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Abstract 

 

INTRODUCTION: Efficient and accurate optimization of green and low-carbon logistics paths, as one of the key 

technologies of green and low-carbon logistics, can not only promote the high-quality development of the economy, but 

also reduce the negative impacts of logistics on the environment and increase the cost of logistics delivery. 

OBJECTIVES: To address the problems of slow convergence and easy to fall into local optimization in the current 

performance prediction research on talent team building. 

METHODS: This paper proposes a snowmelt heuristic optimization algorithm to solve the green low-carbon logistics path 

optimization problem. Firstly, the objective function of green low-carbon logistics path optimization is designed by 

analyzing the optimization cost and conditional constraints of the green low-carbon logistics path optimization problem; 

then, a method based on intelligent optimization algorithm is proposed by designing the position-order array coding and 

fitness function, combined with the snow-melting optimization algorithm; finally, the validity and superiority of the 

proposed method are verified by simulation experiments. 

RESULTS: The results show that the proposed method not only improves the convergence speed but also increases the 

optimization fitness value. 

Conclusion: The problem of slow convergence and easy to fall into local optimum in the solution of green low-carbon 

logistics path optimization problem is solved. 
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1. Introduction 

With the development of society, the quantity and 

quality of logistics demand continues to increase and 

improve, the impact of logistics on the environment has 

become more and more serious [1]. With the continuous 

increase in global greenhouse gas emissions, the world 

energy crisis and other issues continue to appear, low 

carbon, green and other concepts gradually deepened into 

people's hearts, the logistics industry as a link to connect the 

various links in the national economic activities, the 

development of green and low-carbon logistics has become 

the mainstream [2]. As the research hotspot and key 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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technology of green low-carbon logistics, the optimization 

of efficient and fast green low-carbon logistics path can 

promote the high-quality development of the economy, and 

also reduce the negative impact of logistics on the 

environment and increase the cost of logistics delivery [3]. 

Green low-carbon logistics path optimization is 

essentially a Vehicle Routing Problem (VRP) [4]. Green 

low-carbon logistics path optimization technology is under 

certain constraints, in order to minimize the driving distance, 

carbon emissions and other costs as the goal, for the 

logistics vehicle planning from the warehouse to each 

customer point of the best driving route [5]. The goodness 

of the green low-carbon logistics path depends entirely on 

the design of the path optimization algorithm, how to use an 

algorithm to quickly and accurately plan the distribution 

path from the warehouse to each customer point [6], is the 

global optimization and fast convergence problem. 

Commonly used logistics path optimization methods 

include exact optimization algorithms and heuristic 

algorithms [7]. Exact algorithms include A* algorithm [8], 

branch-and-bound method [9] and simplex method [10]. As 

the size of VRP increases, the computation of exact 

algorithms increases exponentially, so it is difficult for 

exact algorithms to find a satisfactory solution in a short 

period of time as the size of logistics and distribution 

increases [11]. Heuristic algorithms mainly include Genetic 

Algorithm (GA) [12], Particle Swarm Optimization (PSO) 

[13] and other heuristic algorithms based on population and 

individual solutions. Literature [14] combines the firefly 

algorithm with local search method and genetic algorithm to 

solve the VRP with capacity (Capacitated Vehicle Routing 

Problem, CVRP) problem, which solves the problem of 

firefly algorithm falling into the local optimum to a certain 

extent; Literature [15] solves the VRP based on the cold 

chain through the improvement of the artificial fish swarm 

algorithm problem by introducing a variation operator and a 

crossover operator to enhance the global and local search 

performance of the artificial fish swarm algorithm; 

