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Abstract 

INTRODUCTION: At present, the communication between measuring data and network topology in the distribution 
system cannot be accurately established. Therefore, deep neural networks were utilized to learn the mapping relationship 
between the measurement data and network topology, achieving topology structure discrimination under different working 
conditions. 
OBJECTIVES: This study aims to establish a machine learning-based Intelligent Distribution Network (IDN) online 
topology recognition model to address the limited measurement equipment in distribution networks and improve the 
accuracy and efficiency of network topology recognition. 
METHODS: First, light GBM was used for feature selection to reduce computational complexity and improve learning 
efficiency. Then, a DNN model was constructed for topological identification and enhances the model scalability through 
incremental and transfer learning mechanisms. In addition, the Cross-Validation Grid Search Algorithm (GSA) was used 
to optimize the hyperparameters to ensure that the model can achieve the optimal performance on different data sets. 
Finally, a new intelligent distribution network identification model (Intelligent Distribution Electricity Network 
Identification System, IDENIS) was constructed. 
RESULTS: The study was experimentally verified on the distribution system of IEEE 33 and PG&E 69. The experimental 
results showed that the accuracy of the DNN-based model reached 0.9817 on the test set, while the accuracy after feature 
selection only decreased by 1.3%, and the features decreased by 81.8%. In the PG&E 69 node system, the features were 
reduced by 85.5%, while the identification accuracy was decreased by only 0.51%. These results demonstrated that the 
proposed method maintained high identification accuracy while reducing the computational resource consumption. 
CONCLUSION: Its efficient computing speed fully meets the real-time requirements in practical applications. This paper 
provides new ideas and methods for achieving intelligent distribution network topology recognition of high proportion 
distributed power sources. 
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1. Introduction

Electricity is currently the most widely used secondary
energy source. However, its production still relies mainly on 
fossil fuel combustion. The development of smart grids has 
become a necessary path for the energy and power industry 
to improve the reliability and economy of the power grid to 
achieve large-scale access, consumption, and transmission 
of clean energy such as wind and electricity [1-2]. Deep 
Neural Network (DNN) is an effective machine learning 
method that can extract complex patterns from massive data 
and has strong adaptability and generalization ability [3-4]. 
DNN can excavate the nonlinear correlations between 
various operating states and influencing factors in 
distribution networks, providing important support for 
real-time identification of distribution networks [5-6]. The 
network topology of the distribution network may undergo 
dynamic changes due to factors such as equipment failures, 
maintenance work, and changes in energy demand. Network 
topology refers to the connections between the nodes and 
links in the network. Feature selection can not only reduce 
the computational complexity by reducing irrelevant or 
redundant features, but also improve the predictive 
performance and generalization ability of the model. Joint 
training is the simultaneous optimization of parameters for 
multiple related tasks or multiple models during training. 
The molecular features are used for automatic extraction and 
analysis. At present, it is impossible to accurately establish 
the correlation between measured data and network 
topology in most distribution network systems. In this study, 
DNN is used to learn the mapping relationship between 
measured data and network topology, realizing the 
topological structure identification under different working 
conditions. This experiment aims to provide new technical 
means for the operation and management of Intelligent 
Distribution Network (IDN) to further improve the 
operation efficiency and security of the power system. 

The research mainly includes four parts. Firstly, an 
overview of the research background is provided, and a 
summary of the research in the relevant field is provided. 
Then, the establishment of an IDN identification system for 
DNN is elaborated. Secondly, experimental verification is 
conducted on the adaptive ability and other performance of 
the IDN identification system for DNN. Finally, a summary 
and outlook are provided for the entire study. 

2. Related works

The distribution network topology identification
system is an important tool for modern power operation and 
development. As the recognition framework of IDN 
develops and advances, more and more scholars are 
beginning to apply machine learning algorithms to various 
systems. DNN is also widely used in various fields. 

