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Abstract 

INTRODUCTION: The complexity of the power network, changes in weather conditions, diverse geographical locations, 
and holiday activities comprehensively affect the normal operation of power loads. Power load changes have 
characteristics such as non stationarity, randomness, seasonality, and high volatility. Therefore, how to construct accurate 
short-term power load forecasting models has become the key to the normal operation and maintenance of power. 
OBJECTIVES: Accurate short-term power load forecasting helps to arrange power consumption planning, optimize power 
usage and largely reduce power system losses and operating costs. 
METHODS: A hybrid decomposition-optimization-integration load forecasting method is proposed to address the 
problems of low accuracy of current short-term power load forecasting methods. 
RESULTS: The original power load time series is decomposed using the complete ensemble empirical modal 
decomposition method, while the correlation of power load influencing factors is analysed using Pearson correlation 
coefficients. The seagull optimisation algorithm is overcome to fall into local optimality by using the random adaptive 
non-linear adjustment strategy of manipulated variables and the differential variational Levy flight strategy, which 
improves the search efficiency of the algorithm. Then, the The gated cyclic unit hidden layer parameters are optimised by 
the improved seagull optimisation algorithm to construct a short-term electricity load forecasting model.The effectiveness 
of the proposed method is verified by simulation experimental analysis. The results show that the proposed method has 
improved the accuracy of the forecasting model. 
CONCLUSION: The CEEMD method is used to decompose the original load time series, which improves the accuracy of 
the measurement model. The GRU prediction model based on improved SOA optimization not only has better prediction 
accuracy than other prediction models, but also consumes the least amount of time compared to other prediction models. 
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1. Introduction

As China's economic level improves, industrial
electricity consumption soars, electricity demand grows 
exponentially year by year, and the amount and complexity 
of electricity generated on the supply side of electricity also 
increases proportionally, which in turn makes the 

management and dispatch of complex and huge power 
systems increasingly tricky [1]. How to balance the power 
supply and demand between the grid and users is related to 
the safe, stable and economic operation of the grid, which is 
a very important aspect of power system management and 
has become a key concern for the power sector. In the 
power industry, power load forecasting not only provides 
useful basic data information for the power management 
system, but also can effectively guarantee the operation and 
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maintenance of the power system [2]. According to the time 
factor, power system load forecasting is generally divided 
into ultra-short-term forecasting, short-term forecasting, 
medium-term forecasting and long-term forecasting [3]. 
Short-term forecasts are mainly used for generating units to 
be normal and to develop dispatch plans for hours or weeks 
for the economic allocation of the grid. Accurate short-term 
telephone forecasts can largely reduce power system losses 
and operating costs [4]. Therefore, it is an unavoidable task 
and an urgent and important research topic to construct a 
reasonable and highly accurate short-term power load 
forecasting model [5]. 

The complexity of the power network, changes in 
weather conditions, geographic location, and holiday 
activities combine to affect the normal operation of the 
electric load, which has the characteristics of non-
smoothness, randomness, seasonality and high volatility, so 
how to build an accurate short-term electric load forecasting 
model becomes the key to the normal operation and 
maintenance of electricity [6]. Currently, short-term power 
load forecasting methods mainly include traditional 
forecasting methods, modern forecasting methods and 
combined forecasting methods [7]. Traditional forecasting 
methods include trend analysis [8], regression analysis [9] 
and time series analysis [10]. The trend analysis method is 
to judge the future load development trend by observing the 
curve fluctuation, but it does not consider the collection 
errors in the process and there are large differences; the 
regression analysis method is applied to electricity load 
forecasting and will be affected by different data stages; the 
time series analysis method is easily affected by the 
changes of random factors and the load forecasting results 
may be unsatisfactory. Modern forecasting methods include 
artificial neural networks [11], grey theory forecasting 
method [12-13], fuzzy forecasting method [14], etc. The 
literature [11] used an improved aspen whisker search 
algorithm to optimise the BP neural network to build a 
short-term load forecasting model for power plants, which 
reduced the forecasting error and provided a basis for 
optimal load allocation of power plant units; the literature 
[12] used a grey model to build a short-term load
forecasting model, and the forecasting accuracy was
obviously improved; the literature [13] combined the grey
model and BP neural network to further improve the
forecasting of a single model The accuracy of a single
model was further improved by combining grey model and
BP neural network. From the above literature, it can be seen
that both traditional and modern forecasting methods lack
generalization and do not satisfy all kinds of electric load
forecasting problems simultaneously. As the electricity load
presents non-smooth, random and high fluctuation
characteristics, the current single modern forecasting
method is less stable and cannot meet the accuracy demand,
and the combined forecasting method combines multiple
models, which can avoid the problems existing in a single
model [15]. The literature [16] used the aspen whisker
search algorithm to optimise the support vector machine
parameters to enhance the training performance of the