Literature [16], in order to improve the search efficiency of 

the squid algorithm, proposed a discrete squid algorithm by 

introducing an elite measurement class, which successfully 

solves the Green VRP (GVRP, GVRP) problem; Literature 

[17] proposed a GVRP (GVRP with Fuzzy Demand) 

algorithm with fuzzy demand based on an improved Bat 

algorithm; Literature [17] proposed a GVRP with Fuzzy 

Demand based on the improved Bat algorithm. GVRP 

(GVRP with Fuzzy Demand, GVRPFD) method; Literature 

[18] proposed a multi-objective multi-time-window VRP 

method based on hybrid pigeon flocking algorithm and 

water droplet algorithm by combining pigeon flocking 

algorithm and water droplet algorithm. The logistics path 

optimization method based on heuristic algorithm 

converges quickly and is easy to implement, but it is also 

easy to fall into the local optimum problem [19]. In addition, 

there are fewer studies on logistics path optimization 

models for green low-carbon economy, and the existing 

studies consider the constraints are incomplete and the 

objectives are not objective enough [20]. 

Aiming at the defects of the current green low-carbon 

logistics path optimization method, this paper proposes a 

green low-carbon logistics path optimization method based 

on snow melting heuristic algorithm. Firstly, we analyze the 

characteristics of the green low-carbon logistics path 

optimization problem and construct a logistics path 

optimization model considering green low-carbon; then we 

use the snowmelt heuristic algorithm to solve the logistics 

path optimization problem considering green low-carbon. 

The algorithm testing results show the feasibility of the 

proposed method. Compared with other optimization 

algorithms, the proposed snowmelt heuristic algorithm 

shows better performance in the green low-carbon logistics 

path optimization problem. 

2. Green low-carbon logistics path 
optimization model 

2.1. Description of the problem 

Green low-carbon logistics is the direction and trend of 

the future development of the logistics industry, which is 

widely welcomed by governments and logistics enterprises. 

In order to achieve green low-carbon logistics and 

distribution, electric vehicles have become the protagonist 

of green low-carbon with the advantages of zero pollution, 

low noise and energy saving [21]. Logistics in general 

should consider the type of logistics nodes and the nature of 

time, this paper studies the electric vehicle path problem 

with time window and simultaneous pickup and delivery 

with charging station. The electric vehicle path problem 

with time window and simultaneous pickup and delivery 

with charging station is based on the energy constraints of 

power constraints, mileage constraints, and customer 

allowable service time window constraints, to realize the 

simultaneous pickup and delivery needs of all customers at 

the smallest distribution cost [22]. 

Electric Vehicle Path Assumptions with Time Window 

and Simultaneous Pickup and Delivery and Including 

Charging Stations: 

(1) The electric vehicle departs from the distribution 

center and returns to the distribution center after serving the 

customer; 

(2) The trolley is fully charged at the time of departure, 

the power consumption is positively correlated with the 

distance traveled, and the distribution process can be 

ignored for some unexpected factors; 

(3) Complete delivery of goods within the time 

allowed by the customer while picking up the goods from 

the customer back to the distribution center in accordance 

with the pickup requirements, with penalties for deviation 

from the time window; 

(4) Only one electric vehicle will be visited by each 

customer and the number of visits will be one; 

(5) May visit each charging station one or more times; 

(6) Charging stations have a fixed charging rate, and 

the vehicle's charge is proportional to the time it takes to 



 
 

 

3 

recharge, so an electric vehicle cannot wait until it runs out 

to recharge; 

(7) The number of electric vehicles used in the 

distribution process cannot exceed the total number of 

vehicles available. 

2.2. Optimization model construction 

In order to achieve low carbon and green, this 

optimization problem considers the fixed dispatch cost, 

vehicle travel cost, time penalty cost, and charging cost as 

the objective function [23]. 

Time window penalty costs 
For the timeliness factor in the process of goods 

distribution, time window constraints are added to the 

model, while it is known from the assumptions that this 

section investigates the problem with soft time window and 

simultaneous pickup and delivery of electric vehicles, i.e.: 

in the process of goods distribution, the goods are delivered 

within the time window stipulated by the customer, but the 

customer allows the electric vehicle to deviate from the 

time window when it performs the service, and the 

corresponding penalties are given. The time window 

penalty cost is calculated as follows: 

 ( )
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 ,i ie l where the EV delivery time window is . 

