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Abstract 

The study addresses the optimization of land transportation in the context of vehicle routing, a critical aspect of 
transportation logistics. The specific objectives are to employ various meta-heuristic optimization techniques, including 
Genetic Algorithms (GA), Ant Colony Optimization (ACO), Firefly Algorithm (FA), Particle Swarm Optimization (PSO), 
and Q-Learning reinforcement algorithm, to find the optimal solutions for vehicle routing problems. The primary aim is to 
enhance the efficiency and effectiveness of land transportation systems by minimizing factors such as travel distance or 
time while adhering to constraints. The study evaluates the advantages and limitations of each algorithm and introduces a 
novel-based approach that integrates Q-learning with the FA. The results demonstrate that these meta-heuristic 
optimization techniques offer promising solutions for complex vehicle routing challenges. The integrated Q-learning with 
Firefly Algorithm (iQLFA) emerges as the most successful approach among them, showcasing its potential to significantly 
improve transportation optimization outcomes. 
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1. Introduction

Land transportation plays a pivotal role in our daily lives, 
facilitating the movement of people and goods from one 
location to another. However, the challenges presented by 
growing populations and increasing urbanization have 
given rise to complex issues within the transportation 
sector. These challenges encompass traffic congestion, 
suboptimal routing, insufficient infrastructure, and soaring 
transportation costs. Effectively addressing these issues 
necessitates the strategic planning and management of 
land transportation systems. The optimization of such 
systems, however, proves challenging due to the dynamic 
and intricate nature of the problem. Conventional 
optimization techniques like linear programming and 
mathematical modeling often fall short in providing 
optimal solutions for these multifaceted transportation 
challenges. Thus, there arises a pressing need for 

innovative and efficient techniques capable of delivering 
optimal solutions. 

Meta-heuristic optimization techniques have 
emerged as promising solutions to the intricate problems 
posed by land transportation systems. These techniques 
draw inspiration from principles found in nature, such as 
evolutionary processes, swarm intelligence, and biological 
systems. They offer the potential to provide efficient and 
effective solutions to the intricate issues surrounding land 
transportation. This paper conducts a comprehensive 
comparative study of various meta-heuristic algorithms, 
including ACO [1], GA [2], PSO [3], FA [4], and iQLFA.  

2. Related Work

In a study by [5], the authors proposed a neural 
combinatorial optimization approach for live vehicle 
routing based on Deep Reinforcement Learning (DRL). 
This approach leverages deep neural networks and 
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heuristics. The proposed deep neural network model 
employs DRL as its training paradigm. Model parameters 
are trained using stochastic gradient descent and policy 
gradient methods. The study's findings indicate that, 
within the constraints of limited computation time—a 
critical factor in online routing services—the proposed 
technique can outperform traditional mathematical 
programming-based solutions. The work presented in [6] 
focuses on implementing a context based, improved ACO 
method for designing tourist routes. The study employs a 
modified ACO approach grounded in game theory and 
featuring entropy-weighted learning to enhance the 
precision of optimal solutions for the Traveling Salesman 
Problem (TSP) using ACO and MMAS. The problem is 
segmented into smaller subsets to expedite ACO 
convergence, pheromone updating is utilized to boost 
optimization capacity, and information is shared among 
various subpopulations via a coevolutionary approach to 
prevent ACO from converging to a local optimum. The 
resulting route is the optimal choice, characterized by its 
short length and minimal discomfort through picturesque 
areas. This approach emphasizes the ability to adapt to 
new settings through independent learning via trial-and-
error. The article in [7] presents a FA heuristic approach 
to solve the TSP. The FA is implemented with 
modifications in its parameters to suite for solving TSP. 
The results of the experimentation provide better results 
when compared to the implementation of TSP instance 
with Ant Colony Optimization, GA and Simulated 
Annealing. A comparison study between two deep 
learning methods, Q-learning and SARSA, is presented in 
[8]. The paper introduces the Traveling Salesman 
Problem with Refueling (TSPwR). While Q-learning 
eliminates the need for prior information in path planning, 
it does exhibit drawbacks, including delayed convergence 
and limited generalizability. This led to the emergence of 
combined Q-learning with other meta-heuristic-based 
algorithms. In [9], a Q-learning-based PSO method is 
proposed for path planning in mobile robots. A 
comparative study of various meta-heuristic algorithms in 
TSP is conducted [10]. The results indicate that the basic 
FA, when implemented with minor parametric 
adjustments, outperforms ACO, SA, and GA in most 
scenarios. The optimization model in [11] presents an 
improved ant colony algorithm model based on a path 
segmentation strategy. The models demonstrate the 
capability to efficiently handle various traffic 
characteristics and yield superior optimization results. The 
study aims to enhance the algorithm's performance in 
terms of crossing and modification. The enhanced GA 
exhibits improved performance, affirming the 
effectiveness of the proposed enhancement. A hybrid 
model proposed in [12] uses attention encoder and Long 
Short-Term Memory (LSTM) network decoder to 
overcome the coordination failure between the vehicles 
when state-less attention-based decoder is used. The 
hybrid model which was experimented on min-max 
Capacitated Vehicle Routing Problem (mmCVRP) 
improves the solution quality and computational 

