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Abstract 
Under the new round of power system reform, the high proportion of power electronic equipment and other issues faced by 
the dual carbon goal are becoming increasingly prominent, leading to increasingly complex regulation of the large power 
grid. Digital twin technology can provide new ways for the digital transformation of the power grid. To solve the above 
problems, the research first introduces digital twin technology, and then combines genetic algorithm to improve the 
Extreme Learning Machine. Then, considering the changes in load, a residual life prediction model for power grid 
transformers is designed. The research results indicated that the proposed model had a very high overlap between the 
predicted values and the true values, with a maximum error of only 1.76 ℃. It converged at the 150th iteration, with a 
fitness value of 0.04. Among the hot spot temperature prediction results under different load rates, the proposed model had 
the highest average accuracy, at 99.97%. The average relative error, mean square error, mean absolute error, root mean 
square error, fitting degree, and calculation time were 2.351%, 1.381%, 7.215%, 0.1105%, 0.998%, and 0.71s, 
respectively, which were all superior to the performance of other mainstream models. The above results indicate that the 
proposed model has superior performance, which can quickly and accurately feedback simulation results to the physical 
entity of the transformer, thereby assisting in the optimization and decision-making of the physical entity and providing 
support for the smooth operation and safety of the power system. 
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1. Introduction

With the progress of the power system, the status 
monitoring and life prediction of power grid equipment are 
playing an increasingly important role in ensuring the 
stability and reliability [1]. As one of the core equipment of 
the power grid, the operation status of transformers directly 
affects the stability and reliability. However, the remaining 
life of transformers is influenced by various factors, 
including operating environment, load conditions, 
maintenance conditions, etc. The interaction between these 
factors is very complex. Therefore, accurately predicting the 
remaining life of transformers is a challenging task [2-4]. 
Digital Twin Technology (DT) is an integrated framework 
based on sensor updates, physical models, historical and 
real-time data, which can achieve real-time monitoring and 
data collection for physical entities [5]. In view of this, 
based on DT, the Extreme Learning Machine (ELM) is 

optimized using Genetic Algorithm (GA). A residual life 
prediction model for grid transformers is constructed using 
GA-ELM algorithm. The significance of the research lies in 
providing an accurate and real-time method for predicting 
the remaining life of transformers, which provides scientific 
basis for the maintenance of power grid transformers. At the 
same time, it improves the efficiency and accuracy of 
transformer maintenance. By monitoring the operating status 
of transformers in real-time and predicting their remaining 
lifespan, potential faults can be detected in a timely manner. 
The maintenance and replacement can be carried out in 
advance to avoid power outages caused by equipment 
damage. The research content has four parts. The first part is 
a brief introduction to the research on GA, ELM, and 
residual life prediction models. In the second part, real-time 
operation data of power grid transformers are obtained based 
on DT. The GA-ELM algorithm is used to predict the 
temperature of hot spots. A remaining life prediction model 
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for power grid transformers is constructed considering 
changes in load rate. Meanwhile, due to the advantages of 
simplicity, strong computational capabilities and 
compatibility, as well as the ability to solve various 
numerical and non-numerical problems, this study utilizes 
Fortran language to develop a digital computing model and 
designs a software system for predicting transformer life. A 
software system for predicting transformer life is designed. 
The third part is to prove the performance of the GA-ELM 
residual life prediction model. The performance testing and 
comparative analysis experiments are conducted. The fourth 
part summarizes the research content. The research aims to 
provide new ideas for the digital transformation of 
transmission and transformation equipment in new power 
systems, solve the problems in predicting the remaining life 
of power grid transformers, overcome the complexity of 
power grid operation, and provide reference value for 
temperature prediction and life assessment of other 
transformers to prevent accidents in advance. Then it can 
improve economic benefits and reduce carbon emissions. 