 ),i iS e ( ,i il K ( 0, iS  ),iK + Max Within the event 

window, the cost is 0; within the time window , it means 

that the goods are delivered early and the EV will have to 

wait, thus the cost cost is determined by the time of early 

delivery, which decreases as time moves backwards; within 

the time period , it means that the goods are delayed and the 

EV will be penalized for being late, and the penalization 

cost increases as the time moves backward; and the cost of 

the number of times penalization within the customer's 

allowable time horizon or is . 

In summary, the specific expression for the time 

window penalty cost is as follows: 

 ( ) ( )
1 1

max ,0 max ,0
N N

t i i i i

i i

p ep e t lu t l
= =

=  − + − 
 (2) 

Objective function construction 
According to the description of the green low-carbon 

logistics path optimization problem in Section 1.1, the 

objective function of the EV path optimization problem 

with time window and simultaneous pickup and delivery 

and containing charging stations is expressed as follows: 

 min dispatch drive chaZ z z z p= + + +  (3) 
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Z dispatchz
drivez chaz p where denotes the total cost 

of EVs to complete the distribution task, denotes the fixed 

dispatch cost of EVs, denotes the cost of vehicle traveling, 

denotes the cost of vehicle charging, and denotes the cost of 

penalties paid by vehicles exceeding the time window 

allowed by the customer. 0c F 0

fx denotes the EV fixed 

cost; denotes the number of EVs available; denotes the 

vehicle f being dispatched. 1c   0 =  

 1,2, , N=   1,2, , B = ijd

, ,i j i j   f

ijx denotes the cost per unit distance; 

denotes the set of all nodes (customers, distribution centers, 

and charging stations) within the distribution network, , 

denotes the set of customers ( ), denotes the number of 

charging stations available ( ); denotes the distance from 

node i to node j, ; denotes the driving of vehicle f from node 

i to node j. 2c f

jy
f

iw denotes the cost of charging per unit 

time, denotes the charging of vehicle f at charging station i; 

and denotes the amount of electricity replenished by electric 

vehicle f at charging station point j. 

Constraints 
According to the description of the green low-carbon 

logistics path optimization problem in Section 1.1, the 

constraints of the EV path optimization problem with time 

window and simultaneous pickup and delivery and 

containing charging stations are expressed as follows: 

1) Carrying capacity and customer service demand 

constraints 

a) Relationship between EV carrying capacity and 

demand services: 

 ( )0 1 , , , ,f f f f f

i i i ij ijp p p x Q x i j i j f F  − + −        (7) 

f

ip Q Where, denotes the customer point i demand; 

denotes the maximum loading capacity of the EV. 

b) Maximum carrying capacity of the electric vehicle f: 

 
00 ,fp Q f F    (8) 

0

fp where denotes the capacity of EV f in the 

distribution center. 

2) Electricity constraints 
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a) Electric vehicle power relationship at each 

distribution node: 
 ( )0 0 0 01 , ,f f

j j j jq q hd x Q x j f F − + −     (9)

 ( )1 20 1 , , , ,f f f f f f

j j j j ij ij ijq q q w hd x Q x i j i j f F  + − + −        (10)

jq
0q h 0 jd

0

f

jx 1

f

jq 2

f

jq f

jw Where, denotes the 

power of EV arriving at node j, denotes the power at the 

distribution center, denotes the battery energy consumption 

coefficient, denotes the driving distance from the starting 

point to the node j, denotes the distribution variable of EV f 

from the starting point paired with the node, denotes the 

residual power of the vehicle when EV f arrives at the node 

i, denotes the residual power of the vehicle when EV f 

leaves the node i, and denotes the charging node j where the 

EV f is the replenished power. 

b) The residual power of the tram should generally not 

be negative, and the specific constraints are expressed as 

follows: 

 
10 , ,f

jq C j f F      (11) 

C Where indicates the maximum battery capacity of 

the EV. 

c) The maximum capacity of the battery of an electric 

vehicle should be greater than the charge of the charging 

station: 

 
20 , , ,f f

i jq w C i j f F +        (12) 

d) The electric vehicle's power remains unchanged 

during the period of service to the customer, i.e., before and 

after the service to the customer: 

