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Abstract 

 

INTRODUCTION:The research of scientific and reasonable logistics and distribution programme time the pursuit of each 

logistics enterprise, not only can improve customer satisfaction and corporate image, but also help to reduce distribution 

costs. 

OBJECTIVES: For the current cold chain low-carbon logistics distribution path optimisation methods there are problems 

such as easy to fall into the local optimum, optimisation time-consuming. 

METHODS: This paper proposes a cold chain low-carbon logistics distribution path optimisation method based on the 

improved Hummingbird optimisation algorithm. Firstly, by analyzing the characteristics of the cold chain low-carbon 

logistics distribution path optimization problem, designing the cold chain low-carbon logistics path optimization objective 

function and constraints, and constructing a cold chain low-carbon logistics distribution path optimization model based on 

a soft time window; then, the hummingbird optimization algorithm is improved by using the initialization strategy of the 

set of good points and the cardinality leap strategy, to overcome the defects of the hummingbird optimization algorithm; 

secondly, a method based on intelligent optimization algorithm is proposed by designing the double-layer array coding and 

the adaptive function, combined with the improved hummingbird optimization algorithm. A cold chain low-carbon 

logistics path optimization method based on intelligent optimization algorithm is proposed; finally, the superiority and 

robustness of the proposed method are verified by simulation experimental analysis. 

RESULTS: The results show that the proposed method not only improves the optimisation time, but also increases the 

optimisation fitness value. 

CONCLUSION: This paper solves the problem that the optimisation of the green low-carbon logistics path optimisation 

problem is time-consuming and prone to falling into local optimum. 
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1. Introduction

As the consumption capacity of China's residents 

continues to climb, more and more large-scale e-commerce 

platforms layout fresh food retail [1]. Fresh products are 

easy to deteriorate in the transport process, it is necessary to 

take refrigeration and thermal insulation measures to 

transport, but also to meet the customer's time needs [2]. 

The research of scientific and reasonable logistics and 

distribution programme time the pursuit of each logistics 

enterprise, not only can improve customer satisfaction and 

corporate image, but also conducive to reducing distribution 

costs [3]. Therefore, it is very necessary to study the 

optimisation of cold chain low-carbon logistics path [4]. 

Cold chain low-carbon logistics and distribution path 

optimisation is essentially a Vehicle Routing Problem (VRP) 

[5]. The cold chain low-carbon logistics distribution path 

optimisation technique considers all the costs in the cold 

chain low-carbon logistics distribution process on the basis 

of meeting the maximum vehicle load, and solves the cold 

chain low-carbon logistics distribution path optimisation 

model with the minimum total cost based on the constraints 

of customer demand, vehicle load and time window [6]. 

Commonly used logistics path optimisation methods 

include exact optimisation algorithms and heuristic 

algorithms [7]. Logistics distribution methods based on 

exact optimisation algorithms can fall into dimensional 

explosion, making it difficult for the algorithm to be met 

with a satisfactory solution in a short period of time [8]. 

Logistics path optimisation methods based on heuristic 

algorithms converge quickly and are easy to implement, but 

they are also prone to the local optimum problem [9]. 

Literature [10] combines cuckoo algorithm and intelligent 

water droplet algorithm to improve the ability to solve the 

logistics vehicle path planning problem; Literature [11] 

proposes an improved ant colony algorithm for the multi-

warehouse green vehicle planning problem by 

comprehensively considering the cost of economy and 

environmental pollution; Literature [12] introduces a 

pheromone oscillation process to transform the firefly 

algorithm and applies it to the logistics vehicle planning 

problem; Literature [13] proposes a logistics vehicle 

planning problem with time windows based on improved 

particle swarm algorithm considering distribution and 

recovery costs; literature [14] designed a joint adaptive 

large-scale optimization algorithm and solved the time-

dependent logistics vehicle problem under fuzzy demand; 

literature [15] proposed a stochastic logistics and 

distribution vehicle method for multi-centre demand based 

on neighbourhood searcher strategy to improve the cultural 

gene algorithm; literature [16] combined the scanning 

algorithm and improved particle swarm algorithm to 

propose a time-uncertain logistics distribution vehicle path 

optimisation method. Review and collation of related 

literature, although logistics distribution research has 

achieved relatively fruitful results, but there are still 

shortcomings: 1) traditional intelligent optimisation 

algorithms are simple in structure, and can easily fall into 

the local optimum; 2) the current logistics distribution 

model can not comprehensively consider the constraints and 

costs [17]. 