2. Related works 

In recent years, the ELM algorithm has been applied in 
multiple fields. SHI X et al. combined boundary 
optimization theory with variational Bayesian inference to 
overcome the over fitting in ELM. A new ELM based on L1 
norm was derived. The L1 term was added to the squared 
sum costs to form the objective value. Then a soft sensor 
was designed based on this foundation. The proposed soft 
sensor was competitive compared to existing soft sensors 
[6]. CHEN X et al. designed a hybrid load forecasting 
method based on kernel principal component analysis, 
lsamvy flight tree seed algorithm, and ELM. Before 
performing the prediction in ELM, LTSA was used to obtain 
the optimal parameters, which was called LTSA-ELM. 
Meanwhile, considering the sparsity of power load data, 
KPCA extraction was performed on the input data. The 
proposed method had superiority compared with other 
methods [7]. KEMICHE M et al. used ELM to recognize 
handwritten characters in Berber language. A fast-extreme 
learning machine was used to efficiently recognize Latin 
Berber characters. The results indicated that the handwriting 
recognition system based on ELM reduced computational 
complexity and shortened the time required in the entire 
recognition process [8]. To accurately obtain the strength of 
coal gasification slag filling materials, SUO Y et al. 
constructed a GA-ELM prediction model. In the model 
testing set, the average correlation coefficient between the 
predicted and actual values was 0.99. It could accurately 
estimate the strength of coal gasification slag based 
cemented filling body [9]. Warping and volume shrinkage 
are two common quality defects. GA optimized ELM was 
achieved using Moldflow software. The results indicated 
that the GA-ELM model could better predict defect values 
[10]. 

In the remaining life prediction, MOHRIL R S et al. 
established a gradient boosting ensemble model based on 

the properties of maintenance data. This model predicted the 
remaining life of components while considering the errors 
caused by maintenance personnel during the maintenance 
process. The results showed that the model effectively 
handled the uncertainty and variability of expected future 
task profiles, without increasing mathematical complexity 
[11]. To accurately predict the overall strength and 
remaining life of selective repair bonding structures, LIAO 
Y et al. established a comprehensive simulation model for 
crack propagation, including bonding strength. The results 
showed that FM94 adhesive with a thickness of 0.2-0.4 mm 
could reduce the stress intensity coefficient and improve the 
remaining life [12]. To more accurately predict the 
remaining life of each aged cable segment, SHAN B et al. 
proposed an on-site non-destructive testing method based on 
the principle of time temperature superposition. The results 
showed that the prediction error of the cable was below 
3.15%. The prediction error of the remaining life was within 
10% [13]. At present, there are problems in predicting the 
remaining life of aircraft engines. YU P et al. proposed a 
residual life prediction method. The experimental results 
indicated that it had performance advantages compared with 
other excellent networks [14]. LIU Y et al. utilized the 
real-time and accurate prediction advantages of binary 
Wiener processes to study the clutch remaining life 
prediction. Combined with the wet clutch life test, the oil 
change correction was performed on the spectral data. The 
indicator element was extracted for predicting the remaining 
life of the clutch. The research method exceeded traditional 
methods [15]. 

In summary, the ELM algorithm develops relatively 
mature. Some scholars use GA algorithm to optimize ELM 
algorithm. However, there is relatively little research on 
constructing residual life prediction models based on the 
GA-ELM algorithm. In view of this, the GA-ELM algorithm 
is applied to the residual life prediction of power grid 
transformers. 

3. A residual life prediction model for 
power grid transformers 

To accurately evaluate and predict the remaining life of 
power grid transformers, the study first uses the GA-ELM 
and DT to predict the hot spot temperature of transformers. 
Then, considering the changes in load rate, a residual life 
prediction model for power grid transformers is constructed. 
Finally, a digital computing model is written in Fortran 
language. A software system for predicting lifespan is 
designed.  

