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Abstract 

INTRODUCTION: In modern power systems, the optimization of intelligent equipment scheduling for transmission lines 
is a key task. 
OBJECTIVES: To improve the effectiveness of scheduling optimization, this study introduces an intelligent equipment 
scheduling optimization model for transmission lines on the ground of the improved Bacterial Foraging Optimization 
algorithm. 
METHODS: This model achieves global and local search capabilities through an improved Bacterial Foraging 
Optimization algorithm, maintaining the diversity of equipment states and effectively improving the optimization level of 
scheduling results. 
RESULTS: At 3000 iterations, the model was able to reach its optimal state, and its optimization results showed excellent 
performance in terms of convergence and uniformity, which was very close to the optimal solution. In practical 
applications, the performance of the intelligent equipment scheduling optimization model for transmission lines on the 
ground of the improved Bacterial Foraging Optimization algorithm is also excellent. The average line usage rate of the 
scheduling scheme proposed by the model reached 70.69%, while the average line usage rate of the manual scheduling 
scheme was only 64.63%. In addition, the optimal relative error percentage of this model is less than 2.1%, while the BRE 
of other algorithms reaches around 10%. 
CONCLUSION: The intelligent equipment scheduling optimization model for transmission lines on the ground of 
improved Bacterial Foraging Optimization algorithm has important practical significance for improving the operational 
efficiency of the power system, reducing operating costs, and making sure the stable and reliable operation of the power 
system. 
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1. Introduction

Against the backdrop of the increasingly transforming
global energy structure, smart grids have become an 
important direction for the future development of power 
systems due to their efficient, reliable, green, and 
economical characteristics. As the main component of the 
power system, the scheduling optimization problem of 

transmission lines is crucial. However, traditional 
transmission line scheduling methods often suffer from low 
efficiency and low scheduling quality, which has a 
significant impact on the stable operation and economic 
benefits of the power system [1-2] . Therefore, how to 
effectively improve the scheduling optimization efficiency 
and quality of transmission lines is an essential issue in 
current power system research. Among numerous 
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optimization algorithms, the Bacterial Foraging 
Optimization (BFO) algorithm is extensively utilized in 
various optimization problems due to its unique search 
strategy and optimization ability [3-4] . However, traditional 
BFO algorithms still face problems such as slow 
convergence speed (CS) and susceptibility to local optima 
when dealing with complex transmission line scheduling 
problems. Improving BFO algorithms has become a 
research topic that needs to be addressed. A research 
proposes an intelligent equipment scheduling optimization 
model for transmission lines on the ground of an improved 
BFO algorithm to solve the problems existing in traditional 
methods. By improving and optimizing the BFO algorithm, 
the CS and optimization ability have been enhanced, 
enabling the model to more effectively solve complex 
transmission line scheduling problems [5-6] . This design 
effectively improves the BFO algorithm and utilizes it to the 
optimization problem of transmission line scheduling. This 
is the first time that the improved BFO algorithm has been 
utilized to this issue, which has significant innovation. The 
importance of this design is that it improves the efficiency 
and quality of transmission line scheduling, providing 
guarantees for the stable operation and economic benefits of 
the power system. The improvement and optimization of the 
BFO algorithm also provide new solutions for other 
optimization problems. Therefore, this design has important 
theoretical and practical value for power system research 
and optimization algorithm research. The research will be 
conducted in four parts. The first part is an overview of the 
design of an intelligent equipment scheduling optimization 
model for transmission lines on the ground of the improved 
BFO algorithm. The second part is the research on the 
design of an intelligent equipment scheduling optimization 
model for transmission lines on the ground of the improved 
BFO algorithm. The third part is the experimental 
verification of the second. The fourth part is a summary and 
points out the demerits. 