prediction model and improve the accuracy of electricity 
load forecasting; the literature [17] analysed the electricity 
load historical data by Kmeans algorithm and used BP 
neural network to construct the electricity load forecasting 
model, and the results showed that the combined 
forecasting method was better than the single forecasting 
method; the literature [18] proposed a flower pollination 
based algorithm to optimize the data method of variational 
modal decomposition, and considering the load information 
of historical moments and the load information of future 
moments, the two-way LSTM neural network was used to 
construct the electric load prediction model, and the 
simulation experiment results showed that the proposed 
method improved the accuracy of electric load prediction. 

With the rapid development of computing technology, 
artificial intelligence algorithms continue to break through 
the limitation, especially neural networks with their 
powerful multivariate mapping capability are widely used 
in non-linear prediction problems and can obtain better 
prediction accuracy [19]. Recurrent neural network (RNN) 
[20] can update the current neuron state by using the
previous moment's neuron state, solving the analysis of time
series data prediction. Long short term memory (LSTM)
[21], as an improved network of RNN, solves the problems
caused by gradient explosion and gradient disappearance.
Gated recurrent unit neural (GRU) [22] simplifies the
network structure by adding gate structure control on the
basis of LSTM, which can better process and mine the time
series.GRU uses back propagation algorithm to update the
network parameters, which is easy to fall into local
optimum and makes the power load prediction model less
stable.

In order to overcome the problem of GRU falling into 
local optimum, better learn the non-linearity, randomness 
and volatility of electricity load data, and further improve 
the short-term electricity load forecasting accuracy, this 
paper adopts a hybrid decomposition-optimization-
integration forecasting model. (1) decompose the original 
electricity price data using the complete ensemble empirical 
modal decomposition method to improve the prediction 
model's extraction of the change pattern of the load 
sequence; (2) analyse the relevance of the factors 
influencing electricity load using Pearson correlation 
coefficients and screen the factors with strong relevance to 
electricity load as inputs to the prediction model; (3) 
combine the manipulated variable stochastic adaptive 
nonlinear adjustment strategy and the differential variance 
Levy flight strategy, the seagull optimization algorithm is 
improved, and a short-term electricity load forecasting 
method based on the improved optimization algorithm to 
optimize the gated recurrent unit neural network is also 
proposed; (4) the electricity load data are used to verify that 
the method in this paper has higher forecasting accuracy. 
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2.CEEMD-based time series
decomposition of electrical loads

In order to better find the laws of power load time 
series and improve the accuracy of short-term load 
prediction, this paper adopts the fully ensemble empirical 
mode decomposition method to pre-process the predicted 
time series [23]. The classical empirical mode 
decomposition (EMD) method is a time signal 
decomposition algorithm, which is mainly widely used for 
non-smooth non-linear time series signals, but there are 
cases of confounding of eigenmodal functions. Ensemble 
EMD (EEMD) is an improved method of EMD algorithm, 
in which uniformly distributed white noise is added to the 
load time series several times to overcome the problem of 
mode overlap, but there is a problem of white noise residual. 
In order to solve the above problems, this paper chooses 
Complementary EEMD (CEEMD) to analyse and process 
the power load time series [24]. CEEMD makes the white 
noise residual smaller and the computational cost lower by 
adding two mutually opposite white noises to the load time 
series and decomposing them using the EEMD method [24]. 
The main process is as follows. 

1) Add the positive and negative opposite white noise
sequences ( )i tξ +  and ( )i tξ −  to the original load time 

series ( )y t  to obtain the additive noise time series, i.e.

( ) ( ) ( )
( ) ( ) ( )

i i

i i

Y t y t t

Y t y t t

ξ

ξ

+ +

− −

 = +


= +
(1) 

where ( )iY t+  and ( )iY t−  are the time series after 
adding positive and negative white noise, respectively. 