Aiming at the shortcomings of the current logistics 

path optimisation method, this paper proposes a logistics 

path optimisation method based on the improved 

Hummingbird optimisation algorithm considering cold 

chain features and low-carbon features. Firstly, we analyse 

the constraints and costs of low-carbon logistics path 

optimization for cold chain, and construct a logistics path 

optimization model considering cold chain and low-carbon 

factors; then we improve the performance of the 

hummingbird optimization algorithm through two effective 

strategies, and put forward a low-carbon logistics path 

optimization problem for cold chain based on the improved 

hummingbird optimization algorithm. Compared with other 

optimisation algorithms, the proposed improved 

Hummingbird optimisation algorithm shows better 

convergence speed and accuracy in the cold chain low-

carbon logistics path optimisation problem. 

2. Optimisation model for cold chain low-
carbon logistics and distribution routes

According to the characteristics of the cold chain low-

carbon logistics distribution path optimisation model, the 

soft time window-based cold chain low-carbon logistics 

distribution path optimisation model was constructed by 

comprehensively considering the fixed cost of the 

distribution vehicle, the transportation cost, the cost of 

cargo damage arising from the delivery of products to 

consumers, the refrigeration cost of ensuring that the items 

in the vehicle are in a low-temperature environment, the 

carbon emission cost arising from the distribution, and the 

penalty cost [18]. 

Fixed costs 
Fixed costs include salaries of distribution vehicle 

drivers, vehicle depreciation costs, and maintenance and 

upkeep costs [19]. The specific calculations are as follows: 

1

1

m

k

k

C f
=

= (1) 

where
kf denotes the fixed cost of the kth vehicle and 

m is the number of vehicles required for distribution. 

Transport costs 
Transportation cost is the cost incurred by the amount 

of fuel consumed by the distribution vehicle to complete the 

distribution, which is proportional to the distance travelled 

for transportation, and is calculated by the following 

formula: 

2

1 , 0

m n
k

k ij ij

k i j

C c d x
= =

= (2)
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Where n denotes the number of consumers, 1k

ijx =

denotes the kth delivery vehicle from i to j, 0k

ijx = denotes 

the kth delivery vehicle that did not travel from i to j, ijd  

denotes the distance between i and j, and
kc denotes the cost 

per kilometre of the vehicle. 

Cargo damage costs 
Cargo damage costs mainly include the logistics and 

distribution process with the increase in time decay and 

deterioration of the cost of cargo damage and loading and 

unloading cost of cargo damage, its cost and time showing 

exponential changes in the relationship [20], the specific 

calculations are as follows: 

( ) ( )1 2

3 1 1

1 , 0 1 0

1 1
k
ij j

m n m n
a t a Tk k

j j j j

k i j k j

C p Q y e p Q y e
− −

= = = =

= − + −   (3) 

Where
1p denotes the price per unit of distributed

goods,
1a denotes the deterioration rate of goods,

2a denotes 

the deterioration rate of loading and unloading of goods,
k

ijt

is the travelling time of vehicle k from consumer i to 

consumer j, jT  is the unloading time of the distribution

vehicle at consumer j, and jQ denotes the load of the jth

vehicle. 

Refrigeration costs 
Refrigeration costs include those incurred during 

distribution and those incurred during loading and 

unloading [21]. 

4 41 42C C C= + (4) 

41 21

1 , 0

m n
k k

ij ij

k i j

C p x t
= =

= (5) 

42 22

1 0

m n

j

k j

C p T
= =

= (6) 

Where
41C and

42C denote the cost of refrigeration in 

the distribution process and the cost of refrigeration in the 

loading and unloading process respectively,
21p denotes the 

cost of refrigeration per unit of time in the distribution 

process,
k

ijt denotes the travelling time of the kth vehicle 

from consumer i to consumer j, and
22p denotes the cost of

refrigeration per unit of time in the loading and unloading 

process. 