2. Related Works 

With the profound transformation of the global energy 
structure, the efficient, reliable, green, and economical 
characteristics of smart grids have made them the core of the 
development of the power system (PS). The importance of 
scheduling optimization problems for transmission lines, as 
an important component of the PS, is self-evident. Zhu D et 
al. developed a simplified topology model for PSs. Three 
indicators were derived from three aspects to evaluate the 
importance of transmission lines: global topology, line 
operating parameters, and local line connections. The 
simulation outcomes showcase that this method could 
identify key transmission lines in the PS and test its 
correctness and effectiveness [7] . Geng J et al. proposed a 
method for predicting important nodes and transmission 
lines in PSs - K-means Markov chain. The simulation results 
have demonstrated the rationality and effectiveness of the 
K-M method in forecasting essential nodes and transmission 
lines in the PS [8] . Takeda K et al. proposed a visualization 

method for power transmission characteristics on the ground 
of WPT system decomposition analysis to solve the problem 
of power transmission characteristics relying on the 
coupling conditions of transmitter and receiver coils in 
traditional resonant compensation circuit design. The 
experimental results are significantly consistent with the 
intuitively estimated trend and estimated power transmission 
[9] . Chen Y et al. characterized a feasible set of capacity 
parameters under a given solar energy spill over rate. And 
they proposed a projection algorithm on the ground of linear 
programming to obtain this set, providing valuable 
references for system planning and policy making [10] . Wu 
C et al. proposed a new principle using the integral 
autocorrelation coefficient of fault current. The relevant 
outcomes showcase that the protection principle is not 
influenced by distributed capacitor currents. And it 
possesses good tolerance to fault resistance and noise 
interference [11] . 

The BFO algorithm has been widely used among 
numerous optimization algorithms due to its unique search 
strategy and optimization ability. However, when dealing 
with complex transmission line scheduling problems, 
traditional BFO algorithms have some limitations. Shaikh M 
S et al. proposed an optimization technique called Grey 
Wolf Optimization for calculating transmission line 
parameters. The results show that the grey wolf optimization 
algorithm has a significant optimization effect, which is 
better than the previously applied algorithms, and performs 
excellently in accuracy, robustness, and CS. The study also 
analyzed the effects of different wire bundle numbers, radii, 
and wire spacing on transmission lines [12]. Liu J et al. 
proposed a frequency dependent phase domain transmission 
line model on the ground of field programmable gate arrays. 
All software development of the model is completed using 
VHDL and hardware implementation is carried out using 
customized 48 bit floating-point data representation to 
improve accuracy. This FPGA based circuit model can 
interface with other networks for real-time simulation [13]. 
Kalam R et al. extracted GLCM and GLRLM features and 
selected them using the BFO algorithm. At last, the selected 
features are input into the optimized ANFIS classifier to 
classify tumors into meningiomas, gliomas, and pituitary 
tumors. In ANFIS, the optimization process is achieved by 
using PSO [14]. Gurrala G et al. proposed a one-step 
method on the ground of the characteristics of the Foster 
equivalent circuit, which directly fits the frequency response 
of the R-L equivalent circuit to the modal impedance. Then 
it applies the proposed model to EMTP-RV to simulate the 
switching transient of 400kV, 765kV, 1200kV transmission 
lines and an 11 bus 500kV network. Then it compares the 
results with the constant parameter cascade model and the 
general line model in EMTP-RV. The switching transient 
outcomes are comparable to those of the Marti model in 
EMTP-RV [15]. Wang et al. proposed a numerical 
integration method for measuring transmission line voltage 
using multiple D-dot electric field sensors. The research 
results indicate that the voltage measurement method for 
transmission lines on the ground of the Gaussian Kronrod 
integration algorithm is effective, with high measurement 
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accuracy and an error within the range of 0.3% [16] . 
In summary, the BFO algorithm has been extensively 

utilized to various optimization problems in current research. 
However, when dealing with complex transmission line 
scheduling problems, traditional BFO algorithms still face 
problems such as slow CS and susceptibility to falling into 
local optima. This situation clarifies the necessity of further 
improving the BFO algorithm and applying it to the design 
of transmission line scheduling optimization models. The 
study adopts an improved BFO algorithm to optimize the 
scheduling of intelligent equipment for transmission lines, 
and enhances the local search ability and convergence speed 
of the algorithm using a dynamic adaptive search step size 
strategy. It is expected that the exploration and research in 
this research direction can provide new basis for intelligent 
scheduling of transmission lines and open up new 
perspectives for the practical application of optimization 
algorithms. 