2) Determine the upper and lower envelope sequences
of ( )iY t+  and ( )iY t−  using cubic spline interpolation to 
obtain the mean upper and lower envelope sequences of

( )iY t+  and ( )iY t− ( )1m t+  and ( )1m t−  , and the time 

series to be decomposed ( )1h t+  and ( )1h t−  are calculated 
as follows 

( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

i

i

h t Y t m t

h t Y t m t

+ + +

− − −

 = −


= −
(2) 

3) Decompose the time series ( )1h t+  and ( )1h t−  using 
the EMD decomposition method to obtain the first 
eigenmode functions ( )1imf t+  and ( )1imf t−  , and then 

subtract the eigenmode functions using ( )iY t+ and ( )iY t−

to obtain the new signal series ( )ir t+ and ( )ir t−  , 
calculated as follows 

( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

i

i

r t Y t imf t

r t Y t imf t

+ + +

− − −

 = −


= −
(3) 

4) Repeat step 3) to obtain a number of eigenmodal
function components and a residual component for ( )iY t+

and ( )iY t−  , respectively. 

( ) ( ) ( )

( ) ( ) ( )

1

1

J

i j
j

J

i j
j

y t imf t res t

y t imf t res t

+ + +

=

− − −

=

 = +


 = +


∑

∑
(4) 

where J  is the number of eigenmodal functions, and

( )res t+  and ( )res t−  are the residuals of the positive and
negative noise series decomposition, respectively. 

(5) Each eigenmode function component and residual
component of ( )iY t+  and ( )iY t−  are averaged to obtain 
the final eigenmode component and residual component of 
the original load time series ( )y t  . The final objective
function is given by 

( ) ( ) ( )
1

J

j
j

t res t imf tχ
=

= +∑ (5) 

where ( )res t  is the average sequence of the residual
components of the positive and negative additive noise 
sequence decomposition, and ( )jimf t  denotes the average 
sequence of the jth eigenmodal component of the positive 
and negative additive noise sequence decomposition. 

3. Analysis of the factors influencing the
electrical load 

In order to establish a more accurate short-term model 
of electric load, this paper uses the load history data of a 
customer in a certain region to analyse the correlation of the 
factors influencing electric load. The Pearson correlation 
coefficient is used to analyse the correlation of the factors 
influencing the electricity load, which is calculated as 
follows. 

( ) ( )cov ,
,

X Y

X Y
X Yρ

σ σ
= (6) 

Where ( )cov ,X Y  is the covariance between the

variables X  andY  , is the standard deviation of the variable

Xσ X  , Yσ  is the standard deviation of the variableY  , 
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and ( ),X Yρ  is the Pearson correlation coefficient

between the variables X  andY  , with values ranging from
[ ]11− ，  . When , the variables 0ρ = X  and Y  are

uncorrelated; when , the variables 0 1ρ< ≤ X  andY  are

positively correlated; when 1 0ρ− ≤ <  , the variables X
andY  are negatively correlated. 

In order to analyse the historical load internal 
correlation, this section selects a number of days before the 
number of relevant moments and the load at a number of 
moments before that day as internal influences for Pearson 
correlation analysis. Assuming that the load at point t on 
day i is ( ),P i t  , the loads at six moments ahead on day i

are represented by ( ), 1P i t −  , ( ), 2P i t −  , ( ), 3P i t −  ,

( ), 4P i t −  , ( ), 5P i t −  and ( ), 6P i t −  respectively, and
the loads at moment t one day ahead, moment t two days 
ahead, moment t three days ahead and moment t one week 
ahead on day i are represented by ( )1,P i t−  , ( )2,P i t−  ,

( )3,P i t−  and ( )7,P i t−  respectively. The heat map for

correlation analysis between ( ),P i t  and the selected 10
historical loads is shown in Figure 1. 

Figure 1. Correlation analysis of load at the tth point 
on day i and historical time 

As can be seen from Figure 1, ( ), 1P i t −  ,

( ), 2P i t −  , ( ), 3P i t −  , and ( ), 4P i t − ( ),P i t  have a
strong correlation, indicating that the load at time t of the 
day is similar to the load at the adjacent time with less 
fluctuation; ( )1,P i t−  , ( )2,P i t−  , ( )3,P i t−  ,

( )7,P i t−  and ( ),P i t  have a strong correlation,
indicating that the load at time t of the day is similar to the 

load at time t of the adjacent day and the load at time t of 
the adjacent week. 

4. Gated cyclic cell prediction network
based on improved seagull optimization
algorithm

Since GRU neural networks suffer from the problem of 
falling into local optima, this paper uses an improved 
seagull optimization algorithm to search for the optimal 
structure of GRU neural network predictions. 