 1 2 , ,f f

i iq q i f F=     (13) 

3) Time constraints 

a) The EV waiting time should have to satisfy the 

following constraints: 

 ( )1max 0, ,i i itd e t i = − 
 

 (14) 

ie il Where, denotes the earliest service time of client 

node i and denotes the latest service time of client node i. 

b) The time for an electric vehicle f to leave customer i 

is composed of the arrival time at i and the service and 

waiting time: 

 2 1 ,i i i it t tf td i= + +   (15) 

1it 2it itf where denotes the time when the EV arrives 

at customer i, denotes the time when the EV leaves 

customer i, and denotes the EV service time. 

c) The time required for the electric vehicle f to travel 

from node i to node j: 

 , ,
ij

ij

d
t i j

v
=    (16) 

d) The time the EV is at customer j is composed of the 

time it leaves customer i and the time it takes to get from 

customer i to j: 
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4) Variable constraints 
f

ijx
f

iy a) The values of and are constrained as follows: 
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b) Motorized vehicles are serviced only once per 

customer: 

 
,

1, ,f

ij

j i j

x i f F
 

=     (20) 

c) Only one distribution route is scheduled for each 

electric vehicle: 

 
,

1,f

ij

j i j

x f F
 

   (21) 

d) The same number of times an EV enters to leaves a 

node: 

 
, ,

,f f

ij ij

i j i j

x x f F
   

=    (22) 

5) Other constraints 

a) Time window constraints: 

 .i i ie G l i    (23) 

 .i i it g S i+    (24) 

 .i i it g K i+    (25) 

iG ig where denotes the time when the vehicle is 

allowed to perform the service at customer point i, and 

denotes the waiting time after the vehicle arrives at 

customer point i. 

b) The relationship between the time the EV arrives at 

the customer, the time it waits for the customer, and the 

time it finishes servicing the customer: 

 .i i i it g G i+ + =   (26) 

i where denotes the time the vehicle left customer 

point i. 
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c) The same number of EVs are sent from the 

distribution center as returned: 

 
0 0

0
N N

f f

ij ij

i j

x x
= =

− =   (27) 

3. Snowmelt optimization algorithm 

3.1. Inspiration mechanisms 

Snow is one of the most fascinating and beautiful 

natural phenomena. In winter, snowmelt plays an important 

role in the ecosystem, affecting crop growth and human 

health. From the physical point of view, it is known that 

snow can be transformed into two forms: liquid and vapor, 

which correspond to the physical processes: melting and 

sublimation. The snow melting process and optimization 

mechanism are given in Figure 1. From Figure 1, it can be 

seen that during the melting process, snow is converted into 

liquid water, or through the sublimation process snow is 

directly converted into vapor. Meanwhile, liquid water can 

be converted into steam through transpiration.

 
Figure. 1 Illustration of snow melting inspiration

Based on snow melting and sublimation behaviors, 

Snow ablation optimizer (SAO) [25] was proposed, which 

includes initialization, exploration phase, exploitation phase 

and dual population mechanism. The snow melting 

behavior simulates the exploitation phase of the 

optimization process, and the sublimation and transpiration 

behaviors simulate the exploration phase of the 

optimization process. 

3.2. Optimization Strategies 

Initialization phase 
In the SAO algorithm, the population initialization is 

done using a stochastic strategy, which is modeled as 

follows: 

 ( )= +  −Z L U L  (28) 

L U   0,1 where and denote the lower and upper 

bounds of the spatial solution and denotes the random 

number between . 