3. Intelligent equipment scheduling 
optimization model for transmission lines 
on the ground of improved BFO algorithm 

Firstly, the BFO algorithm and its improved design are 

introduced, followed by an analysis and model design of 
intelligent equipment scheduling for transmission lines. 
Finally, an improved BFO algorithm based optimization of 
intelligent equipment scheduling for transmission lines was 
proposed. Exploring and researching this research direction 
can provide new basis for intelligent scheduling of 
transmission lines. This can open up new perspectives for 
the practical application of optimization algorithms. 

3.1 BFO algorithm and improved design 

It is crucial to improve and design the basic structure 
and working mode of BFO algorithm to adapt to the 
complex intelligent equipment scheduling problem of 
transmission lines. Detailed analysis and model design 
enable the formalization of intelligent equipment scheduling 
problems for transmission lines, which can be effectively 
solved using improved BFO algorithms. Tendency 
operations are considered a crucial part of the BFO 
algorithm. It simulates the swimming and flipping behavior 
of bacteria during foraging, and optimizes and improves on 
this basis [17-18] . The directional operation is shown in 
Figure 1. 

Start

Calculate the fitness value of 
bacteria and store the current 
fitness value of bacteria as the 

optimal value

Initialization

Calculate the fitness 
value of bacteria at a 

new location

Store the fitness value of the new 
location as the current best fitness 

value of the bacteria

End

1i i= +

i S＜

      
     

   
 

Sm＜N

1m m= +  Sm = N

        
 

    
   

 
Fig.1 Trend based operation process 

 
In Figure 1, in a food rich environment, bacteria will 

swim in the same direction and reduce the change in search 
direction. When the food density is high, it will prolong the 
swimming time and increase the distance of movement. 
When food is scarce or the environment is acid-base 
imbalanced, bacteria will randomly change their direction of 
movement. In the BFO algorithm, bacterial individuals first 
move in a random direction, and if the fitness value of the 
new position is low, they will randomly change direction. If 
the fitness value is high, keep moving forward in the current 

direction. When the maximum of operations is achieved, the 
operation terminates. 

The mathematical model of bacterial i  in the trend 
operation is shown in equation (1). 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1, , , ,j k l j k l C i i

i
i

i i

θ θ ϕ

ϕ
Γ

+ = +
 ∆ =

∆ ∆

（1） 

In equation (1), ( )1, ,j k lθ +  represents the position 
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of bacterial i , j  serves as the tendency operation cycle 
algebra, and k  serves as the replication operation cycle 
algebra. l  is the migration operation loop algebra, ( )C i  

is the unit of forward walk step size, ( )iϕ  is the random 

angle generated after flipping, and ( )i∆  is the unit vector 
on the random angle. This study uses BFO algorithms to 
simulate the scheduling process of intelligent equipment on 
transmission lines. In the model, the position, orientation, 
replication, and migration of bacteria are key parameters, 
including the cycle algebra, swimming step units, flipped 
random angles, and unit vectors. The aggregation behavior 
and quorum sensing mechanism of bacteria provide new 
solutions in solving optimization problems. The expression 
for the aggregation behavior between bacteria is shown in 
equation (2). 

( )( ) ( )

( )
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1 1
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                               exp

S D
i m
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h
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= − − − +  

   
  
− − −  

   

∑ ∑

∑ ∑
（2） 

In equation (2), tanattrac td  serves as the depth of gravity, 

tanattrac tω  serves as its width, repellanth  serves as the height 

of repulsion, and repellantω  serves as its width. m
iθ  

represents the proportion of bacteria, and mθ  represents the 
proportion of other bacteria in the entire microbial 
community. The laws of biological evolution, namely the 
survival of the fittest, have a significant impact on the 
foraging process of bacteria. Bacteria with strong foraging 
ability and located in areas with abundant food will be 
retained, while bacteria with poor foraging environment or 
weak foraging ability will be eliminated. The preserved 
bacteria maintain population size through division and 
replication, simulating natural laws. After the trend 
operation is completed, half of the bacteria with poor health 
are eliminated on the ground of their health level, while the 
healthy ones replicate themselves. Bacteria may migrate to 
new areas due to environmental changes, which may disrupt 
directional behavior but is beneficial for long-term rapid 
foraging. The main structure of the BFO algorithm is the 
migration operation, replication operation, and chemotaxis 
operation, which are nested within each other. The overall 
workflow is showcased in Figure 2. 