Penalty costs 
Penalty costs are additional costs incurred during the 

delivery process, which are incurred if the delivery vehicle 

does not deliver within the specified time period, including 

waiting costs earlier than the time window and late costs 

later than the time window. Consumer j penalty cost is 

calculated as follows: 

( )

( )

( )
5 0

k

j j

k k

e j j j j j

k

j j j

k k

l j j j j j

k

j j

M t EET

p ET t EET t ET

C j ET t LT

p t LT LT t LLT

M t LLT

 


−  


=  


−  
 

(6) 

where
k

jt denotes the time for delivery vehicle k to 

reach demand point j,
ep denotes the cost of waiting per 

unit of time,
lp denotes the cost of tardiness per unit of 

time, and the acceptable time window for demand node j is

,j jEET LLT   . 

( ) ( )( )5

1 0

max max ,0
m n

k k

e i i i i

k i

C p ET t p t LT
= =

= − + −

(7) 

Cost of carbon emissions 
Carbon emission cost refers to the cold chain low-

carbon logistics and distribution process, vehicle driving 

fuel consumption and consumption of refrigerant will 

produce carbon dioxide, and the fuel consumption is related 

to the vehicle weight and travelling distance [22]. The 

formula for calculating the carbon emission cost of vehicle 

travelling fuel consumption is as follows: 

( )61 1

1 , 0

m n
k

c ij ij ij

k i j

C p eE q d x
= =

=  (8) 

where
cp denotes the price of the carbon tax,

1E

denotes the carbon emissions per kilometre, e  denotes the 

CO2 gas emission factor, and ijq  denotes the amount of

freight transported from vehicle i to j. 

The cost of carbon emissions from refrigeration 

equipment is: 

62 2

1 , 0

m n
k k

c ij ij

k i j

C p eE t x
= =

=  (9) 

where
2E denotes unit consumption. 

The total carbon cost is: 

6 61 62C C C= + (10) 

Modelling 
In summary, the total cost model for cold chain 

distribution path optimisation includes objective function 

and conditional constraints. The cold chain distribution path 

optimisation objective function is designed as follows: 

1 2 3 4 5 6min Z C C C C C C= + + + + + (11) 

Cold chain logistics and distribution vehicle 

constraints: 
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1 1

1, 0, 1,2, ,
n n

k k

ij ji

j j

x x i k m
= =

=  = =  (12) 

Vehicle constraints required for distribution: 

1

0

1 1,2, ,

m
k

j

k

m j
y

j n=

=
= 

=
 (13) 

Where m  indicates the number of vehicles required for 

distribution. 

Consumer constraints on distribution needs: 

1 1

n m
k

j

j k

y n
= =

= (14) 

where n  denotes the number of consumers. 

Maximum load capacity constraints for cold chain 

logistics and distribution vehicles: 

0

n
k

j j M

j

y Q Q
=

 (15) 

Where,
MQ denotes the maximum load capacity of the 

delivery vehicle, and jQ denotes the delivery weight of the 

jth consumer. 

Cold chain logistics and distribution vehicle 

constraints: 

k

j j jEET t LLT  (16) 

3. Improved Hummingbird Optimisation
Algorithm

3.1. Hummingbird Optimisation Algorithm 

Hummingbird optimisation algorithm (HOA) 

algorithm is a stochastic optimisation algorithm that 

simulates the process of honey harvesting by hummingbirds 

[23]. Initially, the algorithm creates multiple hummingbird 

individuals randomly in the search space. The position of 

each individual corresponds to a feasible solution of the 

optimisation problem. The quality of the food source is the 

objective function value, and the best food source is the 

global optimal solution.The whole optimisation process of 

HOA can be divided into two phases: self search and guided 

search. The specific form of the algorithm is as follows: 

(1) Self-search phase

Assume that the size of the hummingbird population is

NP and the dimension in the search space is D . 