efficiency over the baseline methods. Research work in 
[13] is also a hybrid approach called AC2OptGA. This
method uses a combination of three algorithms namely
modified ACO, 2-opt edge exchange and GA. The
combination of these algorithms exploits the strengths in
both global and local searches. The proposed approach
evaluated on TSPLIB benchmarks for large instances
shows better results than M-GELS, a best-known current
approach for solving multiple TSP. In [14], current
developments in GA, PSO, and ACO for emergency
transportation are examined. The paper introduces a novel
hybrid Biogeography-Based Optimization (BBO)
technique, which outperforms various cutting-edge
algorithms. Other approaches to addressing transportation
problems involve machine learning and meta-heuristics.
In [15], the TSP is solved using K-means clustering
combined with the FA, with experimental results showing
superiority over other algorithms from the literature. A
similar approach is taken in [16], which utilizes the Whale
Optimization Algorithm in conjunction with a K-means
clustering model to solve an unclustered TSP. This
method achieves an optimal solution with the best
iterative cost. [17] proposes an end-to-end learning model
for coordinated routing of multiple vehicles, capable of
handling both heterogeneous and homogeneous fleet
scenarios. When compared to existing learning strategies
for routing challenges, the proposed model efficiently
manages the coordination of multiple vehicles and
produces results comparable to robust optimization
heuristic approaches. The work presented in [18] the
integration of PSO and Q-learning for swarm mobile
robots to find the ideal path in an unfamiliar environment.
The results of the study were found to perform better than
Q-learning and PSO when considered alone. The article in
[19] studies the solving of TSP with the application GA.
The parameters in GA are identified and set in advance.
Also, the crossover and mutation steps in GA are
improved to enhance the performance of the problem
solving. The optimization model in [20] uses FA and k-
means clustering to identify the minimum tour length
among a given set of nodes. The methodology consists of
three major steps namely clustering the nodes using k-
means clustering, finding the optimal path in each of the
cluster using FA, and reconnecting all the clusters and
returning the path between them. The experiments of this
proposed methodology showed promising results
compared to the other existing work.

3. Methodology

3.1. Overview 

Reinforcement Learning (RL) is a machine learning 
paradigm focused on learning through interactions with 
the environment to maximize cumulative rewards. Key 
components of RL include the agent, environment, states, 
actions, rewards, and a policy that maps states to actions. 
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RL algorithms learn by iteratively estimating value 
functions or policies and updating them based on 
observed rewards. The goal of RL is to teach the agent an 
optimal strategy that maximizes expected cumulative 
rewards. This is typically achieved through an iterative 
process of exploration and exploitation. The agent 
explores the environment by taking different actions, 
learning from observed rewards and state transitions. It 
gradually refines its policy based on learned information 
to exploit actions that yield higher rewards. 