3.1 The residual life assessment for 
transformers based on GA-ELM algorithm and 
DT 

In recent years, a high proportion of new energy and 
electronic devices are being connected to the grid on a large 
scale. The new power system urgently needs to take on the 
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important responsibility. Transformers, as important energy 
conversion equipment in the power system, efficiently 
utilize their load capacity, prevent power accidents, and 
improve the stability of power grid operation. It is of great 
significance for promoting the dual carbon goal. However, 
the early modeling and simulation of power grid 
transformers are unable to depict the dynamic operation 
process in multi-scale time and space. The DT technology is 
indispensable for achieving the digital transformation of 
power equipment such as transformers. Its predictive, 
interpretive, interactive, and visual characteristics at 
multiple scales depict the overall structure of power 
equipment that traditional modeling and simulation cannot 
analyze, achieving full closed-loop online. The remaining 
life of a transformer is related to its hot spot temperature. 

DT refers to a simulation process that integrates physical 
quantities, multiple disciplines, scales, and probabilities 
based on sensor updates, physical models, and operational 
data. It completes mapping in virtual space, reflecting the 
equipment’s entire life cycle process. Therefore, combining 
DT with deep learning algorithm to predict hot spot 
temperatures is mainly to complete the prediction, diagnosis, 
and evaluation of parameters. ELM is a algorithm for single 
hidden layer feed-forward neural networks with fast learning 
characteristics. It does not require complex feature selection 
and parameter optimization, which can directly utilize input 
and output data for learning. It can be easily combined and 
extended with other algorithms [16-17]. In view of this, the 
study chooses ELM to predict the hot spot temperature of 
transformers. Figure 1 displays the ELM structure. 

 

Input layer Hidden layer Output layer

x1 x2 xm

y1 y2 yn

αij βij  

Figure 1. Neural network structure distribution of ELM 
 

In Figure 1, the ELM structure has three parts: Input 
Layer (IL), Hidden Layer (HL), and Output Layer (OL). The 

IL is 1 2, ... nx x x . The OL data is 1 2, ... ny y y . The neurons 

in the OL, HL, and OL are n , l  and m . jkw
 

represents the connection weight between the j -th neuron 

in the HL and the k -th neuron in the OL. ijw
 represents 

the connection weight between the i -th neuron and the 
j -th neuron in the IL. The weight for the IL and HL is 

shown in equation (1). 
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In equation (1), α  represents the weight between the IL 
and the HL. The weight between the HL and the OL is 

represented by β , as shown in equation (2). 
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In equation (2), when the node in the OL is 1, the trained 

result is only a single output ELM model. The expression 
for the threshold specified by the HL neurons is shown in 
equation (3) [18]. 
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In equation (3), the bias vector γ  represents the column 

vector of 1l× . The bias element is any number in [0,1] . 
For a training set with P  samples, the expression is shown 
in equation (4). 
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In equation (4), the input matrix is represented by I . 

The output matrix is represented by O . If ( )G x  
represents the activation function of the HL, the ELM output 
value after feature mapping is shown in equation (5). 
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In equation (5), the mapping value of the HL to the i -th 

sample is represented by ( )ih x . The sample is L . The 
expected output value is shown in equation (6). 

 

1 2[ , ... ]pT t t t=
   (6) 

 
In equation (6), T  represents the expected output. The 

expression that minimizes the error value is displayed in 
equation (7). 

 
TH Tβ =    (7) 

 

In equation (7), β  represents the weight of the OL. By 

obtaining the appropriate β , the minimum error can be 
found. After completing this step, the feature values of the 
predicted samples are input to obtain the corresponding 
simulation output values. During this process, the parameter 
initialization of ELM adopts a random approach, making 
ELM more generalizable. In the ELM model, the 

expressions for the input matrix 1x  and output matrix 1y  
of the transformer are shown in equation (8). 
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In equation (8), the ambient temperature is 'aθ . The top 

oil temperature is topθ
. The load rate is represented by K . 