One of the key parameters in bacterial trend 
manipulation is the swimming step size, and traditional 
fixed search steps cannot meet the dual requirements of 
search accuracy and CS. Large step size can quickly move 
towards the target, but it may lead to insufficient 
convergence accuracy. Small step sizes can perform precise 
searches, but may reduce computational efficiency. 
Therefore, this article introduces a dynamic adaptive search 
step strategy, which integrates the dynamic adaptive search 
step strategy from the artificial fish swarm algorithm into 

the BFO algorithm. This is to solve the problem of getting 
stuck in local optima. By using a large step size for coarse 
search in the initial stage of the algorithm and a small step 
size for precise search in the later stage, the local search 
ability was improved, and the CS and accuracy were 
improved. The search step size is shown in equation (4). 

( ) max min

max

exp 30
s

C i C a C

ta
T

= × +
   

 = − ×  
    

（4） 
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Chemotactic 
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Algorithm EndIf edNl＜
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Fig. 2 Overall workflow of BFO algorithm 

In equation (4), maxT  serves as the maximum iteration 
number, t  serves as the current iteration number, maxC  is 
the initial step size, and minC  serves as the step size at the 
end of the iteration cycle. s  serves as an integer greater 
than 1. 

3.2 Analysis and model design of intelligent 
equipment scheduling for transmission lines 

This study is on the ground of BFO algorithms, with a 
focus on the intelligent equipment scheduling problem of 
transmission lines. As a crucial part of the PS, the 
scheduling decisions of transmission lines directly affect the 
stability and efficiency of the system. Therefore, it is 
necessary to design an effective scheduling model tailored 
to the characteristics of intelligent equipment on 
transmission lines. For scheduling models, they are not 
simple single threaded or sequential logic programs, but 
have a unique loop structure that processes device status and 
executes scheduling logic in each loop. An effective 
scheduling model needs to consider the characteristics of 

EAI Endorsed Transactions 
on Energy Web 

| Volume 12 | 2025 |



Intelligent Equipment Scheduling Optimization Model for Transmission Lines Based on Improved BFO Algorithm 
 

5 
 

multithreading, event driven, and state management. 
Through reasonable design and implementation, a 
high-performance scheduling model can be constructed. 

This can achieve stable and reliable scheduling operations 
[19-20] . The basic process of the scheduling model is 
shown in Figure 3. 

Initial state of intelligent equipment 
for transmission lines

Status data of 
transmission lines

Execute optimization model Prediction 
and rendering

Synchronization 
phase

Clean up 
resources

Clean up 
resources

Scheduling cycle

Export

Return to operating 
system

Read and parse

 

 
Fig. 3 Basic process of scheduling model 

 
In Figure 3, the initialization process is executed first, 

and then the scheduling loop is entered to read the device 
status. Afterwards is the core program of scheduling, which 
is to execute scheduling logic. This step reflects the 
scheduling rules and enters the next cycle, where each cycle 
of the scheduling main cycle needs to be synchronized and 
controlled. Afterwards, it returns to the schedule to continue 
the next cycle. The implementation of the main loop 

structure aims to manage the status of multiple devices. 
Here, a stack based state machine approach will be adopted 
to manage device status. This method abstracts each state as 
a class, and describes the relevant variables of each state 
attribute as data members of the class. When the device is in 
a running state and receives a command to pause the device, 
the device enters a pause state as shown in Figure 4. 

 

N

Running state

Receive pause command

Stack with paused state

Maintain 
current state

Return

Stacking at the top of the stack

Generate new stack top from previous state

Return to previous device status

Running state

Y

 

Fig. 4 Schematic diagram of intelligent equipment scheduling method based on stack 
 

In Figure 4, exiting the current state can be simply 
achieved by popping up the top element of the stack. This 
will make the next element the new top of the stack, 
representing the new device state. For the paused state, the 
paused state object can be pushed onto the stack. When 
restoring to the previous state, it can be achieved by popping 
the top element of the stack. In this way, the previous state 
object will become the new top of the stack and return to the 
previous device state. The Hourglass algorithm was used in 

the study to design characters and combined with pose 
calculation as shown in equation (5). 