4.1. Gated recurrent unit neural networks 

The GRU network is an advanced version of the 
LSTM with a simpler structure, fewer parameters, and also 
solves the gradient vanishing problem of RNNs, and GRU 
also introduces a gate structure, consisting of update and 
reset gates. The model is as follows. 

Figure 2 The GRU network 

1( )t hr t xr t rr W h W x bσ −= + + (7) 

~ ~ ~

~

1tanh( ( * ) )t t t t
r h xh h

h W r h W x b−= + + (8)

where tr  is the reset gate, which determines how much

of 1th −  's history memory is retained. 
~

th is the latest
information of the candidate hidden layer at the current 
moment. 1th − , th  is the hidden layer information for the

cell state at 1t −  and t  respectively, ~
r h

W  , ~
xh

W  , xrW  , hrW

are the weights, and rb  and ~
h

b  are the biases.

1( )t hz t xz t zz W h W x bσ −= + + (9) 
~

1(1 )* *t t t t th z h z h−= − + (10)
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where hzW  and xzW  are the weights and zb  is the bias.

tz is the forgetting gate, which is used to combine the input 

hidden layer information 1th −  from the previous moment,

with the candidate hidden layer information
~

th  from the 
current moment, to get the output cell hidden layer 
information th  . When 0tz =  , the hidden layer directly 

outputs the previous hidden layer information 1th −  , when

1tz =  , the candidate hidden layer directly outputs the 

current hidden layer information th  .

( )t yt ty W hσ=  (11) 

Where ytW  indicates the weight between the current 

hidden layer output th  and the final output layer.

4.2 Improved seagull optimization algorithm 

The Seagull optimization algorithm (SOA) [25] is an 
optimization algorithm inspired by animal behaviour 
proposed by Gaurav Dhiman in 2018.SOA simulates the 
migratory behaviour and aggressive behaviour of seagulls. 
Migratory behaviour is the behaviour of gulls approaching 
towards the optimal gull position while avoiding collision 
and searching for prey throughout space, mainly simulating 
the exploration process of the algorithm. Attack behaviour 
is the process by which gulls approach their prey using 
spiral moving flight manoeuvres, mainly simulating the 
algorithm's exploitation process. The inspired behaviour of 
the seagull optimisation algorithm is shown specifically in 
Figure 3. 

Figure 3 Seagull optimization algorithm heuristic behavior 

(1) Basic seagull optimization algorithm
1) Migration behaviour
During migration, the location renewal of gull

populations satisfies three main conditions: avoiding 
collisions between gulls, approaching towards the best 
individual gull, and location renewal through the best 
individual gull. 

To avoid a collision between two gulls, calculate the 
position of the individual gull after it has moved using the 
variable A. 

( )s sA t= ×C P (12) 

Where, sC  represents the position of the gull searching

for individuals that do not collide with other individuals, sP
represents the current position of the gull individual, t
represents the number of iterations, and variable A 

represents the movement behaviour of the individual, 
calculated as follows. 

( )c c iterationA f t f Max= − ⋅ (13) 

Where cf  is used to control the frequency of the

manipulation variable A, usually set to 2. iterationMax
indicates the maximum number of iterations. The value of 
variable A decreases from 2 to 0 as the number of iterations 
increases. 

After avoiding collisions between neighbouring 
individuals, the search individual moves towards the 
optimal individual, as expressed by the following equation. 

( )s bs sB= × −M P P (14) 
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where sM  represents the new position of the 
individual gull after it has moved towards the optimal gull 
individual bsP  . B is a random number that is primarily 
used to balance the exploration and exploitation capabilities 
of the algorithm and is calculated as follows. 

 22B A rand= ⋅ ⋅  (15) 

where rand  is a random number with a value 
between 0 and 1. 

Finally, the equation for the distance the search 
individual position moves relative to the optimal individual 
is as follows. 

 s s s= +D C M  (16) 

where sD  indicates the distance between the searched 
individual and the optimal individual. 

2) Aggressive behaviour 
The process of developing an optimised algorithm for 

simulating attack behaviour makes use of historical 
experience during the search process. The gull attacking 
prey process is mastered by wings and weight in the 
direction of the attack. In general, the gull attacking prey 
process is generally simulated using a spiral movement 
action, which is calculated as follows. 