Excessive fluctuations in the input and input parameter 
values of the ELM model have impacts on the learning 
environment. To avoid this problem, the sample data is 
normalized. The expression is shown in equation (9) [19]. 
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In equation (9), maxx  and minx  represent the 
maximum and minimum for input and output. x  stands for 
the input and output data. y  stands for the normalization 
result [20]. The ELM ignores the model accuracy while 
improving the fitting speed. In view of this, the study 
introduces the GA algorithm to optimize the ELM model. 
The GA-ELM process is displayed in Figure 2. 
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Figure 2. Running process of GA-ELM 
 
In Figure 2, the entire process mainly consists of three 

parts. The first part is parameter selection in the ELM 
model. The second part uses the GA to optimize the random 
parameters in the model. The GA is a global optimization 
search algorithm that simulates the biological evolution 

process. It searches for the optimal solution by simulating 
genetic principles such as natural selection, crossover, and 
mutation. It is usually applied to solve the optimal solution 
of complex problems. The third part uses ELM for 
prediction. The GA-ELM prediction process is shown in 
Figure 3. 
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Figure 3. Prediction steps of GA-ELM model 
 

In Figure 3, a fitness function is set within the GA 
framework. This function calculates the fitness value in the 
initial population based on the prediction output error of 
ELM on samples. The roulette wheel selection method is 
applied during the selection, crossover, and mutation stages. 
However, the fitness function is the mean square error, 
which decreases during the evolution process. When 
designing roulette wheel games, the fitness function is taken 
to the reciprocal to select individuals with "high fitness". 
Afterwards, the offspring individuals is merged with the 
parent individuals, forming a new offspring population. This 
process continues to iterate until the maximum iterations are 
reached. In the output optimal solution stage, the optimal 
chromosome is decoded. The decoded weight and threshold 
are assigned to the predicted ELM. The ELM parameters are 
initialized with the optimal weight and threshold, thereby 
obtaining the optimal network structure. The prediction 

accuracy is tested. This entire process demonstrates how to 
optimize the ELM parameters based on the GA.  

3.2 Construction of a residual life prediction 
model for power grid transformers based on 
load rate changes 

The existing residual life assessment relies on the thermal 
life losses of power transformers during operation, that is, 
considering the load change rate of the transformer. When a 
transformer is energized, its various components generate 
electromagnetic losses and are prone to generating a large 
amount of heat. Part of the heat is lost in the air, and the 
remaining heat affects the temperature of the entire 
transformer structure. The temperature distribution of the 
transformer components and the overall structure are shown 
in Figure 4. 
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Figure 4. Transformer temperature sound components and temperature rise distribution diagram 
 

Figure 4 (a) shows the temperature rise component and 
cooling oil circuit of the transformer. The poor distribution 

of oil flow in the winding area often results in hot spot 
temperatures occurring at the upper end of high and low 
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voltage windings. The increase in hot spot temperature 
accelerates the aging of winding insulation materials. 
Quantitative analysis of load rate and hot spot temperature 
can determine the influence of load rate on the insulation 
thermal life. Firstly, the hot spot temperature is determined 
as an intermediate quantity. Then, the hot spot temperature 
at any load rate is calculated to quantitatively calculate and 
analyze the relationship between load rate and lifespan. 
Figure 4 (b) shows the thermal distribution diagram of the 
transformer described in the national standard. It details the 
relationship between the hot spot temperature of the winding 
and the ambient temperature, as well as the temperature rise 
of the top oil. During the overall heating process of the 
transformer, the winding heats up by transferring heat to the 
oil. Then the heat is transferred to the air through the flow 
and cooling of the oil. Based on this process, the average 
temperature rise of the winding to the air is calculated. At 
rated current, the temperature rise is shown in equation (10). 

 
2

1
1

1

x
RK

R
θ θ

 +
∆ = ∆  +     (10) 

 

In equation (10), 1θ∆  represents the average 
temperature rise of transformer oil to air. R  represents the 
ratio of load loss to air loss. K  represents the load rate. x  
is a constant, representing the oil index. At any load rate, the 
hot spot temperature difference of the transformer and the 
top oil temperature is displayed in equation (11). 