 ,1 ,2 ,3 ,, , , ,t t t t t

i i i i i DX x x x x= It is the i th hummingbird

individual in the t th moment. In the self-searching stage, 

hummingbirds can find food sources based on their 

previous experience. When the hummingbird can 

continuously find better food sources (
1t t

i iX X −  ), it 

indicates the correctness of previous experience. Therefore, 

the position of each hummingbird is updated based on the 

previous gradient information: 

1 1( )t t t t

i i i iX X rand X X+ −= +  − (17)

Where
t

iX  and
1t

iX −
denote the position of the i

hummingbird at t  and 1t −  respectively, and rand
denotes a random number in the range[0,1]  . 

When a hummingbird keeps searching but cannot find 

better results (
1t t

i iX X −  ), it means that the 

hummingbird's previous experience is no longer applicable. 

In this case, the hummingbird randomly changes the 

direction of its search. This process is simulated using Levy 

flights, which are important non-Gaussian random walks 

whose random steps obey a large-tailed probability 

distribution. Due to the infinite and rapid growth of the 

variance, the most important feature of this flight pattern is 

the ability to maximise the exploration of space in uncertain 

environments.Levy flight is able to search more efficiently 

than conventional random walks such as Brownian motion. 

Figure 1 shows the two-dimensional motion trajectories of 

Levy flight and Brownian motion over 1000 time steps. 

(a) Levy flight

(b) Brownian motion

Figure 1. Comparison of two random motions 
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As shown in Figure 1, the Levy flight is able to 

produce larger jumps than the Brownian motion, thus 

exploring space more extensively. Therefore, it is more 

suitable for large-scale search. The search process based on 

Levy flight is represented as follows: 

1

0 ( ) ( )t t t t

i i i bestX X X X Levy + = + −  (18)

Where
t

bestX  denotes the global optimal solution at the 

time of t  , 0 0.01 =  denotes the scale factor,  denotes 

the number multiplication, and ( )Levy  is calculated as 

follows: 

1/
( )Levy







= (19) 

where  and  denote two random numbers that obey

Gaussian distributions
2(0, )N   and

2(0, )N 

respectively, where 

1/

( 1)/2

(1 )sin( / 2)
, 1

[(1 ) / 2] 2



 

 
 

  −

  +
= = 

 + 

 (20)

where (z)  denotes the gamma function and the size 

of  is set to 1.5 . 

2) Guided search phase

At this stage, the best current individual hummingbird

is called the territorial bird and the others are called 

followers. This territorial bird patrols up and around its 

territory to prevent other companions from approaching. 

This behaviour can be expressed as: 

, 1 ,T t T t

dX X r + = +  (21) 

Where
,T tX  denotes the position of the territorial bird 

at the time of t  ,
,T tX  is a random number with a value in 

the range of [ 1,1]−  , and   is a step factor, defined as 

follows: 

=0.1 ( )ub lb  − (22) 

where ub  and lb  denote the upper and lower bounds 

of the search space, respectively. 

There are two scenarios for following hummingbird 

movement patterns. Scenario 1: When the territorial bird 

does not detect a threat, the following bird will quickly 

approach its territory: 

, 1 , , ,( )F t F t T t F t

j j jX X rand X MF X+ = +  −  (23) 

where
,F t

jX  is the position of the first -j th  following 

bird at the moment T, and MF  randomly takes the value 1

or 2. 

Scenario 2: When the territorial bird spots the 

following bird, the following bird is driven away and flies 

away in a peripheral direction. During this process, the 

follower bird j  will randomly pick a companion ( k k j  ) 

to follow. If the position of k  is better, j  will move towards 

it, otherwise, it will move away. The above can be 

expressed by the following equation: 

, 1 , , , , ,+ ( )F t F t F t F t F t F t

j j k j k jX X rand X X if fit X fit X+ =  −  (24) 

, 1 , , , , ,( )F t F t F t F t F t F t

j j k j k jX X rand X X if fit X fit X+ = −  −   (25) 

Where, , , , {1,2,3, , 1}j k N − j k
,F t

kfit X

and  are the adaptation values of
,F t

kX  and
,F t

jX

respectively. 

