidentified faults can lead to a reduction in power
generation and consequently a decrease in the revenue

*Corresponding author. Email: up201608557@edu.fe.up.pt

generated by PV systems. Lack of early detection and
proper intervention can result in additional expenses and
considerable financial losses. In a more technical aspect
undetected failures or inaccurate predictions of failures in
PV systems can lead to increase the mean time to repair
(MTTR) of these systems. When individual components,
such as PV modules or inverters fail, the overall energy
output of the system is affected. In addition, undetected
faults can spread and cause further damage to other
components, further amplifying energy and system
performance losses. In recent years, ML algorithms have
become a valuable tool in the fault diagnosis of PV
systems. With the ability to process and analyse large
amounts of data, ML algorithms can identify potential
faults and performance issues in PV systems, allowing for
more effective and efficient fault analysis. The detection and
subsequent classification of faults in solar PV systems
is where these two environments meet. ML techniques
can accurately identify patterns and correlations in the
data that may not be immediately seem to human

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

P. Monteiro et al.

2

analysts. This enables the development of predictive
maintenance strategies that can help prevent system
failures before they occur, ultimately improving the
reliability and performance of PV power systems [2, 3].

2. PV system and dataset

The dataset used in this paper was collected from [2]. It is a
real PV system that has 4 types of faults implemented. In this
way, the dataset used is from a real installation that has the
functionality to correctly and accurately emulate the faults, as
illustrated in Fig. 1. The system consists of 16 C6SU-330P
PV modules (PV1,...,16), divided into two strings of 8
modules each. The output of each string is connected to a 5
kW grid-connected inverter. In addition, there is also an
electrical panel that includes: Fuses and Transient Voltage
Suppressors (Circuit Protection Block), String Circuit
Breakers (DS1,2) and Main Circuit Breakers (DM1). In
conjunction, there are also elements capable to inject faults
into system: twelve sockets (T1,...12) can be connected to
create different short- circuit conditions, or they can be used
together with the auxiliary circuit breakers (D1,...,8) to insert
arbitrary resistors (degradation resistors) in series with the
strings to create degradation faults. The same breakers
(D1,...,8) can also be used individually to generate open
circuit faults. The shading fault was generated by physically
and artificially blocking sunlight by using objects with high
opacity [2].

Fig. 1. Block diagram of the solar PV with
emulate faults. Adapted from [2].

2.1. Data Description

The dataset obtained by the described PV system, has values
that characterize the healthy and abnormal operation. Tables
1a and 1b summarize as the dataset was organized. The data
contains five different types of classes: Degradation fault,
Open-circuit (OC) fault, Short-circuit (SC) fault, Shadowing,
and No fault. Each of these occurrences is built on a
foundation of six distinct values (corresponding to the value
of the input vector). These values are electric signals (current
and voltage in the two strings of PV system) and
environmental data (temperature and radiation). This dataset
was saved in two Matlab files as follows: the electric dataset
named dataset elec.mat, which contains the cur- rent and

voltage values in the two strings. The environmental dataset
named dataset amb.mat, which contained the environmental
values (temperature and irradiance) [2].

Table 1. Variables obtained from the PV setup.

(a) Electrical variables from MATLAB file

(b) Environmental variables from MATLAB file

The electric and environmental values provided by the dataset
are associated with a specific event (presence or absence of a
fault). Again, the faults considered in the present study are:
OC, SC, Degradation and shading. Labels were assigned to
these occurrences as shown in table 2a. During the
preprocessing of the data, the number of existing cases for
each event was also analyzed, which is displayed in table 2b.

Table 2. Event Label and Data
Proportion

(a) Fault Label

(b) Proportion of data.

Something that can be perceived by analyzing the data
available and it was that the dataset was imbalanced. In other
words, there was a severe disproportionality of values
between classes. The values present in each class are shown
in the table 2b. In fact, the number of faulty values is smaller

dataset elec.mat
Variable Description

vdc1 Voltage - String 1
vdc2 Voltage – String 2
idc1 Current – String 1
idc2 Current – String 2

dataset amb.mat
Variable Description

irr Irradiance
pvt PV module temperature
f nv Fault Label

Proportion of Data
Class Nº of points collected

SC 5999
OC 6024

Degradation 10371
Shadowing 184311
No Fault 309253

Fault Label
Label Description

0 Normal Operation
1 Short-Circuit
2 Degradation
3 Open Circuit
4 Shadowing

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

Comparison between LightGBM and other ML algorithms in PV fault classification

3

than the number of healthy values, but the number of failures
in the various classes is large face to the amount of data
representative of normal operation. This aspect represented a
challenge for the goal of this paper, which was overcome by
adapting the algorithms.