 

2
y
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In equation (11), grH
 represents the temperature 

difference of the oil immersed transformer. y  represents 
the exponential power of current to load rate. The hot spot 
temperature of the transformer is expressed as equation (12). 

 
2

1 2
1( )

1
y

h a a or gr
RK H K

R
θ θ θ θ θ θ +

∆ = + ∆ + ∆ = + ∆ +
+    (12) 

In equation (12), aθ  represents the ambient temperature 
of the transformer during operation. The calculation process 
for the remaining life of transformers is shown in Figure 5. 
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Figure 5. Remaining life calculation process 

 
 
In Figure 5, the remaining life of the power transformer is 

determined under fixed ambient temperature and rated load 
conditions. The study assumes five load conditions, 
including rated load, 50% load, 80% load, 120% overload, 
and short circuit conditions. The study stipulates that the 
operating time for each load condition is 10 hours, while the 
operating time for short-circuit condition is 5s. A program is 
developed to calculate the transformer aging under various 
working conditions within one cycle. When the running time 
is below the specified value, the calculation will stop. 

During continuous operation, under rated load and below 
load conditions, the maximum hot spot temperature is below 
the 120°C, which is the temperature limit. Under overload 
conditions, the maximum temperature of the hot spot is 
below 140°C. During short circuit, the temperature limit 
during the duration is 160°C. The above temperature limits 
serve as critical conditions. Once the temperature exceeds 
the specified limit, it is considered that the transformer 
insulation is damaged. A mathematical calculation model 
for transformer thermal life is developed using Fortran 
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language. The main functions of the software are shown in 
Figure 6. 
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Figure 6. Main functions of the software 
 

In Figure 6, the software allows users to directly input or 
modify parameter data. Meanwhile, it can also call data files 
of different formats from the system, which greatly 
improves the operation convenience. In terms of 
functionality, this software can fully automatically read the 
hot spot temperature, thermal life loss, short-circuit 
impedance, magnetic field distribution and other parameters 
of transformer DTs, and update data in real-time. The 
calculation results can be directly used to guide the 
operation and maintenance work of engineering personnel, 
which have extremely high practical value. 

4. Result analysis of residual life 
prediction model for power grid 
transformers 

To verify the predictive performance of the GA-ELM on 
transformers, performance testing experiments are first 
conducted. The accuracy, error, and fitness values of the 
research method are tested. Then the research model is 

applied to actual transformers. Compared with other models, 
the performance and applicability are further validated. 

4.1 Performance testing of GA-ELM model 

To avoid errors caused by different experimental 
environments, the experiment is conducted on the same 
computer. The CPU is Intel Xeon E5-2680 v2, the RAM is 
16GB, the operating system is Windows 10 Home, and the 
memory is 10GB. The top oil temperature, different load 
rates, and ambient temperature are used as output 
parameters. The hot spot temperature is used as the output 
parameter. A random combination generates 500 twin data 
samples, with 400 samples as the training set, and 100 
samples as the testing set. To verify the superiority of the 
ELM prediction model, it is compared with the commonly 
used Back Propagation (BP) model in residual life 
prediction models. The error results are shown in Figure 7. 
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Figure 7. Comparison between predicted and true values 
 
Figure 7 (a) displays the fitting curves between the true and predicted values. The two models had a high fitting degree. In 

Figure 7 (b), the error of the BP was within 4℃, and the ELM was within 3℃. The accuracy of the BP and the ELM was 
generally high, but the ELM had higher accuracy. To verify the improvement effect of introduced GA on the ELM model, the 
optimized ELM model is compared with the ELM model. Figure 8 displays the comparison results. 
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Figure 8. Comparison between predicted and true values before and after model improvement 
 