DRL extends RL by combining RL with deep neural 
networks to handle high-dimensional state spaces and 
complex decision-making problems. DRL can also be 
applied in the context of metaheuristic optimization 
algorithms. Metaheuristics are iterative optimization 
methods used to solve complex optimization problems 
where traditional exact methods may be infeasible or 
inefficient. DRL can enhance metaheuristics by 
leveraging its ability to learn from experience and make 
adaptive decisions. DRL can be combined with traditional 
metaheuristic techniques to create hybrid algorithms. This 
involves using the metaheuristic as a search framework 
and incorporating DRL components to enhance specific 
aspects of the algorithm. In other words, DRL can be used 
to learn effective local search operators or guide the 
selection of search strategies within the metaheuristic. 
The integration of DRL with metaheuristic optimization 
algorithms aims to improve the effectiveness, efficiency, 
and adaptability of metaheuristics by incorporating 
learning and adaptive decision-making capabilities. By 
harnessing the power of DRL, these hybrid approaches 
have the potential to tackle complex optimization 
problems more efficiently and discover higher-quality 
solutions. 

3.2 Dataset Description 

The transportation dataset employed in this study was 
synthetically generated for experimental purposes. It 
comprises two fundamental components: a list 
enumerating the indices corresponding to the sources and 
destinations, alongside a Numpy array representing the 
distances between each conceivable source-destination 
pair. The shape of the distance matrix adheres to the 
dimensions of the transportation problem at hand, 
designated as (num_sources, num_destinations). Here, 
"num_sources" denotes the count of sources, while 
"num_destinations" signifies the number of destinations. 
Each individual element within the matrix encapsulates 
the distance, whether it pertains to actual physical 
distance, cost, or time, linking a specific source to its 
associated destination.  

It's noteworthy to mention that in practical scenarios, 
the data sources for transportation problems typically 
include real-world data such as geographical coordinates, 
road networks, or historical transportation records. These 
data sources undergo preprocessing steps to ensure 
accuracy and suitability for optimization algorithms. 

Preprocessing might involve tasks like data cleaning, 
transforming geographical coordinates into distance 
metrics, and ensuring data consistency. However, for the 
purposes of this study, a simplified approach of random 
data generation was adopted to create a representative 
dataset for experimentation.  

The synthetic distance matrix, encompassing cost or 
distance values for all source-destination pairs, serves as 
the foundational input for solving transportation 
problems. The primary aim is to ascertain the optimal 
allocation of goods from sources to destinations, all the 
while accounting for various constraints, including 
capacity limitations and the imperative to minimize 
expenses. This distance matrix constitutes an essential 
component for optimization algorithms, furnishing them 
with precise cost or distance metrics that guide the 
iterative search for solutions converging towards the 
pinnacle of efficiency and cost-effectiveness. 

3.3 Algorithms 

Ant Colony Optimization. The transportation problem 
can be resolved using the metaheuristic optimization 
approach termed ACO. It is a nature-inspired algorithm 
that emulates the foraging behavior of ants. In the context 
of solving the transportation problem, ACO consists of 
several phases. In the construction phase, artificial ants 
build solutions by selecting routes based on pheromone 
levels and heuristics, closely mimicking the behavior of 
real ants in finding paths. After each construction phase, 
pheromone levels are updated to reinforce the 
attractiveness of good routes and diminish poor ones. This 
pheromone update process guides subsequent ant 
exploration. The algorithm iterates through multiple 
cycles, and the best solution found during these iterations 
is retained as the output, representing an optimized 
transportation plan.  