In summary, the complete search process for following 

birds is described as follows: 

t
if PF rand

tPF denotes the probability of a following bird being 

detected by a territorial bird, which can be calculated by Eq:

 

,( )
=

1

F t

jt
rank fit X

PF
N −

(26) 

where
,

( )
F t

j
rank fit X  indicates that the following bird 

J is ranked from smallest to largest among all peers 

according to the fitness value. 

In addition, a boundary control strategy for preventing 

invalid searches can be described as follows: 

, , ,( )t t t

i d i d i dX ub rand ub lb if X lb or X ub= −  −   (27) 

Finally, the HOA uses a greedy strategy for population 

updating, i.e., retains
1t

iX +
only if the fitness value of

1t

iX +
is better than that of

t

iX , otherwise the individual is 

not updated. This scheme is described as follows: 

1 1
1 ( ) ( )t t t

t

t

X if f X f X
X

X otherwise

+ +
+
 



(28) 

The pseudo-code of the HOA algorithm is shown in 

Figure 2: 

Figure 2. Pseudo-code of HOA algorithm 

,F t

jfit X
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3.2. Improvement strategies 

In order to enhance the algorithm's full-domain 

exploration capability and avoid the algorithm from falling 

into local optimum, this paper adopts the good point set 

initialisation strategy [24] and the cardinal leap strategy [25] 

to improve the Hummingbird optimisation algorithm. 

Good point set initialisation strategy 
The quality of the initialised population of HOA 

algorithm affects the solution optimisation speed of the 

algorithm, and an excellent population initialisation strategy 

can make the individuals of the population traverse the 

whole search space more evenly, increase the population 

diversity and improve the convergence speed of the 

algorithm. In order to improve the diversity of the 

population search and make the population evenly 

distributed in the search space, this paper proposes a good 

point set initialisation strategy to improve the initialisation 

of the HOA algorithm. Suppose
sG is a unit cube in s-

dimensional Euclidean space, if
sr G  , for: 

( ) ( )( ) ( )( ) ( )( )1 2, , , ,1
n n n

n sP k r k r k r k k n =     
 

(29)

Its deviation is satisfied: 

( ) ( ) 1,n C r n  −= (30) 

Then ( )nP k is called the set of good points and r is 

the good point. 
( )( )1

n
r k represents the fractional part,  is 

any positive number, ( ),C r   is a constant related only to

,r   , n  denotes the number of points, and r  is:

( ) 2cos 2 ,1r k p k s=   (31) 

where p  is the smallest prime number satisfying

( )3 2p s−  . The initialised population distribution 

graph using the set of good points is shown in Figure 3. 

Figure 3. Distribution of initialised populations in the 
good point set 

Cardinality leapfrog strategy 
In the HOA algorithm, hummingbird individuals can 

increase the diversity of the algorithm by using the Levy 

flight strategy during the population iteration process, but 

with the increase of iteration number, the population 

variability decreases, and the distribution of algorithm 

diversity is limited. To address the above problems, this 

paper proposes the cardinal leap strategy, which makes the 

hummingbird jump out of the local optimum in the self-

search phase and improves the algorithm's ability to find the 

optimum. The mathematical model of the cardinal leap 

strategy is as follows: 

( )1t t

id idX X L + = +  (32) 

where
1t

idX +
 denotes the value of the ith hummingbird

in the dth dimension in the first 1t +  iteration,  is the step

control coefficient(Figure 4), and ( )L   is the Lévy flight

random search path. 

In order to manipulate the step size control of the leaps, 

the cardinality adaptive step size is proposed based on the 

cardinality distribution function,   solving Eq: 

2

max

n

t
f n n

t


  
= +   

  
(33) 

Where, n  denotes the degree of freedom, t  is the 

current number of iterations,
maxt  is the maximum number

of iterations, and ( )nf   is the probability density function

of the chi-square distribution, Eq: 

( ) ( )

1
2

2
1

0
2 2 2

0 0

n
x

n

x
e x

f x n

x

−
−


   =    




(34) 

where ( )2n  is the gamma function, i.e: 

( ) 1

0

xx e dx
+

− − =  (35) 

Figure 4. γ change curve 
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3.3. Improvement of algorithm flow 