3. Applied algorithms

In this section we present the 5 types of ML algorithms
used for fault classification. The algorithms were: MLP,
DT, KNN, SVM and LightGBM (being this last one was
used and adapted for the first time for works of this scope).
These algorithms were adapted to the dataset used in this
work, with recourse to data processing and treatment
functions. The dataset was divided into two parts, one for
training the algorithms and the other for testing them. As
it is imbalanced, during the adaptation process several
hypertunning cycles were performed in order to choose the
best and most adequate parameters for each algorithm, so
as to circumvent the unbalancing problem and obtain the
best and most reliable results.

3.1. Python Language as a basic tool

All of the algorithms used in this work were written
in Python. The Python code related to each algorithm is
available in a public repository [4] and reveals
implementation details that may be difficult to grasp based
on pseudo code only. Readers are encouraged to download
the code and run the algorithms and see [5] in order to find
more details. The following open-source programs were
leveraged in a Python script for data organization and
manipulation:

• NumPy: NumPy serves as the principal container for data
that is transmit- ted between algorithms in addition to
giving Python quick array processing capabilities [6].

• SciPy: This library contains algorithms for a variety of
problem types, including optimization, integration,
interpolation, eigenvalue issues, algebraic equations, and
differential equations. Moreover, it offers specific data
structures, such as sparse matrices and k-dimensional
trees [7].

• Pandas: Is a Python library that makes working with
structured data made simple, easy, and intuitive with its
built-in functions and rich data structures [6].

3.2. Multilayer perceptron

Artificial neural networks (ANNs) are computational
models whose structure and operation are inspired by
biological neural networks. They consist of inter-
connected layers of “neurons” that process and transmit
information. The neuron is the fundamental unit of an
ANN, which receives input, processes it, and generates
output. Each input value’s significance is determined by
weights applied to the input data. A neuron’s output is

determined by its activation function, which determines
whether the neuron will produce an output. An input layer,
one or more hidden layers, and an output layer are the
organizational structure of neuronal layers. The input layer
receives the input data and transmits it to the output layer,
which generates the output. The hidden layers process the
incoming data and forward it to the subsequent layer [8].
The ANN structure and parameters used are given in table
3.

 Table 3. Chosen parameters for this MLP

Note that ReLU, or rectified linear unit, is a popular activation
function with the mathematical (equation 1), where x is the
activation function’s input. In this instance, the output of the
ReLU function is the maximum of 0 and the its own input. It
was used Adaptive Moment Estimation (ADAM) for weight
solver optimizers because it performs well across a wide
variety of tasks and requires minimal hypertuning. The
remaining parameters were determined by a series of
hypertuning sequences until the optimal set for this study case
was identified.

𝑓𝑓(x) = max (0, 𝑥𝑥). (1)

3.3. Decision tree

A DT is a tree-like structure constructed by an algorithm to
make a prediction or a determination. It divides a dataset into
progressively smaller subsets while simultaneously
developing an associated decision tree. The ultimate output is
a tree composed of decision nodes and leaf nodes. A decision
node has two or more branches, each of which represents a
value for the tested attribute. A leaf node represents a
numerical target decision. The decision node at the top of a
tree that corresponds to the best predictor is known as the root
node [9]. In order to adapt this algorithm to the data in present
study the right parameters had to be chosen. The parameters
used in this algorithm are presented in table 4.

 Table 4. Chosen parameters for the DT.