Exploration phase 
In the exploration phase, when snow or liquid water is 

transformed into vapor water, the searching intelligences 

show highly dispersed characteristics and have irregular 

movement characteristics. In the exploration phase, 

Brownian motion is used to simulate the behavioral 

situation, and Brownian motion can search for areas with 

potential. The position update formula in the exploration 

phase is as follows: 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )1 11 1BM  + = +   − + −  −i i i iZ t Elite t t G t Z t Z t Z t  (29)

( )iZ t ( )BMi t 
1  0,1 ( )G t ( )Elite t ( )Z t

Where, denotes the ith individual in the tth iteration number, 

denotes the random vector of Gaussian distribution based 

on Brownian motion, denotes the dot product notation, 

denotes the random number between , denotes the current 

optimal solution, denotes the randomly selected individuals 

among the elite individuals, and denotes the location of the 

form center of the population. ( )Z t The specific 

calculation formula is as follows: 

 ( ) ( )
1

1

=

= 
N

i

i

Z t Z t
N

 (30) 

( )Elite t The elite groups to which they belong are 

indicated below: 
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 ( ) ( ) ( ) ( ) ( ), , ,  second third cElite t G t Z t Z t Z t

 (31) 

( )secondZ t ( )thirdZ t ( )cZ t where and denote the 

second and third best individuals, respectively, and denotes 

the location of the morphology centers of the individuals 

ranked in the top 50% of the fitness values. 

 ( ) ( )
1

11

1

=

= 
N

c i

i

Z t Z t
N

 (32) 

1N where indicates the number of individuals in the 

elite group, which is generally half the number of 

individuals in the population. 

( ) ( )( )1  − iG t Z t ( ) ( ) ( )( )11 −  − iZ t Z t The 

behavioral diagram of the exploration stage is shown in 

Figure 2. and reflect the relationship between individuals in 

the exploration behavior. 

 
Figure. 2 The exploration stage of the snow melting algorithm

Development phase 
In the development stage, relative to the highly 

dispersed features, the search intelligences adopt a high 

quality development strategy around the optimal solution, 

which mainly simulates the conversion of snow into liquid 

water behavior, i.e., snow melting behavior. In the SAO 

algorithm, the snow melting rate is calculated as follows: 

 ( )
max 1

0.35 0.25
1

t

t
e

M T t
e

 
− 

= +   − 
 

 (33) 

 ( ) max

t

t
T t e

−

=  (34) 

During the SAO development phase, the locations 

were updated as follows: 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )2 21 1i i i iZ t M G t BM t G t Z t Z t Z t + =  +   − + −  −  (35)

M 2  1,1− Where denotes the snowmelt rate and 

denotes a random number between  ( ) ( )( )2 iG t Z t  −

( ) ( ) ( )( )21 iZ t Z t−  − In this stage, under the effect of 

individuals search through the current optimal search 

particles and population shaped centroids to develop 

potential regions. 

Dual Stock Mechanism 
The balance between exploitation and exploration is 

very important. Liquid water is converted to steam to model 

the exploration phase. The algorithm gradually converges to 

the exploration search solution space as the irregular motion 

dispersion feature increases. In order to balance the 

exploration and exploitation phases, a two-population 

search mechanism is proposed in this section. P aP bP At 

the initial stage of the algorithm, the population is divided 

into two equal population sizes respectively, and are used to 

represent the whole population and divide the population. 

aP bP Population is mainly used for exploration and 

population is mainly used for exploitation. aP bP As the 

number of iterations increases, the number of populations 

will decrease and the number of populations will increase, 

and the two-population mechanism is illustrated in Figure 3.
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Figure 3 Pseudo-code diagram of the two-species mechanism

2.3. Algorithm flow and pseudo-code 

According to the algorithm heuristic mechanism and 

optimization strategy, the flowchart of SAO algorithm is 

shown in Figure 4, and the specific steps are as follows: 

 
Figure 4. Flowchart of SAO algorithm 

 

 

Step 1: Initialize the population parameters as well as 

the population position, set the maximum number of 

iterations and other parameters; 

Step 2: Calculate the fitness value and record the 

current optimal individual; 

Step 3: Calculate the snowmelt rate M; 

Step 4: Randomly divide the population into two sub-

populations based on the number of sub-populations; 

Step 5: Subpopulation a carries out the exploration 

behavior phase through snow or liquid water conversion to 

vapor water, and subpopulation b carries out the 

exploitation behavior phase through snow conversion to 

liquid water behavior; 

Step 6: Calculate the fitness value and update the 

optimal individual; 

Step 7: Determine whether the number of iterations 

reaches the maximum number of iterations. If the maximum 

number of iterations is reached, proceed to output the 

optimal solution and optimal value; otherwise, go to step 4. 