 
Figure 8 (a) shows the fitting curve between the true and 

the predicted value. The fit degree before and after 
improvement was relatively high. The predicted value curve 
of the GA-ELM model almost completely coincided with 
the true value curve. The ELM model showed significant 
differences between sample 20 and sample 31. In Figure 8 

(b), the error of the ELM was within 3℃. The GA-ELM was 
within 2℃, with a maximum error of 1.76℃. The 
improvement effect of the research method is good. The 
accuracy of the GA-ELM is relatively high. To further 
demonstrate the superiority of the GA-ELM, the absolute 
error values are compared. 50 samples are used for testing 
again. The test results are shown in Figure 9. 
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Figure 9. Comparison of absolute errors among three types of models 
 

In Figure 9, the GA-ELM error curve was relatively flat, 
with small fluctuations. The error was still controlled within 
1℃. The error curves of the BP and ELM both fluctuated 
significantly. The BP was controlled within 5℃, with a 
maximum error of 4.76℃. The ELM was controlled within 
3℃, with a maximum error of 2.84℃. In summary, the 
improved GA-ELM has higher accuracy and smaller error, 
indicating its superiority in predicting hot spot temperatures. 
The Long Short-Term Memory Network (LSTM) model is 
introduced for comparison. The convergence curves of 
fitness values and iteration times are tested, as shown in 
Figure 10. 

In Figure 10, the fitness value first rapidly decreased with 
the increase of iteration number. Then, after a certain 
iteration, the fitness value tended to stabilize, and the change 
was relatively small. The fitness value of the research model 
decreased the fastest. When the iteration number was 100, 
the fitness value of the research model was 0.07. The fitness 
value of the BP model was 0.18, and the LSTM was 0.12. 
The fitness curves of the BP model and LSTM model 
converged at 265 and 275 iterations, respectively. The 
research model converged at around 150, with a lower 
fitness value of 0.04. A low fitness value indicates a low 
error in the method. Figure 8 shows that the training effect 
of the research model is good, with stable hot spot 
temperature prediction ability and strong robustness. 
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Figure 10 Fitness curve 
 

4.2 Application and comparison of residual life 
prediction models for power grid transformers 

To verify the superiority of the method, it is applied to the 
actual life prediction of power grid transformers. A 
comparison is made between the BP and the ELM. The 
sample data results from different algorithms are displayed 
in Table 1.

 
Table 1. Calculation results of sample data from different algorithms 

 

Numbe
r Load rate K(I/IN) Ambient 

temperature(θtop/℃) 
Top oil 

temperature(θa/℃) 

θh℃ 

BP ELM GA-EL
M 

True 
value 

1 0.4 21.6 18.5 41.2 41.2 41.2 41.2 
2 0.9 20.3 21.4 45.3 45.3 45.3 45.3 
3 0.9 25.4 34.5 51.7 51.7 51.7 51.7 
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4 0.8 27.1 39.2 67.3 67.3 67.3 67.3 
5 0.4 21.6 34.5 72.5 70.5 72.5 72.5 
6 0.8 25.4 18.5 43.6 48.6 48.6 48.6 
7 0.4 20.3 34.5 64.1 63.4 64.1 64.1 
8 0.5 20.3 39.2 72.4 77.4 76.4 77.4 
9 0.9 27.1 18.5 58.3 58.3 58.3 58.3 

10 0.7 25.4 21.4 48.8 47.8 48.8 48.8 
11 0.4 21.6 39.2 71.5 75.5 75.4 75.5 
12 0.6 27.1 21.4 58.6 58.6 58.6 58.6 
13 0.4 20.3 18.5 99.0 99.0 99.0 99.0 
14 0.7 27.1 34.5 80.2 81.2 81.2 81.2 
15 0.9 25.4 21.4 83.2 81.9 83.2 83.2 
16 0.4 21.6 39.2 64.4 69.4 69.4 69.4 
17 0.9 25.4 34.5 74.3 75.3 75.2 75.3 
18 0.8 20.3 18.5 69.5 66.5 69.5 69.5 
19 0.4 21.6 39.2 44.4 49.4 49.4 49.4 
20 0.9 25.4 21.4 48.9 48.9 48.9 48.9 

