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Abstract 

In this paper, the performance analysis of Machine Learning (ML) algorithms for fault analysis in photovoltaic (PV) 
plants, is given for different algorithms. To make the comparison more relevant, this study is made based on a real dataset. 
The goal was to use electric and environmental data from a PV system to provide a framework for analysing, comparing, 
and discussing five ML algorithms, such as: Multilayer Perceptron (MLP), Decision Tree (DT), K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM) and Light Gradient Boosting Machine (LightGBM). The research findings 
suggest that an algorithm from the Gradient Boosting family called LightGBM can offer comparable or better performance 
in fault diagnosis for PV system. 
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1. Introduction

Detecting and identifying faults in PV systems plays a 
crucial role in the efficient and reliable operation of these 
systems [1]. Unidentified faults and inadequate 
maintenance issues can have several negative 
consequences, including environmental impacts, monetary 
losses, energy loss and reduced efficiency of the systems. 
In the environmental scope, the early detection of faults in 
PV systems can result in significant environmental 
impacts. Undetected failures, such as degradation of solar 
cells or failure to track the sun, can lead to a reduction in 
renewable energy production. This results in a greater 
reliance on conventional energy sources such as fossil 
fuels, which contributes to greenhouse gas emissions and 
global warming. Poor detection mechanisms of faults in 
PV systems can also have a significant financial impact. 
Unidentified faults can lead to a reduction in power 
generation and consequently a decrease in the revenue 
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generated by PV systems. Lack of early detection and 
proper intervention can result in additional expenses and 
considerable financial losses. In a more technical aspect 
undetected failures or inaccurate predictions of failures in 
PV systems can lead to increase the mean time to repair 
(MTTR) of these systems. When individual components, 
such as PV modules or inverters fail, the overall energy 
output of the system is affected. In addition, undetected 
faults can spread and cause further damage to other 
components, further amplifying energy and system 
performance losses. In recent years, ML algorithms have 
become a valuable tool in the fault diagnosis of PV 
systems. With the ability to process and analyse large 
amounts of data, ML algorithms can identify potential 
faults and performance issues in PV systems, allowing for 
more effective and efficient fault analysis. The detection and 
subsequent classification of faults in solar PV systems 
is where these two environments meet. ML techniques 
can accurately identify patterns and correlations in the 
data that may not be immediately seem to human 
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analysts. This enables the development of predictive 
maintenance strategies that can help prevent system 
failures before they occur, ultimately improving the 
reliability and performance of PV power systems [2, 3]. 

2. PV system and dataset 

The dataset used in this paper was collected from [2]. It is a 
real PV system that has 4 types of faults implemented. In this 
way, the dataset used is from a real installation that has the 
functionality to correctly and accurately emulate the faults, as 
illustrated in Fig. 1. The system consists of 16 C6SU-330P 
PV modules (PV1,...,16), divided into two strings of 8 
modules each. The output of each string is connected to a 5 
kW grid-connected inverter. In addition, there is also an 
electrical panel that includes: Fuses and Transient Voltage 
Suppressors (Circuit Protection Block), String Circuit 
Breakers (DS1,2) and Main Circuit Breakers (DM1). In 
conjunction, there are also elements capable to inject faults 
into system: twelve sockets (T1,...12) can be connected to 
create different short- circuit conditions, or they can be used 
together with the auxiliary circuit breakers (D1,...,8) to insert 
arbitrary resistors (degradation resistors) in series with the 
strings to create degradation faults. The same breakers 
(D1,...,8) can also be used individually to generate open 
circuit faults. The shading fault was generated by physically 
and artificially blocking sunlight by using objects with high 
opacity [2]. 
 

 

Fig. 1. Block diagram of the solar PV with 
emulate faults. Adapted from [2]. 