Genetic Algorithm. The transportation problem can be 
handled through the metaheuristic optimization 
methodology referred to as the GA. In the context of GA 
applied to the transportation problem, the methodology 
begins with the initialization of an initial population of 
potential vehicle routes, which are randomly generated 
representations of solutions. Subsequently, the algorithm 
employs a crossover mechanism, where routes from the 
population are combined, strategically selecting crossover 
points to ensure the newly generated routes remain 
feasible solutions for the transportation problem. To 
introduce diversity and explore different solution spaces, 
a mutation operation is applied, causing some routes to 
undergo alterations in a manner that preserves feasibility. 
Finally, routes are selected for the next generation based 
on their fitness, determined by factors such as the total 
travel distance and their adherence to the problem's 
constraints. This iterative process continues, with new 
generations of routes evolving over time, ultimately 
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converging toward optimal or near-optimal solutions for 
the transportation problem. 

Firefly Algorithm. Transport problems can be overcome 
using the Firefly methodology, a metaheuristic 
optimization technique. The FA draws inspiration from 
the flashing behavior of fireflies in nature and is adapted 
to solve optimization problems such as the transportation 
problem. The algorithm starts by initializing fireflies 
randomly on the solution space, where each firefly 
represents a potential vehicle route. Fireflies move toward 
brighter fireflies, and the brightness of a firefly is 
determined by an objective function, typically aimed at 
minimizing travel distances. Some fireflies explore by 
moving randomly to escape local optima. Multiple 
iterations are performed to allow the algorithm to 
converge, and the position of the brightest firefly found 
across these iterations represents the best solution to the 
transportation problem. 

Particle Swarm Optimization. The transportation 
problem is one of many optimization challenges to which 
PSO has been applied. It is a population-based 
optimization technique. In the context of addressing the 
transportation problem, the algorithm begins with the 
initialization of particles, each representing a potential 
vehicle route. Particles adjust their velocities based on 
their historical best position and the best position within 
their neighborhood, simulating social interactions and 
individual learning. These velocity adjustments guide 
particles in updating their positions within the solution 
space. Multiple iterations are performed to allow particles 
to explore the search space, and the best solution found 
throughout these iterations is retained as the final result. 

Q learning. Q-Learning is a reinforcement learning 
algorithm employed to solve complex decision-making 
problems, including the transportation problem. The 
algorithm operates based on a framework involving states 
and actions. States correspond to the current state of the 
transportation problem (e.g., vehicle locations), and 
actions represent potential moves (e.g., selecting a 
customer to serve). Rewards are assigned to actions based 
on their quality concerning the current state. Q-values, 
representing the expected cumulative rewards for taking 
specific actions from particular states, are updated 
iteratively using the Q-learning algorithm. As the 
algorithm progresses, a policy is learned from the Q-
values, mapping states to actions, ultimately guiding the 
agent (e.g., a vehicle) to make optimal decisions within 
the transportation problem to maximize cumulative 
rewards. 

Integrated Q learning With Firefly Algorithm. The 
integrated approach of combining Q-learning with the FA 
for solving the transportation problem involves 
representing the problem as a Markov Decision Process to 
facilitate this integration, where states represent relevant 
information about the system, actions correspond to 
routing decisions, and rewards quantify the quality of 

decisions. During each iteration of the FA, fitness 
evaluation and attractiveness calculations guide fireflies 
(representing vehicles) toward attractive routes. 
Simultaneously, Q-learning operates within states to 
select actions and update a Q-table based on observed 
rewards and state transitions (using Bellman equation). 
Through iterative refinement, the integrated algorithm 
develops a policy that maps states to actions, ultimately 
determining the best feasible policy to optimize the 
transportation problem, leveraging the exploration 
capabilities of the FA and adaptive decision-making of Q-
learning for efficient and high-quality solutions. 

4. Results and Discussion

The performance evaluation of these optimization 
algorithms in the context of solving transportation 
problems was conducted using fitness function values as a 
crucial metric for assessing the quality of solutions. The 
fitness function employed was tailored to the specific 
objectives and constraints of the transportation problem 
under consideration. The choice of fitness function is 
paramount, as it directly influences the algorithms' ability 
to optimize the problem effectively. 