In Table 1, the GA-ELM model had good predictive 
performance for hot spot temperatures under different load 
rates, with an average accuracy of 99.97%. The BP had an 
average accuracy of 97.12%, and the ELM was 98.96%. 
Compared with the BP and ELM, the GA-ELM improved 
accuracy by 2.85% and 1.01%, respectively. Moreover, for 
GA-ELM, the prediction error was relatively stable. There 

was no significant deviation, making it suitable for 
predicting the hot spot temperature of transformers. The 
evaluation indicators Mean Relative Error (MRE), Mean 
Square Error (MSE), Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), fit, and calculation time are 
introduced for evaluation. The results are displayed in Table 
2. 

 
Table 2. Comparison of prediction parameters for different models 

 
Performance 

evaluation index BP ELM LSTM GA-ELM 

MRE 6.409% 5.124% 7.219% 2.351% 
MSE 2.612% 3.415% 6.617% 1.381% 
MAE 14.16% 11.17% 24.31% 7.215% 

RMSE 0.1928 0.1821 0.2623 0.1108 
Fitting 0.981 0.992 0.987 0.998 

Computing time (s) 1.23 0.15 1.13 0.71 
 
 
In Table 2, for GA-ELM, MRE, MSE, MAE, RMSE and 

fitting degree were 2.351%, 1.381%, 215%, 0.1108, and 
0.998, respectively. Each evaluation parameter of the 
research model was superior to other models. Under the 
optimal preset parameters of each algorithm, the evaluation 
results were ranked from best to worst as GA-ELM, ELM, 
BP, and LSTM. The calculation time of the ELM model was 
the shortest, only 0.15s. Although the GA-ELM was 0.71s, 
it exceeded the ELM. However, compared with the BP and 
LSTM, GA-ELM still had temporal superiority. This 
indicates that GA-ELM sacrifices computational speed 
while pursuing higher accuracy. Overall, in the comparison 
of various model errors, the GA-ELM has the best 
evaluation performance and the lowest error. This indicates 
that the GA-ELM has higher accuracy and certain 

advantages in predicting the hot spot temperature of 
transformers. 

5. Conclusion 

To accurately evaluate and predict the residual life of power 
grid transformers, a prediction model for the remaining life 
of power grid transformers is constructed based on the 
GA-ELM. According to the results, in the comparison 
between the ELM and the BP, the ELM had higher 
accuracy, with an error controlled within 3℃. It had higher 
fitting degree with the true value curve. In the comparison 
between the GA-ELM and the ELM, the predicted value 
curve of the GA-ELM almost completely coincided with the 
true value curve. The GA-ELM was within 2℃. The highest 
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error was only 1.76℃. The GA-ELM converged with a 
fitness value of 0.04 at 150 iterations. The GA-ELM model 
had good predictive performance for hot spot temperatures 
under different load rates. The average accuracy reached 
99.97%. Compared with the BP and ELM, the GA-ELM 
method improved accuracy by 2.85% and 1.01%, 
respectively, with small and stable prediction errors. For 
GA-ELM, MRE, MSE, MAE, RMSE and fitting degree 
were 2.351%, 1.381%, 215%, 0.1108, and 0.998, 
respectively. Each evaluation parameter of the research 
model was superior to other models. The calculation time of 
the GA-ELM was 0.71s, which was better than the BP and 
LSTM model. The experimental results verify the 
superiority of the research method, indicating that the 
constructed model has high accuracy and stability. At the 
same time, it indicates that the research model has certain 
application value in the remaining life assessment and 
prediction of power grid transformers. However, there are 
still shortcomings in this study. When considering changes 
in transformer load rate, only a small part of the load 
conditions is considered. There are various complex 
situations in the actual operation of transformers. In future 
research, overload and various short circuits will be 
considered. 
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