According to the SAO algorithm steps, the SAO 

algorithm pseudo-code is shown in Figure 5.

 
Figure 5. Pseudo-code diagram of SAO algorithm



 
This is the title 

  8      

4. A green and low-carbon logistics path 
optimization method based on snow 
melting optimization algorithm 

4.1. Optimizing solutions 

In the SAO algorithm for solving the electric vehicle 

path problem with time window and simultaneous pickup 

and delivery with charging station, the population 

individuals are the feasible solutions of the problem to be 

solved. Therefore, the optimal solution obtained by solving 

the electric vehicle path problem with time window and 

simultaneous pickup and delivery with charging station is 

the optimal position of the SAO algorithm [27].The 

relationship between the SAO algorithm and the electric 

vehicle logistics and distribution planning problem is shown 

in Figure 6. From Figure 6, it can be seen that the 

population individual position in the electric vehicle path 

problem corresponds to the feasible path traversing the 

target distribution node and charging station, the change of 

the population individual position corresponds to the 

change of the path passing through the distribution node 

and the charging station or the planning optimization 

process, and the fitness value corresponds to the value of 

the objective function. 

 
Figure 6. The optimized solution

4.2. Coding Design 

2 dim From the correspondence between the SAO 

algorithm and the EV problem with time window and 

simultaneous pickup and delivery with charging station in 

Fig. 6, it can be seen that in this paper, the population 

individual position indicates the feasible path traversing the 

target distribution node and charging station, and an array 

coding method is used to explain the structure of the 

population individual position, i.e., , where the dim 

dimension indicates the number of distribution nodes and 

charging stations, and the structure of the solution is shown 

in Figure 7. From Figure 7, it can be seen that the 

distribution centers, customer points and charging stations 

are discrete points, and the position-order array coding 

method is introduced to encode the SAO algorithm for 

solving the EV problem with a time window and 

simultaneous pickup of delivery and charging stations. The 

location-order coding expression formula is as follows: 

 ( ) ( ) ( ) ( )( )1 2, , ,i i i inY x Y x Y x Y x=  (36) 

 ( ) ( )( ) ( )( ) ( )( )( )1 2, , ,i i inR x order Y x order Y x order Y x=

 (37) 

( )iY x ( )( )1iorder Y x

( ) ( ) ( )( )1 2, , ,i i inY x Y x Y x ( )R x Where, denotes the 

position of the ith individual in the xth generation of the 

SAO algorithm, denotes sorted in ascending order, and 

denotes the EV path code. 

 
Figure 7. The solution structure
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1,2, , N From Figure 7, it can be seen that the 

distribution center number dimension 0, the customer point 

is , and the EV returns to the distribution center after 

serving a certain number of customers. According to the 

battery capacity, loading capacity and other constraints of 

each EV, Figure 7 gives the structure of two sets of 

solutions, the first set of solutions indicates that the first EV 

returns to the distribution center after serving customer 

nodes 1, 2, charging station, 12, 5 and 6 from the 

distribution center, and the different EVs carry out the 

distribution service without repetition. 

4.3. Adaptation function design 

Individual fitness function is used to analyze the 

constraints of the green low-carbon logistics path 

optimization problem, combined with the total cost of 

electric vehicles to complete the distribution task, to 

generate the fitness value used to evaluate the individual 

advantages and disadvantages of the distribution scheme. In 

this paper, the individual fitness function is specified as: 

 ( ), dispatch drive chaf Y R z z z p= + + +  (38) 

,Y R where denotes the distribution node and order of 

the distribution scheme, respectively. 