 
2.1. Data Description 

The dataset obtained by the described PV system, has values 
that characterize the healthy and abnormal operation. Tables 
1a and 1b summarize as the dataset was organized. The data 
contains five different types of classes: Degradation fault, 
Open-circuit (OC) fault, Short-circuit (SC) fault, Shadowing, 
and No fault. Each of these occurrences is built on a 
foundation of six distinct values (corresponding to the value 
of the input vector). These values are electric signals (current 
and voltage in the two strings of PV system) and 
environmental data (temperature and radiation). This dataset 
was saved in two Matlab files as follows: the electric dataset 
named dataset elec.mat, which contains the cur- rent and 

voltage values in the two strings. The environmental dataset 
named dataset amb.mat, which contained the environmental 
values (temperature and irradiance) [2]. 

Table 1. Variables obtained from the PV setup. 

(a) Electrical variables from MATLAB file 

(b) Environmental variables from MATLAB file

  
 
The electric and environmental values provided by the dataset 
are associated with a specific event (presence or absence of a 
fault). Again, the faults considered in the present study are: 
OC, SC, Degradation and shading. Labels were assigned to 
these occurrences as shown in table 2a. During the 
preprocessing of the data, the number of existing cases for 
each event was also analyzed, which is displayed in table 2b. 
 

Table 2. Event Label and Data 
Proportion 

 
(a) Fault Label 

 
(b) Proportion of data. 

 
Something that can be perceived by analyzing the data 
available and it was that the dataset was imbalanced. In other 
words, there was a severe disproportionality of values 
between classes. The values present in each class are shown 
in the table 2b. In fact, the number of faulty values is smaller 

dataset elec.mat 
Variable Description 

vdc1 Voltage - String 1 
vdc2 Voltage – String 2 
idc1 Current – String 1 
idc2 Current – String 2 

 

dataset amb.mat 
Variable Description 

irr Irradiance 
pvt PV module temperature 
f nv Fault Label 

 

Proportion of Data 
Class Nº of points collected 

SC 5999 
OC 6024 

Degradation 10371 
Shadowing 184311 
No Fault 309253 

 

Fault Label 
Label Description 

0 Normal Operation 
1 Short-Circuit 
2 Degradation 
3 Open Circuit 
4 Shadowing 
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than the number of healthy values, but the number of failures 
in the various classes is large face to the amount of data 
representative of normal operation. This aspect represented a 
challenge for the goal of this paper, which was overcome by 
adapting the algorithms. 

3. Applied algorithms 

In this section we present the 5 types of ML algorithms 
used for fault classification. The algorithms were: MLP, 
DT, KNN, SVM and LightGBM (being this last one was 
used and adapted for the first time for works of this scope). 
These algorithms were adapted to the dataset used in this 
work, with recourse to data processing and treatment 
functions. The dataset was divided into two parts, one for 
training the algorithms and the other for testing them. As 
it is imbalanced, during the adaptation process several 
hypertunning cycles were performed in order to choose the 
best and most adequate parameters for each algorithm, so 
as to circumvent the unbalancing problem and obtain the 
best and most reliable results. 

3.1. Python Language as a basic tool 

All of the algorithms used in this work were written 
in Python. The Python code related to each algorithm is 
available in a public repository [4] and reveals 
implementation details that may be difficult to grasp based 
on pseudo code only. Readers are encouraged to download 
the code and run the algorithms and see [5] in order to find 
more details. The following open-source programs were 
leveraged in a Python script for data organization and 
manipulation: 

• NumPy: NumPy serves as the principal container for data 
that is transmit- ted between algorithms in addition to 
giving Python quick array processing capabilities [6]. 

• SciPy: This library contains algorithms for a variety of 
problem types, including optimization, integration, 
interpolation, eigenvalue issues, algebraic equations, and 
differential equations. Moreover, it offers specific data 
structures, such as sparse matrices and k-dimensional 
trees [7]. 

• Pandas: Is a Python library that makes working with 
structured data made simple, easy, and intuitive with its 
built-in functions and rich data structures [6]. 