Model Parameters Chosen Parameters
Nº of hidden layers 3

Nº of neurons per hidden layer 13
Activation Function relu

Solver for weight Optimization adam
Learning Rate adaptive

Maximum number of iterations 30

Model Parameters Chosen Parameters
criterion Gini
splitter Best

max depth 4
max leaf nodes 7

class weights balanced

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

P. Monteiro et al.

4

The DT parameters were chosen after several runs of the
algorithm with ”trial-error” sessions and extensive
hypertunning. The function that measures the quality of a split
is a criterion. The ”gini” criterion is based on the ”giny”
impurity measure, which is a measure of how often an item
would be incorrectly labelled if it were randomly labelled
based on the distribution of labels in the set. This is the best
measure for this particular situation. The splitter is the
parameter that determines the strategy for performing the split
at each node. This parameter had the best value, which, as the
name suggests, splits each node in the optimal manner. The
parameter class weights have the power of associate weights
to each class, it was chosen balanced to deal with the fact that
the dataset used is unbalanced. The next parameter defines
the maximum number of nodes in the tree and the second
parameter defining the maximum number of leaves per node
[10].

3.4 K-Nearest neighbors

KNN is a classification and regression algorithm for
supervised learning. It works by locating the K data points in
the training set that are closest to a new data point and making
a prediction using those data points. In the case of
classification, KNN works by locating the K closest training
examples of the new data point and then voting on the
majority class of K’s nearest neighbours to determine the
class of the new data point. For instance, if K is equal to three
and two of the three nearest neighbors are class A and one is
class B, then the new data point would be classified as class
A. Besides this, KNN has a particularity that other
classification algorithms do not have: it does not have a
predefined training process, that is, it simply stores the data
in groups and does not do it until it receives the test samples
[11,13].
To adapt this model to the specific dataset, it was necessary
to select the appropriate parameters, which are presented in
the table 5.

 Table 5. Chosen parameters for the KNN

Extensive hypertuning was used to determine the best n
neighbors’s value. The second selected parameter specifies
the algorithm for locating the k nearest points. Because this
function can determine the optimal solution based on the
inputted model data, this option was chosen. The final
parameter specifies how distance-based weights are assigned
to each class. In the classification, the chosen parameter gives
greater weight to the closest points than to the most distant
ones [11].

3.5. Support Vector Machine

In this study, classification was also carried out using the
SVM algorithm, whose goal is to find the hyperplane in a
high-dimensional space that maximally separates different
classes and assigns the corresponding fault labels. To locate
the hyperplane, the SVM algorithm identifies, as support
vectors, the points in the training set that are closest to the
hyperplane. It then maximizes the margin, which is the
distance between the hyperplane and the support vectors. The
resulting hyperplane is known as the maximum margin
hyperplane. Increasing the margin increases the distance
between the classes. This is advantageous because it
decreases the possibility of misclassification of new data
points. After obtaining the hyperplane, the SVM algorithm
can predict new data by determining which side of the
hyperplane the new data points fall on. Based on which side
of the hyperplane the new data points fall on, the SVM
algorithm will predict which class they belong to. In
situations where the data cannot be separated linearly, the
SVM algorithm can use a kernel trick to transform the data
into a higher-dimensional space in which it can be separated
linearly. In order to map the original data into a higher-
dimensional space, a non-linear function known as a kernel
function is applied to it. The SVM algorithm can then locate,
within this higher-dimensional space, the hyperplane that
maximally separates the various classes [12]. The most
suitable parameters for the data used, can be found in table 6.

 Table 6. Chosen parameters for SVM.

The first parameter is a regularization parameter that
regulates the margin size (the separation between the nearest
data points of various classes) in order to reduce
misclassification error. Hypertuning led to the conclusion that
0.3 would be the ideal value for this work. The function used
to transform the input data into a higher dimensional space,
where it might be simpler to identify a linear boundary
dividing the various classes, is called the kernel (second
parameter). In our work, it was selected the radial base
function (rbf), which computes the exponential of the
negative Euclidean distance between the input vectors and
permits highly nonlinear decision boundaries. This method
was found to be the most effective after several cycles of
hypertuning in conjunction with metric values. Gamma
determines the shape of the decision boundary in the RBF
kernel, so it is a parameter if “rbf” was selected as an option
in the previous parameter. The model will produce a shape
that is scaled to the type of data input since the scale option

Model Parameters Chosen Parameters
n neighbors 1000
algorithm auto

weights uniform

Model Parameters Chosen Parameters
C 0.2

kernel rbf
gamma scale

class weight None
decision function shape ovo

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

Comparison between LightGBM and other ML algorithms in PV fault classification

5

was selected. If RandomUnderSampling that distributed all
classes equally was not made, the balanced option would be
chosen, which is controlled by the class weights parameter.
Since this was one of two options, it was decided not to alter
the weight of the classes because it produced the best results.
Last but not least, the parameter decision function shape is
only defined when the data entered into the model has more
than one class. The option “ovo”, which stands for one vs.
one, was selected because it is the best option for training
models with multiclass data, according to [12].