In the comparative study of optimization algorithms 
for solving transportation problems, ACO demonstrated 
its competitiveness in achieving high-quality solutions, 
especially in scenarios where routing efficiency and 
constraint adherence were critical. PSO exhibited robust 
performance, balancing multiple objectives like 
minimizing travel distance and vehicle utilization due to 
its swarm intelligence-based approach. Q-learning, a 
reinforcement learning technique, showed promise by 
learning optimal policies over time despite potentially 
requiring more iterations. GA reliably delivered quality 
solutions, particularly for large-scale transportation 
problems, thanks to its population-based exploration. FA 
excelled in exploratory scenarios with its unique approach 
inspired by fireflies' behavior.  

Notably, the novel approach of iQLFA exhibited 
outstanding performance compared to traditional 
methods. However, the standout performer was the 
iQLFA, which seamlessly merged the FA’s exploration 
capabilities with Q-learning's adaptive decision-making. 
This integration not only generated high-quality and 
feasible solutions but also did so with significantly 
reduced computational time, potentially revolutionizing 
the field of transportation optimization. 

Table 1 illustrates the overall distance of the meta-
heuristic methods utilized in this study. The sign indicates 
that the optimization problem is a minimization problem. 
The magnitude indicates the distance measure. Q learning 
algorithm costs 32.90851368, FA costs 39.43798039, 
PSO costs 76.3181706, GA costs 29.51109282, ACO 
costs 40.76108214 while the novel method that is 
proposed in the study, iQLFA costs 22.18895968 which is 
the least of all. 
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Figure 1. The comparison plot infers that the iQLFA 
has obtained less cost when compared with other meta-
heuristic algorithms. 

 

Table 1. Total distance values of the various 
optimization algorithms used in this study. 

Optimization Algorithms Total Distance 

Q learning -32.90851368 

FA -39.43798039 
 

PSO -76.3681706 

GA -29.51109282 

ACO -40.76108214 

iQLFA -22.18895968 

 
Figure 1. Comparison plot for optimization algorithm 

5. Conclusion and Future Work 

This research has presented an innovative approach, 
iQLFA, to address transportation optimization problems. 
A comprehensive comparative study was conducted, 
evaluating the strengths and limitations of various 
optimization algorithms, including ACO, PSO, Q-
learning, GA, FA, and the proposed iQLFA. The 
assessment was based on fitness function values that 
accurately reflect the optimization goals and constraints of 
transportation problems. 

The findings of this study clearly demonstrate the 
superior performance of the iQLFA over other meta-
heuristic optimization techniques. Specifically, the novel 
approach resulted in the lowest cost among all algorithms 
considered. These results underline the potential of this 
integrated approach for addressing complex transportation 
optimization problems. 

Overall, this research contributes to advancing the 
field of transportation optimization, offering more 
efficient and effective solutions to transportation planning 
and management challenges while reducing associated 
costs and complexities. 

5.1 Future Work 

This study opens up several avenues for further research 
and improvement. Future research can explore the 
application of the proposed approach to different real-time 
datasets, including various modes of transportation such 
as air, sea, space, and cable networks. Additionally, 
metaheuristic algorithms can be employed for 
hyperparameter tuning of machine learning and deep 
learning models. This optimization process can fine-tune 
model parameters, potentially enhancing overall 
performance and efficiency. It presents an opportunity to 
comprehensively evaluate system performance and assess 
alternative models for improved fitness value and 
efficiency. 

Furthermore, investigating the scalability of iQLFA 
for larger transportation networks is essential. Scalability 
considerations are crucial for assessing the applicability of 
the approach to real-world scenarios with extensive 
transportation systems. Additionally, examining the 
parallelization of the algorithm can further enhance its 
efficiency and suitability for larger-scale problems. 

In conclusion, this research provides a solid 
foundation for future advancements in transportation 
optimization. Subsequent studies can build upon the 
success of the integrated approach to address even more 
complex and extensive transportation challenges, 
contributing to the ongoing improvement of transportation 
planning and management systems. 
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