3.2. Multilayer perceptron  

Artificial neural networks (ANNs) are computational 
models whose structure and operation are inspired by 
biological neural networks. They consist of inter- 
connected layers of “neurons” that process and transmit 
information. The neuron is the fundamental unit of an 
ANN, which receives input, processes it, and generates 
output. Each input value’s significance is determined by 
weights applied to the input data. A neuron’s output is 

determined by its activation function, which determines 
whether the neuron will produce an output. An input layer, 
one or more hidden layers, and an output layer are the 
organizational structure of neuronal layers. The input layer 
receives the input data and transmits it to the output layer, 
which generates the output. The hidden layers process the 
incoming data and forward it to the subsequent layer [8]. 
The ANN structure and parameters used are given in table 
3. 

 Table 3. Chosen parameters for this MLP 

 

Note that ReLU, or rectified linear unit, is a popular activation 
function with the mathematical (equation 1), where x is the 
activation function’s input. In this instance, the output of the 
ReLU function is the maximum of 0 and the its own input. It 
was used Adaptive Moment Estimation (ADAM) for weight 
solver optimizers because it performs well across a wide 
variety of tasks and requires minimal hypertuning. The 
remaining parameters were determined by a series of 
hypertuning sequences until the optimal set for this study case 
was identified. 

𝑓𝑓(x) = max (0, 𝑥𝑥).                          (1) 

3.3. Decision tree  

A DT is a tree-like structure constructed by an algorithm to 
make a prediction or a determination. It divides a dataset into 
progressively smaller subsets while simultaneously 
developing an associated decision tree. The ultimate output is 
a tree composed of decision nodes and leaf nodes. A decision 
node has two or more branches, each of which represents a 
value for the tested attribute. A leaf node represents a 
numerical target decision. The decision node at the top of a 
tree that corresponds to the best predictor is known as the root 
node [9]. In order to adapt this algorithm to the data in present 
study the right parameters had to be chosen. The parameters 
used in this algorithm are presented in table 4. 

 Table 4. Chosen parameters for the DT. 
 

 

 

 

 

Model Parameters Chosen Parameters 
Nº of hidden layers 3 

Nº of neurons per hidden layer 13 
Activation Function relu 

Solver for weight Optimization adam 
Learning Rate adaptive 

Maximum number of iterations 30 

Model Parameters Chosen Parameters 
criterion Gini 
splitter Best 

max depth 4 
max leaf nodes 7 

class weights balanced 
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The DT parameters were chosen after several runs of the 
algorithm with ”trial-error” sessions and extensive 
hypertunning. The function that measures the quality of a split 
is a criterion. The ”gini” criterion is based on the ”giny” 
impurity measure, which is a measure of how often an item 
would be incorrectly labelled if it were randomly labelled 
based on the distribution of labels in the set. This is the best 
measure for this particular situation. The splitter is the 
parameter that determines the strategy for performing the split 
at each node. This parameter had the best value, which, as the 
name suggests, splits each node in the optimal manner. The 
parameter class weights have the power of associate weights 
to each class, it was chosen balanced to deal with the fact that 
the dataset used is unbalanced. The next parameter defines 
the maximum number of nodes in the tree and the second 
parameter defining the maximum number of leaves per node 
[10]. 

3.4 K-Nearest neighbors  

KNN is a classification and regression algorithm for 
supervised learning. It works by locating the K data points in 
the training set that are closest to a new data point and making 
a prediction using those data points. In the case of 
classification, KNN works by locating the K closest training 
examples of the new data point and then voting on the 
majority class of K’s nearest neighbours to determine the 
class of the new data point. For instance, if K is equal to three 
and two of the three nearest neighbors are class A and one is 
class B, then the new data point would be classified as class 
A. Besides this, KNN has a particularity that other 
classification algorithms do not have: it does not have a 
predefined training process, that is, it simply stores the data 
in groups and does not do it until it receives the test samples 
[11,13]. 
To adapt this model to the specific dataset, it was necessary 
to select the appropriate parameters, which are presented in 
the table 5. 