According to the HOA algorithm with improved 

optimisation strategy, the flowchart of HOA algorithm 

(HOA based on good point set initialisation strategy and 

chi-square transition, GChiHOA) is shown in Figure 5 with 

the following steps: 

Figure 5. Flowchart of GChiHOA algorithm 

Step 1: Initialise the population position using the good 

point set strategy, set the maximum number of iterations 

and other parameters; 

Step 2: Calculate the fitness value and record the 

current optimal individual; 

Step 3: Improve the Levy flight operator using the 

cardinality leapfrog strategy to perform the self-search 

phase; 

Step 4: Execute the search phase for territorial and 

following birds; 

Step 5: Calculate the fitness value and update the 

optimal individual; 

Step 6: Determine whether the number of iterations 

reaches the maximum number of iterations. If the maximum 

number of iterations is reached, carry out the output of the 

optimal solution and optimal value; otherwise, go to step 3. 

4. A cold chain low carbon logistics path
optimisation method based on CChiHOA
algorithm

4.1. Optimising solutions 

In the cold chain low carbon logistics path 

optimization method based on GChiHOA algorithm, the 

population individuals represent the feasible solution of the 

cold chain low carbon logistics path optimization problem, 

i.e., the feasible path traversing the target distribution nodes;

the optimal individuals represent the optimal solution

obtained from the cold chain low carbon logistics path

optimization problem, i.e., the optimal logistics and

distribution paths; the change of the position of the

population individuals represents the path passing through

the changes of the distribution nodes or the optimization

planning process, and the fitness value corresponds to the

value of the objective function. The change of individual

position of the population represents the change of the path

through the distribution node or the planning optimisation

process, and the fitness value corresponds to the value of

the objective function, and the specific relationship is

shown in Figure 6.

Figure 6. Schematic diagram of the optimised solution
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4.2. Individual information design 

According to the correspondence between the 

GChiHOA algorithm and the problem in Fig. 6, it can be 

seen that in this paper, the population individual position 

indicates the feasible path traversing the target distribution 

node, and the array coding method is used to explain the 

structure of the population individual position, i.e.,

2 dim  , in which the dim dimension denotes the number 

of the distribution node, and the structure of the solution is 

shown in Figure 7. From Figure 7, it can be seen that the 

distribution centre and customer points are discrete points, 

and a two-layer array coding approach is introduced to 

encode the GChiHOA algorithm to solve the cold chain 

low-carbon logistics path optimization problem. The 

position-order coding expression formula is as follows: 

1 2

1 2

, , ,

, , ,

i i int

i

i i in

x x x
X

r r r

 
=  
 

(36) 

Where,
t

iX denotes the location of the ith individual in 

generation t of the GChiHOA algorithm, and
1ir denotes

1 2, , ,i i inr r r  sorted in ascending order, i.e., the 

distribution vehicle path code. 

Figure 7. The solution structure
From Figure 7, it can be seen that the distribution 

centre number dimension 0 and the customer point is

1,2, , N  , and the vehicle returns to the distribution

centre after serving a certain number of customers. 

According to the constraints such as the loading capacity of 

each vehicle, the structure of two groups of solutions is 

given in Figure 7, the first group of solution location 

information is 0.3, 1.9, 3.9, 6.3, 4.1, 5.7, and the 

distribution order information is 1.3, 1.9, 2.0, 3.9, 4.3, 4.8, 

and the distribution node information after the solution is 

discretised is 1, 2, 4, 8, 5, 6, and the distribution order serial 

no, 4, 5, 6, which means that the first car starts from the 

distribution centre and returns to the distribution centre after 

serving the customer nodes 1, 2, 4, 8, 5, 6, and the 

distribution services are carried out by different cars 

without repetition. 

4.3. Adaptation function design 

The individual fitness function is used to analyse the 

constraints of the cold chain low-carbon logistics path 

optimisation problem, and to generate fitness values for 

evaluating the individual strengths and weaknesses of the 

distribution scheme by combining the fixed costs, 

transportation costs, the cost of damage to the product 
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delivered to the consumer, the cost of refrigeration to ensure 

that the items in the vehicle are in a low-temperature 

environment, the cost of carbon emissions generated by the 

distribution, and the cost of penalties. The individual fitness 

function in this paper is specified as: 

1 2 3 4 5 6min Z C C C C C C= + + + + + (37) 

4.4. Methodological steps 

The essence of the cold chain low-carbon logistics path 

optimisation problem is to solve the optimal solution 

problem with multiple constraints and multiple objectives, 

i.e., the cold chain low-carbon logistics and distribution

path optimisation problem based on the soft time window.