2
,

2( )*
, ( )

i jp x

i jS p e σ

− −

= （5） 

In equation (5), ,i jx  represents the various parts of 
the intelligent equipment for transmission lines, and p  
represents the equipment status. When there is a significant 
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deviation between the equipment state and the ideal 
operating state, the optimization level of scheduling is lower. 
And there is a relationship between equipment status and 
scheduling instructions, so the scheduling priority of 
equipment status is shown in equation (6). 

1 , P On the limb
( )

0 , P is not on the limbfA p 
= 


（6） 

In equation (6), when the improved BFO algorithm is 
selected for intelligent equipment scheduling of 
transmission lines, each part of the equipment has a 
corresponding scheduling priority. The scheduling priority 
calculation between two different parts is shown in equation 
(7). 

2 1

2 1

( ( )) j j
c c

j j

X X
E A p u du

X X
−

=
−∫ （7） 

In equation (7), with the increase of scheduling 
optimization, the operating status of the equipment tends to 
be consistent, and the overall operating efficiency also 
improves. After obtaining a large amount of device status 
data, an improved BFO algorithm was used for optimization 
scheduling through data processing and analysis. When 
there is a state sequence L  of intelligent equipment for 
transmission lines, the sequence is shown in equation (8). 

{ }
{ }

1 2 3

1 2 3

1 2 3

, , ,

, , ,
ˆ ( , , , )

M

N

T

L l l l l

Y y y y y

Y f x x x x

 =


=


=







（8） 

In equation (8), { }1 2 3
ˆ ˆ ˆ ˆ ˆ, , , NY y y y y=   is the 

output result of scheduling. For ease of calculation, it is 
assumed that the state sequence and scheduling instruction 
sequence are consistent. That is to say, there is a certain 
correlation between the data and scheduling instructions in a 
given state sequence, and their relationship is interdependent. 
Due to the adoption of an improved BFO algorithm, the 
number of optimization parameters is utilized to increase the 
possibility of global optimization. The scheduling algorithm 
for processing a certain moment is shown in equation (9). 

1

0
( ) ( * )( ) ( )

k

d t d i
i

F t X f t f i x
−

− ⋅
=

= = ⋅∑ （9） 

In equation (9), d  is the search step size, k  serves 
as the quantity of searches, and t d i− ⋅  serves as the size 
of the scheduled time window. It improves the scheduling 
accuracy of intelligent equipment for transmission lines, 
obtains equipment status through real-time monitoring, and 
optimizes scheduling. It collects the original device status, 
removes redundancy through an improved BFO algorithm, 
and combines operating parameters for obtaining the 
optimal operating status of the device. It utilizes a layered 
abstraction strategy to detect and schedule each device, 
simplifying the process of establishing and implementing 
scheduling models. The established intelligent equipment 
scheduling model for transmission lines is shown in Figure 
5. 

S

Executing Scheduling

Receive pause command Pause

Use Embedded State Management Program

Improve Operation Efficiency 
and Maintainability

Remove Redundancy by 
Improved BFO Algorithm

Remain in Current 
State S

Use Hierarchical 
Abstract Strategy Establish Scheduling Model

Receive Scheduling Command

Receive Stop Command

NY

 

 
Fig. 5 Transmission Line Intelligent Equipment Scheduling Model 

 
In Figure 5, during the initial startup, the standing state 

is S. If a scheduling command is received, the state will 
switch to executing scheduling J. Similarly, receiving a stop 
command will cause the state to switch to pausing D. 
Embedded state management programs can directly utilize 
the properties and other data of the managed object for state 
transitions, thereby improving operational efficiency and 
maintainability. In the scheduling of intelligent equipment 
for transmission lines, the use of embedded state 

management tools can effectively manage the status of 
equipment. 

3.3 Optimization of intelligent equipment 
scheduling for transmission lines on the 
ground of improved BFO algorithm 

On the ground of the improved BFO algorithm, the 
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scheduling optimization model of intelligent transmission 
line equipment starts from a group of initial intelligent 
transmission line equipment to find the optimal scheduling 
solution. When the initial state of intelligent equipment for 

transmission lines has good diversity, this algorithm can 
optimize search in local and global ranges and obtain good 
results. The flowchart of this algorithm is shown in Figure 6. 