 
 Table 5. Chosen parameters for the KNN 

 
 
 

 
Extensive hypertuning was used to determine the best n 
neighbors’s value. The second selected parameter specifies 
the algorithm for locating the k nearest points. Because this 
function can determine the optimal solution based on the 
inputted model data, this option was chosen. The final 
parameter specifies how distance-based weights are assigned 
to each class. In the classification, the chosen parameter gives 
greater weight to the closest points than to the most distant 
ones [11]. 
 

3.5. Support Vector Machine  

In this study, classification was also carried out using the 
SVM algorithm, whose goal is to find the hyperplane in a 
high-dimensional space that maximally separates different 
classes and assigns the corresponding fault labels. To locate 
the hyperplane, the SVM algorithm identifies, as support 
vectors, the points in the training set that are closest to the 
hyperplane. It then maximizes the margin, which is the 
distance between the hyperplane and the support vectors. The 
resulting hyperplane is known as the maximum margin 
hyperplane. Increasing the margin increases the distance 
between the classes. This is advantageous because it 
decreases the possibility of misclassification of new data 
points. After obtaining the hyperplane, the SVM algorithm 
can predict new data by determining which side of the 
hyperplane the new data points fall on. Based on which side 
of the hyperplane the new data points fall on, the SVM 
algorithm will predict which class they belong to. In 
situations where the data cannot be separated linearly, the 
SVM algorithm can use a kernel trick to transform the data 
into a higher-dimensional space in which it can be separated 
linearly. In order to map the original data into a higher-
dimensional space, a non-linear function known as a kernel 
function is applied to it. The SVM algorithm can then locate, 
within this higher-dimensional space, the hyperplane that 
maximally separates the various classes [12]. The most 
suitable parameters for the data used, can be found in table 6. 

 Table 6. Chosen parameters for SVM. 

 
 
 
 
 
 
 

The first parameter is a regularization parameter that 
regulates the margin size (the separation between the nearest 
data points of various classes) in order to reduce 
misclassification error. Hypertuning led to the conclusion that 
0.3 would be the ideal value for this work. The function used 
to transform the input data into a higher dimensional space, 
where it might be simpler to identify a linear boundary 
dividing the various classes, is called the kernel (second 
parameter). In our work, it was selected the radial base 
function (rbf), which computes the exponential of the 
negative Euclidean distance between the input vectors and 
permits highly nonlinear decision boundaries. This method 
was found to be the most effective after several cycles of 
hypertuning in conjunction with metric values. Gamma 
determines the shape of the decision boundary in the RBF 
kernel, so it is a parameter if “rbf” was selected as an option 
in the previous parameter. The model will produce a shape 
that is scaled to the type of data input since the scale option 

Model Parameters Chosen Parameters 
n neighbors 1000 
algorithm auto 

weights uniform 

Model Parameters Chosen Parameters 
C 0.2 

kernel rbf 
gamma scale 

class weight None 
decision function shape ovo 
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was selected. If RandomUnderSampling that distributed all 
classes equally was not made, the balanced option would be 
chosen, which is controlled by the class weights parameter. 
Since this was one of two options, it was decided not to alter 
the weight of the classes because it produced the best results. 
Last but not least, the parameter decision function shape is 
only defined when the data entered into the model has more 
than one class. The option “ovo”, which stands for one vs. 
one, was selected because it is the best option for training 
models with multiclass data, according to [12]. 