 ( ) ( ) ( )1s s bst x y z t+ = × × × +P D P  (17) 

 ( )cosx r k= ×  (18) 

 ( )siny r k= ×  (19) 

 z r k= ×  (20) 

 kvr u e= ×  (21) 

Where ( )1s t +P  indicates the individual seagull after 
the position update. r denotes the radius of rotation of the 
spiral, k  denotes a random number between 0 and  2π u
and v  denotes the constant that defines the spiral action and
e  is the base of the natural logarithm. The gull optimisation 
algorithm uses a random method to generate the population 
and updates the gull population position by transforming the 
global search and local search process to ultimately search 
for the best individuals. 

(2) Stochastic adaptive non-linear adjustment strategy 
for manipulated variables 

The main role of the classical SOA algorithm 
manipulation variable A  is to regulate the balancing 
algorithm global exploration and local exploitation process. 
When 1A ≥  , the gull population will expand the collision 
avoidance distance, meaning that a wider space will be 
explored in order to globally explore better search locations, 
while when 1A <  , the gull population will reduce the lead 
distance, meaning that a more precise area will be exploited 
in order to locally search for better prey locations. The 
manipulation variable A  of the classical SOA algorithm 

decreases linearly from 2 to 0 as the number of iterations 
increases. At the beginning of the algorithm iteration, the 
manipulation variable A  has a larger value, making the 
individual gull move a larger distance, which is beneficial 
for global exploration; at the end of the algorithm iteration, 
the manipulation variable A  has a smaller value, making 
the individual gull move a smaller distance, which is 
beneficial for local exploitation. In realistic optimisation 
problems, the algorithm search process is more responsible 
and the linear adjustment strategy of manipulated variables 
cannot be adapted to realistic problems. Therefore, in order 
to adapt to complex optimisation problems and better 
balance global exploration with local exploitation 
capabilities, a stochastic adaptive non-linear adjustment 
strategy is proposed in this paper. This strategy combines 
stochastic distribution methods, adaptive adjustment 
methods and non-linear decreasing methods to improve the 
calculation of the manipulated variables A  , which are 
calculated as follows. 

 1 sin
2ada

iteration

tA f
Max

π  
= ⋅ − ⋅     

 (22) 

 ( )min max minc ada c c cf f M f f randnσ− = + ⋅ − + ⋅
 (24) 

 max

min

f fM
f f

−
=

−
 (25) 

 ( )( )2
E f E fσ  = − 
 
   (26) 

Where, A  is the SOA algorithm ground manipulation 
variable. c adaf − is the stochastic adaptive used to control 
the frequency, the calculation formula (24) is mainly 
divided into the adaptive part and the random distribution 
part [26]. mincf and maxcf  denote the minimum and 
maximum values of the control frequency, which generally 
take the values of 0 and 2. The adaptive part uses the value 
of the fitness function to calculate the control frequency, as 
shown in Equation (25), where M  is the control frequency 
adaptive parameter, and maxf  , minf  and f  denote the 
maximum, minimum and average fitness values, 
respectively; when M  is larger and c adaf −  is larger at the 
beginning of the iteration, the algorithm performs a global 
exploration search; when M  is smaller and c adaf −  is 
smaller at the end of the iteration, the algorithm performs a 
local exploration search. The random distribution is 
calculated using the variance of the normalised fitness value, 
whereσ  is the variance, randn  is the random number that 
follows a normal distribution, and f  represents the 
normalised fitness value. 

(3) Differential variant Levy flight strategy 
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The classical SOA algorithm attack behaviour mainly 
simulates local mining capabilities. For complex 
multimodal optimization problems, the SOA algorithm 
suffers from the problem of falling into a local optimum in 
the late iteration. Therefore, in order to increase the 
diversity in the late search stage and avoid the population 
falling into local optimum, this paper uses the differential 

variational Levy flight strategy to improve the SOA 
algorithm attack behaviour by improving the specific 
formulation as follows. 

 ( ) ( ) ( )1s s DE Levyt x y z t−+ = × × × +P D P  (27)

 ( ) ( ) ( )( ) ( ) ( )1 2DE Levy bs s r rt t randn Levy t randn t t− = + ⋅ + ⋅ −P P P P P  (28)

where ( )DE Levy t−P  denotes the distance travelled 
based on the differential variance Levy flight strategy. 

( )bs tP denotes the optimal individual gull position. 

( )( )sLevy tP denotes the current individual Levy flight 
distance. Levy flights have small flight steps over long 
periods of time, occasionally producing longer flight steps 
to increase flight diversity. the Levy flight model is 
specifically calculated as shown in (29). randn denotes 
random numbers that obey a normal distribution. 