The application process of the improved Hummingbird

optimisation algorithm in cold chain low-carbon logistics

path optimisation is shown in Figure 8, and the specific

steps are as follows:

Figure 8. Optimisation of low-carbon logistics paths in 
the cold chain 

Step 1: Initialise the cold chain low carbon logistics 

path optimisation parameters, including the parameters of 

the mathematical model of the problem and the parameters 

of the improved Hummingbird optimisation algorithm. The 

parameters of the cold chain low carbon logistics path 

optimisation model include as well as the relevant 

constraints, and the parameters of the GChiHOA algorithm 

include the population size, the maximum number of 

iterations, and so on. 

Step 2: Select the search population randomly and 

uniformly using the given boundary constraints. 

Step 3: The mapping between population individuals 

to the problem solution is done using the position-order 

array coding approach. 

Step 4: Calculate the fitness value of the individual. 

Step 5: Optimally updating the logistics delivery 

solution individual based on the improved Hummingbird 

optimisation algorithm self search strategy and search 

strategy. 

Step 6: Determine whether the algorithm termination 

conditions are satisfied. If the number of search iterations is 

greater than the maximum number of iterations, the search 

is terminated and the optimal cold chain low-carbon 

logistics path distribution scheme is output; otherwise, 

continue with steps 4 to 6. 

5. Results and analysis

In order to verify the effectiveness of the cold chain 

low carbon path optimisation method based on the 

improved Hummingbird optimisation algorithm, using the 

distribution logistics data of an enterprise, this paper 

selected five analysis algorithms for comparison. MATLAB 

2021a was used to write the programme, and the test 

environment was a Windows 10 system, the processor was 

AMD Ryzen 9 5900HX with Radeon Graphics, and the 

memory was 16.0 GB.The parameters of each algorithm are 

shown in Table 1. Distribution logistics data for 16 

consumers to deliver goods, the distribution centre is (0,0), 

the delivery service departs from the distribution centre at 

5:30, and the consumers are shown in Table 2. 

Table 1 Parameter settings of green low-carbon 
logistics path optimisation algorithm 

arithmetic parameterisation 

LSHADE Memory size H=5 and archive rate H=1.4 

LSA The channel time is set to 10 

NRO PFi = 0.75, Pβ = 0.1, freq = 0.05 

HOA Parameter-free optimisation 

GChiHOA Parameter-free optimisation 
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Table 2 Descriptive table of experimental data 

5.1. Algorithm parameter analysis 

In order to investigate the impact of GChiHOA 

algorithm parameters on the performance of cold chain low 

carbon road logistics path optimisation, this paper analyses 

the population size and the number of iterations of the 

GChiHOA algorithm. 

The effect of different population sizes on the 

performance of the cold chain low carbon road logistics 

path optimisation based on the intelligent optimisation 

algorithm is given in Figure 9. From Figure 9(a), it can be 

seen that the fitness value of the algorithm decreases as the 

population size increases. From Figure 9(b), it can be seen 

that as the population size increases, the elapsed time of the 

algorithm increases. On a comprehensive analysis, the 

population size should take a value of 60.
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(a) Results of the optimal fitness value

(b) Time-consuming results

Figure 9. Effect of population size on the performance of logistics path optimisation methods
The effect of different number of iterations on the 

performance of cold chain low carbon road logistics path 

optimisation based on intelligent optimisation algorithms is 

given in Figure 10. From Figure 10(a), it can be seen that as 

the number of iterations increases, the fitness value of each 

algorithm decreases. From Figure 10(b), it can be seen that 

the elapsed time of each algorithm increases as the number 

of iterations increases.
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(a) Results of the optimal fitness value

(b) Time-consuming results

Figure 10. Impact of the number of iterations on the performance of logistics path optimisation methods

5.2. Analysis of path optimisation results 

Based on the above parameter analysis, this subsection 

presents a comparative analysis of the performance of the 

five compared optimisation algorithms, each of which is run 

20 times, and the specific results are shown in Figures. 11, 

12 and 13. 