3.6. LightGBM

LightGBM is a gradient boosting framework designed
specifically for classification tasks. It employs tree-based
learning algorithms to build an ensemble of decision trees
capable of accurately classifying input data. The training of a
LightGBM classifier begins with the training of an initial tree
on the entire dataset. The tree's predictions are then used to
compute the residuals (the difference between the actual
labels and the predicted labels) for the training set. The
residuals are then used to train the second tree, whose
predictions are used to update the residuals. This procedure is
repeated for a predetermined number of times, or until a
predetermined stopping criterion is met. The objective of
each iteration is to minimize the loss function, which
measures the deviation between the predicted and actual
labels. Typically, this is accomplished in LightGBM by
adjusting the weights of the training examples so that the next
tree focuses more on the examples that were incorrectly
predicted by the previous tree. Combining the predictions of
all trained trees yields the final prediction. Each tree in the
ensemble makes a prediction for a given input, and then these
predictions are combined using a weighting scheme that
assigns a greater weight to the trees that perform better. The
most prevalent weighting scheme is the "weighted average"
scheme, in which the weight of each tree is proportional to its
accuracy on the training set. LightGBM's capacity to manage
large-scale and high-dimensional data is one of its main
advantages for classification applications. LightGBM
employs histogram-based algorithms for continuous features,
resulting in faster training and less memory consumption than
conventional methods [14,15]. To make this model suitable
for the given data, it was essential to make the right parameter
selections, which are presented in table 7.

Table 7 Chosen parameters for the LightGBM.

The boosting type parameter is used to specify the boosting
algorithm. In this case, goss (gradient-based one-side

sampling) was selected, which divides the dataset into subsets
as opposed to using the entire dataset (as in traditional
Gradient Boosting algorithms) and demonstrated improved
performance after hypertuning. In this case, the objective
parameter was set to mulitclass, as classification of a
multiclass dataset is the objective of this model. Class-
specific weights are specified by the third parameter (class
weight) [15]. For this parameter, it was determined the
proportions between classes by calculating the weights for
each class. The Scikit-Learn library’s LabelEncoder function
was used to con- vert each fault label (categorical variable)
into a numeric variable by assigning a unique integer value to
each label or category in the input column. This allowed the
labels to be passed to the computed class weight function of
the same library, which can calculate weights to counteract
imbalance in the dataset. The class weights used can be seen
in table 8.

Table 8 Weights given to each class

4 Results

This section presents and compares the results obtained by
the algorithms de- scribed in section III. The comparative
study is based on the criteria commonly used in the ML
context. These are: precision, recall, f1- score and
accuracy. So, we evaluate the performance of each
algorithm in the classification of faults for the dataset used
in this work. Then, we are discussing the obtained results
from each algorithm.

4.1. Metrics

The performance of the algorithms will be determined
by analyzing the fault classifications they produce. As
mentioned previously, training values were incorporated
into each model so that the algorithms could ”learn” to
recognize patterns in the electrical and environmental
values measured in the solar PV systems and assign them
a fault label. Once the models have been trained, they will
receive new test data and attempt to predict and classify the
fault type corresponding to the measured values of the PV
system. These will be compared to the previously
assigned real values, thereby analysing its performance. As
we are discussing algorithms with a classification
function, the metrics will be associated with the truth of
the classification, i.e. whether it is positive (instance
classified as a member of the class that the classifier is
attempting to identify) or negative (instance classified as
not being a member of the class that the classifier is
attempting to identify). It is from these considerations

Model Parameters Chosen Parameters
boosting type goss

objective multiclass
class weight cw
max depth 4
num leaves 7

Class Weight
No Fault 0.28

SC 22.68
Degradation 13.12

OC 22.58
Shadowing 0.72

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

P. Monteiro et al.

6

that the concept of True Positive (TP), True Negative
(TN) and False Positive (FP) and False Negative (FN)
is born [17]. The use of this 4 concepts changes to if the
classification is binary or multiclass, as the data used in
our work has more than one class, we will only explore
these concepts for classifications with more than one class.
The results will be analysed quantitatively through by
commonly metrics used in context of ML, such as:
Precision, Recall, F1-Score and Accuracy [18].