Start

Determine optimized scheduling parameters

Parameter coding

Randomly generate a certain number of 
intelligent equipment for transmission lines

Intelligent equipment for transmission 
lines generated by sorting

Optimize

Continuously search for equipment 
with good adaptability

End

Copy and swing operations

N
Y

 
Fig. 6 Flowchart of Improved BFO Algorithm 

 
In Figure 6, first it determines the scheduling 

parameters that need to be optimized, and then encodes the 
parameters that need to be optimized. Next, it randomly 
generates a certain number of intelligent transmission line 
equipment and selects an appropriate fitness function (FF). 
Then it sorts the intelligent equipment of the transmission 
line on the ground of the size of the function value, 
eliminates equipment with lower fitness values, and retains 
elite equipment. Then, it replicates and swings the 
remaining elite equipment to generate new equipment, and 
optimizes it again until the maximum of iterations is 
achieved or the average deviation between equipment is less 
than a certain value. The essence of optimizing on the 
ground of the improved BFO algorithm is on the ground of 
the fitness of intelligent transmission line equipment, and 
through repeated iterations such as copying and swinging, it 
continuously searches for equipment with better fitness, and 
finally obtains the optimal solution to the issue. The FF is 
the standard for evaluating the quality of intelligent 
equipment on transmission lines and the only basis for 
simulating natural selection. This study establishes a 
mapping relationship that minimizes the objective function 
as shown in equation (10). 

( ) ( ) ( )
( )

m

max

max ax,
,0

C f x f x
F x

f
C

x C
 −=  ≥

＜
（10） 

In equation (10), maxC  can be either a specific 
scheduling state or the theoretically optimal state of 
intelligent equipment for transmission lines. ( )f x  is the 

objective function, ( )F x  is the FF, and the process from 
scheduling state to optimal state is the optimization process. 
Similarly, the problem of maximizing the objective function 

establishes a mapping relationship, as shown in equation 
(11). 

( ) ( ) ( )
( )

minmin

min

,
,0

f x C Cf x
F x

f x C
 −=  ≤

＞
（11） 

In equation (11), minC  can be either a specific 
scheduling state or the optimal state among all current 
algebras or the K-th generation. Each device has a selection 
probability, which depends on its fitness and distribution. 
The selection rate of its computing device and the 
probability of being selected are shown in equation (12). 

( ) ,

1

, 1,2, , _i
i pop size

ii

cP V i pop size
c

=

= =
∑

L （12） 

In equation (12), V  represents a single device and ic  
represents fitness. The improved BFO algorithm simulates 
bacterial reproduction and foraging through replication and 
swaying operations, generating and optimizing new device 
states. The replication operation is to copy the state of one 
device to another device to generate a new state, enhancing 
the optimization ability of the algorithm. The swing 
operation performs a small random change in the device 
state, simulating bacterial foraging. The swinging operation 
has two main functions: firstly, it provides local random 
search ability to accelerate the convergence of the optimal 
solution; The second is to maintain diversity in equipment 
status. 

4. Intelligent equipment scheduling 
optimization model for transmission lines 
on the ground of improved BFO algorithm 
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The study uses convergence, proximity to the optimal 
solution, resource utilization, optimal relative error 
percentage, and average relative error percentage as 
indicators to analyze the performance of the model. The 
convergence measurement algorithm measures the speed at 
which the algorithm reaches the optimal solution during the 
iteration process, the proximity of the optimal solution 
measures the distance between the solution found by the 
algorithm and the known optimal solution, the resource 
utilization rate represents the efficiency of the scheduling 
scheme in using resources, the optimal relative error 
percentage measures the relative error between the optimal 
solution found by the algorithm and the global optimal 
solution, and the average relative error percentage measures 
the average relative error of the algorithm over multiple runs. 
The intelligent equipment scheduling optimization model 

for transmission lines on the ground of the improved BFO 
algorithm has superior global and local search capabilities. 
It can effectively improve the optimization level of 
scheduling results while maintaining the diversity of 
equipment status. The number of iterations and equipment 
deviation control of the model also demonstrated good 
performance, proving its effectiveness in practical 
applications. The detailed evaluation of model parameter 
settings provides strong theoretical support for the 
optimization of intelligent equipment scheduling 
optimization models for transmission lines. The focus of the 
research is on how to improve the model's search ability and 
optimize scheduling results while maintaining the diversity 
of equipment states, providing a theoretical basis for 
practical applications. The relevant parameter are showcased 
in Table 1. 