3.6. LightGBM 

LightGBM is a gradient boosting framework designed 
specifically for classification tasks. It employs tree-based 
learning algorithms to build an ensemble of decision trees 
capable of accurately classifying input data. The training of a 
LightGBM classifier begins with the training of an initial tree 
on the entire dataset. The tree's predictions are then used to 
compute the residuals (the difference between the actual 
labels and the predicted labels) for the training set. The 
residuals are then used to train the second tree, whose 
predictions are used to update the residuals. This procedure is 
repeated for a predetermined number of times, or until a 
predetermined stopping criterion is met. The objective of 
each iteration is to minimize the loss function, which 
measures the deviation between the predicted and actual 
labels. Typically, this is accomplished in LightGBM by 
adjusting the weights of the training examples so that the next 
tree focuses more on the examples that were incorrectly 
predicted by the previous tree. Combining the predictions of 
all trained trees yields the final prediction. Each tree in the 
ensemble makes a prediction for a given input, and then these 
predictions are combined using a weighting scheme that 
assigns a greater weight to the trees that perform better. The 
most prevalent weighting scheme is the "weighted average" 
scheme, in which the weight of each tree is proportional to its 
accuracy on the training set. LightGBM's capacity to manage 
large-scale and high-dimensional data is one of its main 
advantages for classification applications. LightGBM 
employs histogram-based algorithms for continuous features, 
resulting in faster training and less memory consumption than 
conventional methods [14,15]. To make this model suitable 
for the given data, it was essential to make the right parameter 
selections, which are presented in table 7. 

Table 7 Chosen parameters for the LightGBM. 

 

 

 

The boosting type parameter is used to specify the boosting 
algorithm. In this case, goss (gradient-based one-side 

sampling) was selected, which divides the dataset into subsets 
as opposed to using the entire dataset (as in traditional 
Gradient Boosting algorithms) and demonstrated improved 
performance after hypertuning. In this case, the objective 
parameter was set to mulitclass, as classification of a 
multiclass dataset is the objective of this model. Class-
specific weights are specified by the third parameter (class 
weight) [15]. For this parameter, it was determined the 
proportions between classes by calculating the weights for 
each class. The Scikit-Learn library’s LabelEncoder function 
was used to con- vert each fault label (categorical variable) 
into a numeric variable by assigning a unique integer value to 
each label or category in the input column. This allowed the 
labels to be passed to the computed class weight function of 
the same library, which can calculate weights to counteract 
imbalance in the dataset. The class weights used can be seen 
in table 8. 

Table 8 Weights given to each class 
 

 
 

 

4 Results 

This section presents and compares the results obtained by 
the algorithms de- scribed in section III. The comparative 
study is based on the criteria commonly used in the ML 
context. These are: precision, recall, f1- score and 
accuracy. So, we evaluate the performance of each 
algorithm in the classification of faults for the dataset used 
in this work. Then, we are discussing the obtained results 
from each algorithm. 

4.1. Metrics  

The performance of the algorithms will be determined 
by analyzing the fault classifications they produce. As 
mentioned previously, training values were incorporated 
into each model so that the algorithms could ”learn” to 
recognize patterns in the electrical and environmental 
values measured in the solar PV systems and assign them 
a fault label. Once the models have been trained, they will 
receive new test data and attempt to predict and classify the 
fault type corresponding to the measured values of the PV 
system. These will be compared to the previously 
assigned real values, thereby analysing its performance. As 
we are discussing algorithms with a classification 
function, the metrics will be associated with the truth of 
the classification, i.e. whether it is positive (instance 
classified as a member of the class that the classifier is 
attempting to identify) or negative (instance classified as 
not being a member of the class that the classifier is 
attempting to identify). It is from these considerations 

Model Parameters Chosen Parameters 
boosting type goss 

objective multiclass 
class weight cw 
max depth 4 
num leaves 7 

Class Weight 
No Fault 0.28 

SC 22.68 
Degradation 13.12 

OC 22.58 
Shadowing 0.72 
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that the concept of True Positive (TP), True Negative 
(TN) and False Positive (FP) and False Negative (FN) 
is born [17]. The use of this 4 concepts changes to if the 
classification is binary or multiclass, as the data used in 
our work has more than one class, we will only explore 
these concepts for classifications with more than one class. 
The results will be analysed quantitatively through by 
commonly metrics used in context of ML, such as: 
Precision, Recall, F1-Score and Accuracy [18]. 