4.4. Green low-carbon logistics path 
optimization process 

The essence of the green low-carbon logistics path 

optimization problem is to solve the optimal solution 

problem with multiple constraints and multiple objectives, 

i.e., the electric vehicle path optimization problem with a 

time window and simultaneous delivery pickup and 

delivery and containing charging stations. The application 

process of snow melting optimization algorithm in green 

low-carbon logistics path optimization is shown in Figure 8, 

and the specific steps are as follows: 

 
Figure 8. Flow chart for optimization of green and low-

carbon logistics paths 

Step 1: Initialize the green low-carbon logistics path 

optimization parameters, including the parameters of the 

green low-carbon logistics path optimization mathematical 

model and the SAO algorithm parameters. The parameters 

of the green low-carbon logistics path optimization model 

include the relevant constraints, and the parameters of the 

SAO algorithm include the population size and the 

maximum number of iterations. 

Step 2: Initialize the search population. Select the 

search population randomly and uniformly using the given 

boundary constraints. 

Step 3: Individual encoding mapping. The mapping 

between population individuals to the problem solution is 

accomplished using the position-order array encoding 

approach. 

Step 4: Calculate the fitness value of the individual. 

The adaptation degree value is mainly used to assess the 

quality indicator of the individual relative to the whole 

group. In this paper, we use the total cost of the electric 

vehicle to complete the delivery task as a function of the 

fitness value, the smaller the fitness value is, the better the 

quality of the individual and the better the solution is. 

Step 5: Snowmelt optimization strategy search for 

updated populations. Optimize and update the individuals of 

the logistics delivery scheme according to the exploration 

phase, development phase and dual population mechanism 

of the SAO algorithm. 

Step 6: Determine whether the algorithm termination 

conditions are satisfied. If the number of search iterations is 

greater than the maximum number of iterations, terminate 

the search and output the optimal green low-carbon logistics 

path distribution scheme; otherwise, continue with steps 4 

to 6. 

Start

Initialize logistics route 

optimization parameters

Initialize SAO algorithm 

parameters

Generate initialization population

Calculate fitness values

Termination conditions are met?

Output best logistics route scheme

Update subpopulation Pb with 

exploitation stage

Update subpopulation Pa with 

exploration stage

Yes

No

End
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5. Experimental results and analysis 

In order to verify the effectiveness of the green low-

carbon path optimization method based on the snow-melt 

optimization algorithm, using the R101 test data, five 

analysis algorithms were selected for comparison in this 

paper. MATLAB 2021a was used to write the program, and 

the test environment was a Windows 10 system, the 

processor was AMD Ryzen 9 5900HX with Radeon 

Graphics, and the RAM was 16.0 GB.The parameters of 

each algorithm are shown in Table 1. 

Table 1. Parameter settings of green low-carbon 
logistics path optimization algorithm 

arithmetic parameterization 

ISA α = 0.2 

MVO WEPmax=1, WEPmin=0.2 

HHO E0 in the range (-1, 1) 

PSO Vmax=30, Vmin=-30, r=0.5 

SAO Parameter-free optimization 

5.1. Algorithm Parameter Analysis 

In order to investigate the impact of SAO algorithm 

parameters on the optimization performance of green and 

low-carbon road logistics routes, this paper analyzes the 

population size and the number of iterations of the ISA 

algorithm. Figure 9 gives the effect of different population 

sizes on the performance of green low-carbon road logistics 

path optimization based on intelligent optimization 

algorithms. From Figure 9(a), it can be seen that the fitness 

value of each algorithm has a tendency to decrease as the 

population size increases, and when the population 

increases to a certain size, the fitness value does not change 

much and fluctuates around a certain fitness value. From 

Figure 9(b), it can be seen that the elapsed time of each 

algorithm increases as the population size increases. 

Therefore, in a comprehensive analysis, the population size 

should take the value of 50 in order to fairly compare the 

optimization performance of each algorithm. 

 
(a) Optimal adaptation value results 

 
(b) Time-consuming results 

Figure 9. Effect of population size on the performance 
of logistics path optimization methods 

Figure 10 gives the effect of different iteration numbers on 

the performance of green low-carbon road logistics path 

optimization based on intelligent optimization algorithms. 