 
Table 1 System parameter 

 
Parameter Configuration Parameter Configuration 

Operating System Windows 10 Pro 
64-bit Processor Intel Core i9-10900K 

RAM 32GB DDR4-3200 Storage 1TB SSD NVMe PCIe 
M.2 

Programming Language Python 3.8 Optimization Library Scipy 1.6.2 
Number of Transmission Line 

Intelligent Equipment 200 Units Max Iterations 5000 Times 

Average Deviation Threshold 0.001 Initial Duplication Proportion 0.2 

Initial Swinging Proportion 0.1 Experimental Environment 
Temperature 25℃ 

Experimental Environment Humidity 50% Population Size in BFO Algorithm 100 
Step Size in Search 0.1 Chemotactic Step Length 20 

Swim Length 4 Elimination-dispersal Probability 0.25 
Attraction Coefficient in BFO 

Algorithm 0.2 Repulsion Coefficient in BFO 
Algorithm 0.1 

 
To verify the availability and progressiveness of the 

intelligent equipment scheduling optimization model on the 
ground of improved BFO proposed by the research institute, 
the algorithm proposed by the research institute is first 
verified. The study selected the actual data of intelligent 
equipment scheduling for transmission lines as the dataset. 
Then it compares two multi-objective (MO) optimization 
algorithms, Multi-objective Evolutionary Algorithm On the 
ground of Decomposition (MOEA/D) and Multi-objective 
Particle Swarm Optimization (MOPSO), on the ground of 
decomposition [21-22]. In a unified hardware environment, 
all algorithms were tested using the same intelligent 

transmission line equipment scheduling optimization 
problem to minimize the impact of objective conditions on 
experimental results. In the experimental setup, the 
population size of each algorithm reaches 100, the 
maximum of iterations reaches 5000, and the capacity of 
external documents is set to 200. To further decrease the 
influence of random factors on the experimental outcomes, 
each algorithm was independently run 50 times in numerical 
experiments and the average value was taken. Comparing 
the convergence of three algorithms, the comparison results 
are shown in Figure 7. 
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Fig.7 Convergence of three algorithms 
 

In Figure 7, the intelligent equipment scheduling 
optimization model for transmission lines proposed by the 
research institute on the ground of improved BFO can reach 
the optimal situation in 3000 iterations, which is 900 and 
1600 fewer than the MOEA/D algorithm and MOPSO 
algorithm, respectively. It compares the optimization results 

obtained by three algorithms in dealing with the 
optimization problem of intelligent equipment scheduling 
for transmission lines. Firstly, it performs a comparison of 
2D optimization problems. The comparison results are 
shown in Figure 8. 
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Fig. 8 Optimal solutions obtained by the three algorithms on the biobjective test set 

 
In Figure 8, among the three algorithms, the 

optimization results of the transmission line intelligent 
equipment scheduling optimization model on the ground of 
improved BFO proposed by the research institute show 
excellent convergence and uniformity, and are closest to the 

optimal solution. It compares the optimization results from 
the three algorithms in dealing with 3D optimization 
problems, and the comparing outcomes are showcased in 
Figure 9. 
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Fig. 9 Optimal solutions obtained by the three algorithms on the three-objective test set 

 
In Figure 9, the intelligent equipment scheduling 

optimization model for transmission lines on the ground of 
improved BFO proposed by the research institute exhibits 
excellent performance in terms of convergence and diversity. 
Compared to MOEA/D algorithm and MOPSO algorithm, it 

has more excellent performance in addressing MO 
optimization problems. The study randomly selected several 
transmission lines and conducted statistical analysis and 
comparison of the line utilization efficiency of two 
scheduling schemes. It is shown in Figure 10. 
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Fig. 10 Statistical Analysis and Comparison of Line Usage Efficiency between Two Schemes 

 
In Figure 10, the average line usage rate of the 

scheduling scheme proposed by the research institute is 
70.69%, while the average line usage rate of the manual 
scheduling scheme is 64.63%. This proves that the 
intelligent equipment scheduling optimization model for 
transmission lines on the ground of improved BFO proposed 
by the research institute can more fully utilize resources. 