Yin L et al. proposed a three-state energy consumer 
model to promote flexible scheduling of renewable energy. 
Then, an economic intelligent power generating controlling 
structure was designed to make the traditional multi-time 

scale structure replaced. The economic intelligent power 
generation control allowed consumers of three states of 
energy to enter and exit freely, improving economic 
dispatch’s efficiency. In addition, a scalable adaptive 
dynamic programming means was put forward. This 
adaptive dynamic programming could match the entry and 
exit characteristics of three state energy consumers and had 
fine algorithmic accuracy and computational speed, while 
making network redundancy in adaptive dynamic 
programming reduced [7]. Lee Rd et al. conducted a survey 
on delivering systems, using neural enhancing technology 
for achieving quick response time et al. This paper 
introduced some composition of the content transferring 
systems, emphasized difficulties, using neural enhancing 
models as countermeasures [8]. Yang A et al. developed a 
multitasking DNN for automatic extraction of molecular 
features and integrated tree like Long Short-Term Memory 
(LSTM) with multiple feedforward neural networks for 
correlation analysis of multiple features. Molecular features 
were encoded, calculated, and extracted in the molecular 
tree diagram without the need for manual user operation or 
preliminary molecular descriptor calculation. The proposed 
multi-task DNN was trained using both joint training and 
alternative training methods, which could capture the 
relevant information and commonalities between multiple 
target characteristics [9]. Alizadeh Bidgoli M et al. proposed 
a system for the energy management of microgrids. First, 
each microgrid used historical data to predict the load 
demand of users. Then, the cooperating game means was 
utilized to achieve microgrid’s scheduling and energy 
trading. A predicting model called deep learning Artificial 
Neural Network (ANN) was established using ANN and 
rough neural water cycle algorithm to predict uncertain 
parameters [10]. Kumari P et al. proposed a new hybrid 
deep learning model, LSTM-CNN, for hourly global level 
radiation (Global Horizontal Irradiance, GHI) prediction. 
Spatiotemporal features were modeled by integrating LSTM 
and Convolutional Neural Network (CNN). First, the 
proposed hybrid model used LSTM to extract temporal 
features, and then used CNN to extract spatial features from 
the correlation matrices of multiple variables at the target 
and its adjacent locations [11]. 

Xu Z et al. proposed a recognition method using 
transferring terminal unit measurement results to ensure that 
the topology of the managing system was consistent with 
the actual topology of the distributing network. It expressed 
the topology recognition problem as a minimizing problem. 
Adding variables to unavailable phase angles in 
minimization problems could lead to nonlinearity and 
non-convexity. Asynchronous sampling time could lead to 
sampling errors when surveying power injection fluctuations 
[12]. Distribution network monitoring may improve service 
levels by reporting the cause of fault events and informing 
the nature of remedial measures. Jiang X et al. proposed a 
new structural similarity measure applied to relevant power 
quality waveforms, which inferred the cause of faults from 
substation current data using a very small amount of 
historical fault data. This method improved classification 
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accuracy compared with similar technologies [13]. Zhang W 
et al. proposed a fast error locating and isolating method for 
distributing networks. Three major techniques were 
introduced. They included a distribution network phase 
divider with permanent magnet operation structure, a phase 
selector based on transient current characteristics, and a 
temporary and permanent fault identification method based 
on power frequency voltage characteristics. These proposed 
strategies could avoid secondary impacts on upstream 
switches and power outages in upstream sections during 
permanent faults and shorten fault handling time [14]. Chen 
Y et al. proposed a fault localization method based on 
equivalent admittance distortion rate. The equivalent 
admittance distortion rate was obtained by measuring the 
equivalent admittance before and after the fault. A phase 
having the highest equivalent admittance distorting rate was 
treated as the faulty one. A feeder having the highest 
distorting rate was treated as the faulty one. A segment 
having the highest distorting rate was treated as the faulty 
one [15]. Dua G S et al. proposed a new method for 
detecting configurations by obtaining and processing 
real-time measurement values of optimized microwave 
measurement units. The placement of microwave 
measurement units was formulated based on many working 
configurations of this distributing network. Distribution 
network configuration recognition was solved by obtaining 
measurement data from nodes [16]. 