( ) ( )1 2r rt t−P P denotes the difference variable between 

individuals ( )1r tP  and ( )2r tP  , where 1 2r r s≠ ≠  . 
The Levy flight model is specifically calculated as 

follows. 

 ( )( ) ( ) ( )( )s bs sLevy t s t tα= ⋅ ⋅ −P P P  (29) 

where α  represents the scale factor and takes the 
value [ 1,1]−  ; s  is the random wandering step, calculated 
as follows. 

 1
us

v β
=  (30) 

 
( ) ( )
( )( ) ( )

1/

1 /2

1 sin 2
1 2 2u

β

β

β π β
σ

β β −

 Γ + ⋅ ⋅
=  

Γ + ⋅ ⋅  
 (31) 

 1vσ =  (32) 

Where u  and v  are parameters that follow a normal 

distribution, i.e. ( )20, uu N σ  , ( )20, vv N σ  , ( )Γ ⋅  

are gamma functions. 

4.3. GRU prediction method based on 
improved SOA algorithm 

The GRU neural network prediction model based on 
the Improved SOA (ISOA) algorithm is mainly divided into 
a data module, an optimisation weight module and a gated 
recurrent unit neural network module (GRU module). The 
GRU module uses the ISOA optimisation parameters to 
decode into weights, thus building the GRU network; it then 
uses the incoming training data from the data module to 

train the GRU; the optimal use of the test set for prediction, 
to obtain the error between the expected value and the 
actual output value. 

(1) Coding method 
In order to improve the accuracy of the GRU neural 

network, the parameters of the GRU neural network are 
optimized using the improved ISOA algorithm, i.e., the 
weights and biases of the optimized neural network, and the 
parameters are encoded using the real number encoding 
method. 

(2) Adaptability function 
In order to accurately reflect the strengths and 

weaknesses of the trained GRU network, the root mean 
square error (RMSE) is used as the fitness function in this 
paper and is calculated as follows. 

 ( )2

1

ˆ
M

i i
i

RMSE y y M
=

 = − 
 
∑  (33) 

Where M  is the number of observed samples, ˆiy  and

iy  represent the true and predicted values of the sample 
respectively. i  

(3) ISOA-GRU method 
According to the coding method and the fitness 

function, the steps of the GRU neural network prediction 
method based on the improved seagull optimization 
algorithm are as follows. 

Step 1: Pre-processing and normalization of the raw 
data into a test set and a training set. 

Step 2: The improved SOA algorithm encodes the 
weights and bias parameters of the GRU neural network, 
while initializing the algorithm parameters such as 
population parameters and number of iterations; calculating 
the value of the fitness function according to equation (33). 

Step 3: Calculate the manipulated variable A using the 
stochastic adaptive non-linear adjustment strategy and 
calculate the distance between the search individual and the 
optimal individual according to equation (16) sD  ; 

Step 4: Calculate the distance travelled using the 
differential variance Levy strategy DE Levy−P  ; 

Step 5: Update the individual gulls, calculate the value 
of the fitness function and update the global optimal 
solution and the individual optimal solution. 

Step 6: Determine whether the termination condition is 
satisfied. If it is satisfied, exit the iteration, output the 
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optimal network parameters and execute step 7, otherwise 
continue with step 3. 

Step 7: decoding the parameters of the ISOA-based 
optimization network and obtaining the weights and biases 
of the GRU neural network. 

Step 8: Build the ISOA-GRU network, train the 
network with the training set to get the prediction model, 
input the test set into the prediction model and get the 
prediction results. 

5. Short-term load forecasting method for 
electricity based on improved SOA 
algorithm to optimize GRU 

Applying the ISOA-GRU forecasting method proposed 
in this paper to the short-term electricity load forecasting 
problem. 

Step 1: Decompose the original power load time series 
using the Complete Ensemble Empirical Modal 
Decomposition method (CEEMD) to obtain 1K +  
components{ }1, , , , ,i kimf imf imf Res   ; 

Step 2: For the decomposed components, combine the 
inputs of external factors affecting the variation of 
electricity load and construct a GRU neural network based 
on ISOA optimization to build a prediction model. 
Optimisation of the parameters of the GRU neural network 
using the improved SOA algorithm to select the optimal 
GRU neural network parameters. 