The comparison chart of the optimal relative error 
percentage (BRE) and average relative error percentage 
(ARE) of the improved BFO algorithm proposed by the 
research institute with the Binary Bacterial Foraging 
Optimization (BBFO) algorithm and Differential Bacterial 
Foraging Optimization (DBFO) algorithm is showcased in 
Figure 11. 
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Fig. 11 BRE and Comparison Graph of Algorithms 

 
In Figure 11, the BRE of the improved BFO is less than 

2.1%, while the BRE of other algorithms reaches about 10%, 
and the fluctuation of ARE is smaller compared to other 
algorithms. This indicates that the global search capability 
and stability proposed by the research institute are superior 
to other algorithms. 

5. Discussion 
 
The innovation of the research lies in the construction of an 
intelligent equipment scheduling optimization model for 
transmission lines by improving the bacterial foraging 
optimization algorithm, and verifying its application effect 
in scheduling optimization. From the research results, the 
improved BFO algorithm performs well in both search 
accuracy and convergence speed, demonstrating its potential 
in complex optimization problems. The dynamic adaptive 
search step size strategy has played an important role in 
improving the local search capability and global search 
efficiency of the algorithm. This strategy avoids the problem 
of the algorithm getting stuck in local optima by using large 
step sizes for coarse search in the early stages and small step 
sizes for precise search in the later stages. However, despite 
the improved BFO algorithm showing good performance in 
this study, there are still some areas that need further 
discussion and improvement. Firstly, the adaptability and 
stability of the proposed model in practical applications still 
need further verification. Different transmission line 
environments and conditions may affect the performance of 
the algorithm, so it is necessary to adaptively adjust and 
optimize the model in practical applications. Secondly, 
although the improved BFO algorithm has improved in 
search accuracy and convergence speed, its computational 
complexity has also increased accordingly. When dealing 
with large-scale transmission line scheduling problems, the 
computational efficiency of algorithms may become a 
bottleneck that requires further optimization and 
improvement. In summary, the improved BFO algorithm has 
great potential and prospects for application in intelligent 
equipment scheduling optimization of transmission lines. 
This study provides new theoretical basis and technical 
support for intelligent dispatching of power systems, but 

further exploration and verification are still needed in 
practical applications. Future research should continue to 
optimize and improve algorithms based on this foundation, 
enhance their adaptability and stability in different 
environments and conditions, and provide more 
comprehensive and efficient solutions for intelligent 
dispatching of power systems. 
 
6. Conclusion 

The intelligent equipment scheduling optimization of 
transmission lines is an extremely important link in the 
power system, and its optimization effect directly affects the 
stable operation and economic benefits of the power system. 
In order to more effectively solve this problem, design an 
intelligent equipment scheduling optimization model for 
transmission lines based on an improved BFO algorithm. 
This model achieves global and local search capabilities, as 
well as diversity in equipment status, through an improved 
BFO algorithm, which significantly improves the 
optimization level of scheduling results. The results showed 
that compared to MOEA/D algorithm and MOPSO 
algorithm, the proposed model reduced the number of 
iterations by 900 and 1600 respectively, indicating that the 
model has better performance in solving multi-objective 
optimization problems. The ARE fluctuation of the model is 
relatively small, which proves that its global search ability 
and stability exceed other algorithms. This model provides 
important reference for the operation and management of 
power systems, effectively improving operational efficiency 
and reducing operating costs. However, the model has 
limitations when dealing with complex multi-objective 
problems. In the future, research will optimize the model 
algorithm to improve global search capability and stability, 
and attempt to apply the model to more intelligent 
equipment scheduling optimization problems in power 
system transmission lines to verify its applicability and 
practicality. 
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