In summary, the identification of IDN occupies a core 
position in the operation of the power system. Traditional 
identification methods are mainly based on fixed 
mathematical models. Faced with the dynamic changes in 
the network topology of the distribution network, it is 
difficult for traditional identification methods to cope with 
the complexity and dynamism of the distribution network. 
This leads to the inability to accurately capture and establish 
the communication between measurement data and network 
topology in the distribution system. As deep learning 
technology develops, DNN has indicated significant 
advantages in handling nonlinear problems. Faced with 
topology discrimination problems under different operating 
conditions, DNN is used to explore the mapping relationship 
between measurement data and network topology. This is 
crucial for further research on IDN identification systems 
based on DNN. 

3. DNN-based online topology
identification system for distribution
networks and grid searching algorithm for
cross-validating

A machine learning-based IDN network topology 
recognition model is established based on these 
measurement and operational characteristics of the 
distributing network. The specific implementation steps are 
discussed in detail. Firstly, the data used in this experiment 
are analyzed. Second, an online identification method for 
network topology based on Light Gradient Boosting 
Machine-Gradient Boosting Decision Tree (Light GBM) is 
studied considering the limited measurement equipment in 
the distribution network. 

3.1 DNN-based online topology identification 
system for distribution networks 

Light GBM is an efficient and lightweight Gradient 
Boosting Decision Tree (GBDT). These two new data 
processing algorithms proposed in this study, GOSS and 
EFB, can significantly reduce computational complexity and 
improve learning efficiency while ensuring model accuracy. 
They are suitable for distributed power systems with 
massive and high feature dimensions, such as large 
distribution networks [17-18]. Light GBM, a 
histogram-based decision tree algorithm, is used to 
discretize continuous features into discrete histogram 
features, thus reducing the storage space and computational 
complexity of the data. This discretization approach can 
reduce the complexity of feature processing and enable 
better handling of high-dimensional sparse data. A sampling 
method called Gradient-based One-Side Sampling (GOSS) 
and a feature bundling method of Exclusive Feature 
Bundling (EFB) are used to make the model efficient and 
vertically parallelized computing when training. This speeds 
up the training of the model, which is especially effective 
when dealing with large-scale datasets. Conventional 
gradient lift tree algorithms are grown by layer. Light GBM 
uses a growth strategy called leaf-wise. The leaf-wise 
growth strategy selects the current optimal leaf node to split 
each time, which can find the direction where the loss 
function decreases fastest faster, thus accelerating the 
training of the model. On this basis, GOSS is proposed, 
which utilizes sampled data to model training without all 
samples. The second is based on mutually exclusive feature 
binding, which constrains multiple attributes to find the 
optimal solution, thus avoiding searching for each attribute 
separately. This method can greatly improve the model’s 
learning effectiveness and make computing difficulty 
reduced while maintaining its accuracy. This study adopts 
machine learning methods to study the topology recognition 
of distribution networks from two aspects: offline learning 
and online application. Figure 1 is a topology identification 
framework based on machine learning. 
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Figure 1. A topology identification framework based on machine learning 

In Figure 1, the number of topologies for a given 
distribution network to function properly is determined. 
Various measuring devices are installed at certain key points. 
Each sampling point contains a set of time-domain 
measurement data for the operational variables, represented 
by colored solid lines to refer to the current network 
connectivity. In offline learning, a large amount of 
time-domain segmented measurement data with different 
topological structures are collected and used as training 
samples. On this basis, the original observation features are 
first selected for feature selection. The most efficient feature 
subset is selected. The corresponding topological structure is 
used as the output. On this basis, iterative optimization is 
carried out on the constructed model. In online applications, 
the cross-sectional measurement features under unknown 
topology are input into the trained model to obtain the 
corresponding network structure. The initialization of the 
gradient boosting decision tree algorithm is represented by 
formula (1). 