Step 3: Input the test set of each component to the 
component prediction model, output to obtain the prediction 
results of each component, and obtain the final total 
prediction results by superposition reconstruction. 

Step 4: The performance of the prediction model 
proposed in this paper is analysed by comparing the 
evaluation metrics with other methods. 

6. Experimental simulation analysis 

In order to verify the performance of the short-term 
electricity load forecasting method proposed in this paper, 
the forecasting of the proposed algorithm is analysed and 

discussed in this section by selecting a customer electricity 
load dataset from a region in South America. 

6.1. Simulation environment setup 

This paper was programmed using MATLAB 2021a 
with a test environment of Windows 10, a processor of 
AMD Ryzen 9 5900HX with Radeon Graphics and 16.0 GB 
of RAM.The experimental dataset was selected from the 
electricity load dataset of a customer in a region of South 
America from May 1 to June 29, 2018 data [19] as the 
training set of the prediction model, and the 24h electricity 
price on June 30, 2018 as the test set of the prediction 
model. The specific parameter settings of the electricity 
load forecasting algorithm proposed in this paper and the 
comparison forecasting method are shown in Table 1. 
CEEMD-ISOA-GRU uses the CEEMD decomposition 
method [24], and its parameters are set as follows: the 
number of white noise added is 40, and the standard 
deviation is taken as 0.1; EMD-ISOA-GRU uses the EMD 
decomposition method; the number of optimization 
iterations of the SOA and ISOA algorithms is set as 50. 

 

Figure 4. Raw data on electrical loads

Table 1 Power load forecasting methods parameter settings 

Predictive models 
Decomposition 
algorithm 

Prediction algorithm parameter setting 

LSTM None 
The number of hidden layer nodes is 50 and Adam optimally adjusts the 
weights 

GRU None 
The number of hidden layer nodes is 50 and Adam optimally adjusts the 
weights 

SOA-GRU None The number of hidden layer nodes is 50 and the SOA population is 50 
ISOA-GRU None The number of cryptospheric nodes is 50 and the ISOA population is 50 
EMD-ISOA-GRU EMD The number of cryptospheric nodes is 50 and the ISOA population is 50 
CEEMD-ISOA- CEEMD The number of cryptospheric nodes is 50 and the ISOA population is 50 
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Predictive models 
Decomposition 
algorithm 

Prediction algorithm parameter setting 

GRU 

6.2. Evaluation indicators 

In order to fairly analyse the forecasting performance 
of each forecasting model, this paper uses the mean 
absolute error (MAE), root mean square error (RMSE), and 
mean absolute percentage error (MAPE), where MAE and 
MAPE are calculated as follows. 

1

1 ˆ
M

i i
i

MAE y y
M =

= −∑ (34) 

1

ˆ1 M
i i

i i

y yMAPE
M y=

−
= ∑ (35) 

6.3. Analysis of simulation experiments 

In order to improve the accuracy of the ISOA-GRU 
forecasting model, this paper uses the CEEMD algorithm to 
decompose the original electricity load time series, and the 
decomposed electricity price series by the CEEMD 
algorithm is given in Figure 5. As can be seen from Figure 
5, the volatility of the electricity load data is better 
decomposed by using the CEEMD algorithm for 
decomposition. 

Figure 5 Sequence of electrical loads after 
decomposition by the CEEMD algorithm 

In order to verify the effectiveness of the model 
proposed in this paper, CEEMD-ISOA-GRU was compared 
with the other five models, and the load prediction results 

and relative prediction errors of each model are shown in 
Figure 10 and Figure 11. By comparing the prediction 
results in Figure 6(a) and (b), the prediction results of GRU 
are closer to the true values, thus indicating that the 
prediction performance of GRU neural network is better 
than that of LSTM; by comparing the prediction results in 
Figure 6(b), (c) and (d), the prediction results of GRU 
neural network based on ISOA optimization are closer to 
the true values, thus indicating that the prediction 
performance of ISOA-GRU neural network better than the 
other two models; comparing the prediction results in 
Figure 6(d), (e) and (f), the CEEMD power load sequence 
decomposition has improved the model accuracy to a 
certain extent. 
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(b) GRU 

(c) SOA-GRU 
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Figure 6 Comparison of the real value of the 
electricity load with the results of the forecasts based 

on each method 
From Figure 7, it can be seen that the relative error 

between the prediction results of the CEEMD-ISOA-GRU 
model and the true value is smaller at 4h, 12h~13h, 
18h~19h and larger at 15h, 24h. the relative error of the 
prediction of the EEMD-ISOA-GRU model performs worse 
at 1~10h, 13h, 15h, 24h, the relative error of the ISOA-
GRU model relative error performed worse at 4~5h, 13h, 
15h, 19h, the SOA-GRU model performed worse at 3h, 9h, 
18h, 20h, 23h~24h, the GRU neural network's relative error 
was larger at 2h~3h, 11h~13h, 15h, 17h, 20h~24h, the 

LSTM neural network's relative error was larger at 9h, 
11h~12h and 14h~24h. In summary, the CEEMD-ISOA-
GRU model has the smallest prediction error overall. 