4.2. Discussion

Table 9 shows the overall performance of each algorithm
using the parameters described previously and the metrics
used. The conclusions drawn from these values are
explained later in this section. At the end of the section,
we also find a visual representation of the results to
illustrate the differences clearer.

Table 9. Classification reports - Combined

To sum up, in this paper it was used a multi-class imbalanced
dataset of faults in PV systems to assess the efficacy of five
ML algorithms (MLP, KNN, DT, SVM, and LightGBM).
This classification exercise was designed to help determine
what kind of PV system fault had occurred. The results
showed that out of the five algorithms tested, LightGBM
performed the best in terms of precision, accuracy, recall, and
F1-score. The worst performing algorithm was DT. However,
when the algorithms' readability and complexity are
considered, the conclusions can be different. For instance, the
decision-making process behind DTs is much simpler and
straightforward to understand than that of other algorithms
like MLP or SVM. However, LightGBM has a reputation for
being less interpretable, which means that sometimes it can
be difficult to fathom why the model has made a particular
choice. When compared to MLP, SVM, and LightGBM, DTs
are a straightforward model with few tuning options. In
contrast, LightGBM is computationally intensive and may
take more time to train than DTs because it has more
parameters to adjust. The remaining algorithms also turned
out to be good choices for this kind of work. MLP is a classic
algorithm for work done in these environments, and as can be
seen from the results, it performed well, made it easy to
understand the data, and did not take up too much computing
power. The KNN, unlike the MLP, has a high computational
weight, even though it gets good metric results. Something

that could only be solved by choosing a high k value in this
work. Lastly, the SVM was the hardest to test because it took
so much computing power, which could only be solved by
resampling the data. This made it harder to understand this
algorithm because the information it got was different from
what it got before. The set of graphics presented in Fig. \ref
{Comparison of Precision, Recall, F1-Score and Accuracy of
all the algorithms} demonstrate and compare the overall
metrics for each algorithm supporting the previously said in
a more illustrative way.

Fig 2. Comparison between Precision, Accuracy,
Recall and F1-Score of all the algorithms.

(a) Precision - All

(b) Accuracy - All

(c) Recall - All

(d) F1-Score - All

Algorithm
Metrics

Precision Recall F1-Score Accuracy

MLP 0.97 0.97 0.98 0.96
DT 0.93 0.91 0.9 0.85

KNN 0.96 0.97 0.97 0.96

SVM 0.94 0.94 0.94 0.94
LightGBM 0.99 0.98 0.98 0.98

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

Comparison between LightGBM and other ML algorithms in PV fault classification

7

From the studied algorithms, LightGBM was the one that
performed the best. Besides the metrics obtained, its speed
and efficiency in dealing with large and imbalanced datasets,
its generalization capacity and it is data interpretability, due
to the parameters an training procedure that constitutes
LightGBM, made him significantly better then the other
classic ML algorithms. So, from the results obtained in this
work, it can be perceived that LightGBM constitutes a good
choice for dealing with fault classification problem.

5 Conclusion

From this study it can be concluded that the LightGBM
algorithms represent a promising avenue for recognizing
correlations between the electric and environmental
parameters of a solar PV system and, from there, classifying
faults accordingly. After a systematic evaluation of studied
algorithms, it can also be concluded that ML algorithms prove
to be an excellent option for detecting and classifying faults
in PV systems. However, it can be stated that there is no one-
size-fits-all solution. Each algorithm possesses its own set of
advantages and disadvantages.
As a final note, it is important to highlight that the behaviour
of the algorithms and their results in the various metrics are
in accordance with the data used, and that their behaviour, as
well as the results obtained may vary. Indeed, these
algorithms are highly susceptible to the data assigned to them.