The optimisation convergence curves for each 

algorithm are given in Figure 11. From Figure 11, it can be 

seen that the GChiHOA algorithm has the highest 
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convergence accuracy and faster convergence speed; in 

terms of convergence accuracy, the GChiHOA algorithm is 

the best, followed by HOA, NRO, LSHADE, and LSA 

algorithms in that order. 

Figure 11. Iterative convergence curve of cold chain 
low carbon logistics path optimisation based on each 

algorithm 

From Figure 12, it can be seen that the GChiHOA 

algorithm is better than other algorithms in terms of the 

mean value of optimal fitness value for distribution path 

optimisation, and the standard deviation of the fitness value 

is also the smallest, and the robustness is better than other 

algorithms; the optimisation time consumed by the 

GChiHOA algorithm is less than that of other algorithms, 

and the standard deviation of the time consumed is also the 

smallest; the optimised convergence iteration number of the 

GChiHOA algorithm is greater than that of the LSAHDE, 

the NRO, and the HOA However, it is less than LSA 

algorithm, and the variance of optimisation convergence 

iterations is less than other algorithms. 

Figure 12. Comparison of the performance of green low-carbon logistics path optimisation methods based on each 
algorithm

According to the GChiHOA algorithm running 20 

times the optimal results, this section gives the results of the 

optimal distribution scheme with a schematic diagram, the 

specific results are shown in Figures 13 and 14.Figure 13 

gives the results of the optimal distribution scheme for 

logistics based on the GChiHOA algorithm and the HOA 

algorithm. As can be seen from Figure 13, in the GChiHOA 

algorithm, the four-vehicle distribution path through the 

nodes is relatively uniform, taking into full account the total 

cost of distribution; in the HOA algorithm, the four-vehicle

distribution path through the nodes is not uniform, and does

not take into full account the distribution cost calculation. 

(a) Optimisation results of the GChiHOA algorithm

(b) Optimisation results of the HOA algorithm

Figure 13. Cold chain low carbon logistics and 
distribution vehicle routes based on GChiHOA 

algorithm and HOA algorithm 

A schematic diagram of the optimal distribution 

scheme is given in Figure 14. From Figure 14, it can be 

seen that in the GChiHOA algorithm, each vehicle 

travelling path starts from the distribution centre, passes 

through the customer nodes, and finally returns to the 

starting point; Vehicle No. 3 departs and returns to the 

starting point after passing through five points, and then 

there is a departure, and finally returns to the starting point 

again. In the HOA algorithm, vehicle number one and 

vehicle number three distribution paths cross each other and 

are not optimised enough. 
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(a) Optimisation results of the GChiHOA algorithm

(b) Optimisation results of the HOA algorithm

Figure 14. Schematic diagram of cold chain low carbon 
logistics distribution path based on GChiHOA 

algorithm and HOA algorithm 

6. Conclusion

Aiming at the current cold chain low-carbon logistics 

and distribution path optimisation method, which is prone 

to fall into local optimum and takes a long time to optimise, 

this paper proposes a cold chain low-carbon logistics and 

distribution path optimisation method based on the 

improved Hummingbird optimisation algorithm. By 

analysing the characteristics, costs and constraints of the 

cold chain low-carbon logistics distribution path 

optimisation problem, a soft time window-based cold chain 

low-carbon logistics distribution path optimisation model is 

constructed; combining the double-layer array coding 

method and the fitness function, the hummingbird 

optimisation algorithm is improved by using the good point 

set initialisation strategy and the cardinality leap strategy to 

solve the cold chain low-carbon logistics distribution path 

optimisation problem. The results show that the cold chain 

low-carbon logistics path optimisation method proposed in 

this paper can find the optimal scheme of logistics and 

distribution paths in a shorter time, with uniform and 

reasonable node distribution and stable performance. 
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