4.2. Discussion 

Table 9 shows the overall performance of each algorithm 
using the parameters described previously and the metrics 
used. The conclusions drawn from these values are 
explained later in this section. At the end of the section, 
we also find a visual representation of the results to 
illustrate the differences clearer. 
 

 
Table 9. Classification reports - Combined 

To sum up, in this paper it was used a multi-class imbalanced 
dataset of faults in PV systems to assess the efficacy of five 
ML algorithms (MLP, KNN, DT, SVM, and LightGBM). 
This classification exercise was designed to help determine 
what kind of PV system fault had occurred. The results 
showed that out of the five algorithms tested, LightGBM 
performed the best in terms of precision, accuracy, recall, and 
F1-score. The worst performing algorithm was DT. However, 
when the algorithms' readability and complexity are 
considered, the conclusions can be different. For instance, the 
decision-making process behind DTs is much simpler and 
straightforward to understand than that of other algorithms 
like MLP or SVM. However, LightGBM has a reputation for 
being less interpretable, which means that sometimes it can 
be difficult to fathom why the model has made a particular 
choice. When compared to MLP, SVM, and LightGBM, DTs 
are a straightforward model with few tuning options. In 
contrast, LightGBM is computationally intensive and may 
take more time to train than DTs because it has more 
parameters to adjust. The remaining algorithms also turned 
out to be good choices for this kind of work. MLP is a classic 
algorithm for work done in these environments, and as can be 
seen from the results, it performed well, made it easy to 
understand the data, and did not take up too much computing 
power. The KNN, unlike the MLP, has a high computational 
weight, even though it gets good metric results. Something 

that could only be solved by choosing a high k value in this 
work. Lastly, the SVM was the hardest to test because it took 
so much computing power, which could only be solved by 
resampling the data. This made it harder to understand this 
algorithm because the information it got was different from 
what it got before. The set of graphics presented in Fig. \ref 
{Comparison of Precision, Recall, F1-Score and Accuracy of 
all the algorithms} demonstrate and compare the overall 
metrics for each algorithm supporting the previously said in 
a more illustrative way. 
 

Fig 2. Comparison between Precision, Accuracy, 
Recall and F1-Score of all the algorithms. 

 
(a) Precision - All 
 

 
 
(b) Accuracy - All 
 

 
 
(c) Recall - All 

 
(d) F1-Score - All 
 

 

Algorithm 
Metrics 

Precision Recall F1-Score Accuracy 

MLP 0.97 0.97 0.98 0.96 
DT 0.93 0.91 0.9 0.85 

KNN 0.96 0.97 0.97 0.96 

SVM 0.94 0.94 0.94 0.94 
LightGBM 0.99 0.98 0.98 0.98 
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From the studied algorithms, LightGBM was the one that 
performed the best. Besides the metrics obtained, its speed 
and efficiency in dealing with large and imbalanced datasets, 
its generalization capacity and it is data interpretability, due 
to the parameters an training procedure that constitutes 
LightGBM, made him significantly better then the other 
classic ML algorithms. So, from the results obtained in this 
work, it can be perceived that LightGBM constitutes a good 
choice for dealing with fault classification problem. 

5 Conclusion 

From this study it can be concluded that the LightGBM 
algorithms represent a promising avenue for recognizing 
correlations between the electric and environmental 
parameters of a solar PV system and, from there, classifying 
faults accordingly. After a systematic evaluation of studied 
algorithms, it can also be concluded that ML algorithms prove 
to be an excellent option for detecting and classifying faults 
in PV systems. However, it can be stated that there is no one-
size-fits-all solution. Each algorithm possesses its own set of 
advantages and disadvantages. 
As a final note, it is important to highlight that the behaviour 
of the algorithms and their results in the various metrics are 
in accordance with the data used, and that their behaviour, as 
well as the results obtained may vary. Indeed, these 
algorithms are highly susceptible to the data assigned to them. 
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