References
[1] Sara Gallardo-Saavedra, Luis Hernandez-Callejo, Oscar

Duque-Perez, Quantitative failure rates and modes analysis in
photovoltaic plants. Energy, Volume 183, (2019), pp. 825-836,
0360-5442, https://doi.org/10.1016/j.energy.2019.06.185.

[2] Andre Eugenio Lazzaretti, Clayton Hilgemberg da Costa,
Marcelo Paludetto Rodrigues, A monitoring system for online
fault detection and classification in photovoltaic plants.
Sensors (Switzerland), 20:1–30, 9 (2020),
https://doi:10.3390/s20174688.

[3] Fouzi Harrou and Ying Sun and Bilal Taghezouit and Ahmed
Saidi and Mohamed Elkarim Hamlati, Reliable fault detection
and diagnosis of photovoltaic systems based on statistical
monitoring approaches. Renewable Energy, Elsevier Ltd,
(2018), https://doi:10.1016/j.renene.2017.09.048, 18790682.

[4] Paulo Monteiro, Github with Dissertation Scripts,
github.com/paulo5930/Dissertation Scripts.

[5] Paulo Monteiro, Pattern Recognition Machine Learning
Algorithms for Fault Classification of PV System, Master’s
Thesis, Faculty of Engineering of the University of Porto, 02-
2023.

[6] Wes McKinney, Python for Data Analysis, 3rd edn. O
REILLY, (2022), https://wesmckinney.com/book.

[7] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
et al. Scipy 1.0: fundamental algorithms for scientific
computing in python, Nature Methods, 17:261–272, (2020),
https://doi.org/10.1038/s41592-019-0686-2.

[8] Walter H Delashmit and Michael T Manry, Recent
developments in multilayer perceptron neural networks. In
Proceedings of the Seventh Annual Memphis Area
Engineering and Science Conference, MAESC (2005).

[9] Bahzad Charbuty and Adnan Abdulazeez, Classification based
on decision tree algorithm for machine learning. Journal of
Applied Science and Technology Trends, 2. 20-28, (2021),
https://doi:10.38094/jastt20165

[10] Sickit Learn developers Homepage, DecisionTreeClassifier,
https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTree
Classifier.html, last accessed 2023/10/19.

[11] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran
Greer. KNN Model- Based Approach in Classification.
Lecture Notes in Computer Science 2888, Pages 986 - 996,
(2003).

[12] Jair Cervantes, Farid Garcia-Lamont, Lisbeth Rodríguez-
Mazahua, and Asdrubal Lopez. A comprehensive survey on
support vector machine classification: Applications,
challenges and trends. Neurocomputing, Elsevier B.V., (2020),
https://doi:10.1016/j.neucom.2019.10.118.

[13] Zhi-Hua Zhou: Machine Learning, Springer, Singapore
(2021), https://link.springer.com/book/10.1007/978-981-15-
1967-3.

[14] Essam Al Daoud: Comparison between xgboost, lightgbm and
catboost using a home credit dataset. World Academy of
Science, Engineering and Technology, Open Science Index
145, International Journal of Computer, and Information
Engineering, 13(1), 6 - 10, (2019).

[15] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei
Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu, Lightgbm. A
highly efficient gradient boosting decision tree, https:
//github.com/Microsoft/LightGBM, last accessed 2023/10/19.

[16] LightGBM Homepage, lightgbm. LGBMClassifier,
MicrosoftCorporation,
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.
LGBMClassifier.html, last accessed 2023/10/19.

[17] Ankit Gupta, Evaluation Metrics For Multi-class
Classification, Homepage Gaggle,
https://www.kaggle.com/code/nkitgupta/evaluation-metrics-
for-multi-class- classification, last accessed 2023/10/19.

[18] Teemu Kanstren, A Look at Precision, Recall, and F1-Score,
Towards Data Science Homepage,
https://towardsdatascience.com/a-look-at-precision-recall-
and- f1-score-36b5fd0dd3ec, last accessed 2023/10/19.

[19] Sarang Narkhede, Understanding Confusion Matrix, Towards
Data Science Homepage,
https://towardsdatascience.com/understanding-confusion-
matrix- a9ad42dcfd62, last accessed 2023/10/19.

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

http://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-
http://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-
http://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-