Figure 7 Relative error of short-term forecasts by 
method 

In order to effectively compare the forecasting 
effectiveness of each model, the mean values of MAE, 
RMSE, MAPE and forecasting time (Time) for 10 
independent runs of each model were counted. The 
prediction results of each model are given in Table 2. As 
shown in Table 2, in terms of MAE, RMSE and MAPE 
metrics, CEEMD-ISOA-GRU has the best performance, 
followed by EEMD-ISOA-GRU; in terms of Time metrics, 
ISOA-GRU has the best performance, mainly because the 
improved SOA algorithm is more efficient than the original 
algorithm in terms of optimisation, and the decomposition 
makes the prediction model take more time to compute. The 
CEEMD-ISOA-GRU MAE, RMSE and MAPE values are 
0.0242, 0.0279 and 20.44% respectively, and the prediction 
time is 4.37e-03 seconds, with high accuracy and real-time 
performance to meet the prediction demand. 

In terms of MAE, RMSE, MAPE, and Time metrics, 
CEEMD-ISOA-GRU had the best performance, followed 
by CEEMDAN-GWO-DELM; in terms of MAE and RMSE, 
IGWO-DELM had the worst results; in terms of MAPE, 
CEEMDAN-LSSVM had the worst results; and in terms of 
prediction time, CEEMDAN The MAE, RMSE and MAPE 
values of CEEMDAN-IGWO-DELM were 3.21, 4.30 and 
21.46%, respectively, and the prediction time was 4.37e-05 
seconds, which is high accuracy and good real-time 
performance. 

(d) ISOA-GRU 

0 5 10 15 20 25 
Time / h 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 
/  

 k W
 

Truth value 
ISOA-GRU 

P
ow
e
r 
l
oa
d 

(e) EMD-ISOA-GRU 
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(f) CEEMD-ISOA-GRU 
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Table 2. Comparison of 10 predictions across models 

No. Algorithms MAE RMSE MAPE/% Time/s 
1 LSTM 0.0668 0.0779 33.01 2.32e-02 
2 GRU 0.0626 0.0758 30.96 8.63e-03 
3 SOA-GRU 0.0494 0.0582 29.32 4.79e-03 
4 ISOA-GRU 0.0428 0.0497 28.02 1.17e-03 
5 EMD-ISOA-GRU 0.0409 0.0447 30.02 6.57e-03 
6 CEEMD-ISOA-GRU 0.0242 0.0279 20.44 4.37e-03 

7. Conclusion

In order to further improve the accuracy of the short-
term load forecasting method for electricity, this paper 
proposes a short-term load forecasting method based on an 
improved optimisation algorithm to optimise gated 
recurrent unit neural networks through a hybrid 
decomposition-optimisation-integration forecasting
framework. The method decomposes the original load time 
series using a complete ensemble empirical modal 
decomposition method; uses Pearson correlation 
coefficients to correlate the factors influencing the 
electricity load; adopts a random adaptive non-linear 
adjustment strategy for manipulated variables and a 
differential variational Levy flight strategy to enhance the 
population diversity of the original SOA algorithm, improve 
the optimization-seeking accuracy, and improve the 
algorithm's generalized optimization-seeking capability; 
uses the The improved SOA algorithm is used to optimize 
the gated recurrent unit neural network and construct a 
short-term load forecasting method. Through simulation, 
the following conclusions are drawn. 

(1) The CEEMD method was used to decompose the
original load time series, which improved the accuracy of 
the measurement model. 

(2) The GRU forecasting model based on improved
SOA optimisation is not only better than other forecasting 
models in terms of forecasting accuracy, but also less costly 
than other forecasting models. 

The prediction model proposed in this paper does not 
perform well in some moments and a heterogeneous 
prediction model based on decomposition-optimisation-
integration is the next research focus. 
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