From Figure10(a), it can be seen that with the increase in 

the number of iterations, the fitness value of each algorithm 

decreases, and when the number of iterations reaches a 

certain value, the fitness value no longer changes; after the 

number of iterations of the SAO algorithm reaches 150 

times, its fitness value no longer changes. From Figure 

10(b), it can be seen that the elapsed time of each algorithm 

increases with the increase in the number of iterations; the 

slope of the change in the elapsed time of the optimization 

of the SAO algorithm is the minimum. 

 
(a) Optimal adaptation value results 

 
(b) Time-consuming results 

Figure 10. Impact of the number of iterations on the 
performance of logistics path optimization methods 
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5.2. Analysis of path optimization results 

Based on the above parameter analysis, this subsection 

compares and analyzes the five compared optimization 

algorithms from three perspectives such as optimization 

convergence curve, fitness value, and time consuming, etc., 

and each algorithm is run 20 times, and the specific results 

are shown in Figures. 11, 12, and 13. 

Figure 11 gives the results of the distribution of the 

optimal fitness values of each algorithm in the four working 

conditions. From Figure 11, it can be seen that the SAO 

algorithm has the highest convergence accuracy and the 

fastest convergence speed; in terms of convergence 

accuracy, SAO is the best, and then PSO, HHO, ISA, and 

MVO algorithms in that order. 

 
Figure. 11 Iterative convergence curve of green low-

carbon logistics path optimization based on each 
algorithm 

Figure 12 gives the results of the distribution of the optimal 

fitness values of each algorithm. From Fig. 12, it can be 

seen that SAO algorithm is better than other algorithms in 

terms of optimal fitness value for distribution path 

optimization, and the standard deviation of optimal fitness 

value is also the smallest, and the robustness is better than 

the other algorithms. 

 
 

Figure 12. Comparison results of adaptation value of 
green low-carbon logistics path optimization methods 

based on each algorithm 

Figure 13 gives the results of the time-consuming 

optimization process of each algorithm. From Figure 13, it 

can be seen that SAO algorithm is better than the other 

algorithms in terms of optimization time-consumption, 

MVO algorithm based logistics and distribution path 

optimization has the smallest standard deviation of time-

consumption, followed by SAO algorithm. 

 
Figure 13. Comparison results of time-consuming 

green low-carbon logistics path optimization methods 
based on each algorithm 

According to the SAO algorithm running 20 times the 

optimal results, this section gives the results of the optimal 

distribution scheme with the schematic diagram, the 

specific results are shown in Figures 14 and 15.Figure 14 

gives the results of the optimal distribution scheme for 

logistics. From Figure 14, it can be seen that the four-

vehicle distribution path passes through the nodes more 

evenly and is charged once or twice. 

 
Figure 14. Green and low-carbon logistics and distribution vehicle routes based on SAO algorithm

A schematic diagram of the optimal distribution 

scheme is given in Figure 15. From Figure 15, it can be 

seen that the travel paths of each vehicle start from the 

distribution center, pass through the customer node, 

charging station, and finally return to the starting point; the 

third vehicle departs and returns to the starting point after 

passing through five points, and then there are departures 

and finally return to the starting point.



 
This is the title 
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Figure 15 Green low-carbon logistics distribution path based on SAO algorithm

6. Conclusion 

Distribution path optimization solution is one of the 

key technologies for the green low-carbon logistics path 

optimization problem. Aiming at the defects of the current 

distribution path optimization method, such as slow 

convergence speed and easy to fall into local optimization, 

this paper proposes a snow-melting heuristic optimization 

algorithm to solve the green low-carbon logistics path 

optimization problem. By analyzing the optimization cost 

and conditional constraints of the green low-carbon 

logistics path optimization problem, designing the objective 

function, and constructing the green low-carbon logistics 

path optimization model; combining the position-order 

array coding method and the fitness function, the snow-

melting optimization algorithm is used to search for the 

optimal solution of the distribution problem using the snow-

melting optimization algorithm search strategy. The 

experimental results show that the green low-carbon 

logistics path optimization method proposed in this paper 

can find the optimal solution of green low-carbon logistics 

distribution path in a shorter time, with higher node 

coverage and more stable performance. 
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