0
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= ∑    (1)

In formula (1), ( , )iL y c  is the loss function. For
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(2). 
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In formula (2), for 1.2.....j J= , the decision tree is 
represented by formula (3). 
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In formula (3), the updated network structure is 
represented by formula (4). 
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The obtained regression tree is represented by formula 
(5). 
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   (5) 
The output equation of ANN neurons is represented by 

formula (6). 
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Light GBM is used for feature selection. DNN is used 
for distribution network topology identification. Figure 2 
shows the DNN structure. 
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Figure 2. Schematic diagram of DNN structure 

In Figure 2, the input feature values in the network are 
taken as the input parameters of the network. The number of 
network nodes is taken as the type of network structure. The 
ReLU function is chosen as the excitation function of the 
neural network to effectively solve the gradient vanishing 
and improve the computing efficiency of the algorithm. The 
output layer is activated using the standardized indicator 
function Softmax. For the input-output relationship in neural 
network learning, the i th hiding layer neuron’s input is 
represented by formula (7). 

1

M

i ij j i
j

net x bω
=

= +∑
   (7) 

The i th hiding layer neuron’s output is represented by 
formula (8). 

( ) ( )i i ij j io net x bφ φ ω= = +
   (8) 

The k th hiding layer neuron’s input is represented by 
formula (9). 
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The k th hiding layer neuron’s output is represented 
by formula (10). 

1 1
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The adjusting direction of weight is represented by 
formula (11) as the negative gradient of the objective 
function. 

( , )
ij

ij

L E Oω η
ω

∂
= −

∂


   (11) 
The updating rule is represented by formula (12). 

ij ij ijω ω ω←− +
   (12) 

On this basis, the forward transmission signal and the 
backward transmission error are iterated repeatedly until the 
network parameters and loss function tend to a series of 
stable constants. 

3.2 Cross-validation grid search algorithm 

In machine learning, hyperparameter optimization is 
the process of setting an optimal set of hyperparameters. 
The hyperparameter optimization is used for controlling the 
algorithmic learning and adjusting other parameters [19-20]. 
The best hyperparameter tuple obtained can make the prior 
loss function minimized in known data, thereby obtaining 
the most accurate prediction results. When establishing 
DNN, the quantity of layers and neurons in the network is 
first determined. Other hyperparameters are then set to make 
the algorithmic learning controlled. The hyperparameters of 
the network can be obtained using a Grid Search Algorithm 
(GSA) based on cross-validating. Each parameter’s value is 
determined, and a GSA parameter is used. Figure 3 is a 
schematic diagram of GSA. 
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Figure 3. Schematic diagram of parameter grid searching 

In Figure 3, each parameter’s potential discrete values 
are arranged and combined to construct a parameter grid. 
There are three possible values for parameter A, four 
possible values for parameter B, and three possible values 

for parameter C. Therefore, there are a total of 36 parameter 
combinations for the parameter grid. For model performance 
evaluation, a 5-fold cross-validation method is used, and 
Figure 4 shows its principle. 

DNA model

1S 2S 3S 4S 5S

iP

1 2 3 4 5( , , , , )iS Average S S S S S=

Figure 4. 5-fold cross-validation principle 

In Figure 4, the dataset is randomly divided into 5 
equal parts. One of the data is selected as the validation set 
without repetition each time. The remaining data are used as 
the training set, resulting in five pairs of datasets. The 
performance score of the learning model is obtained by 
using the allocated dataset for training and validation. The 
performance score of the parameter combination is the 

average score of the five sets. A new method for identifying 
unknown topological structures is proposed. This method 
includes two aspects: first, utilizing the variance between 
samples for unknown topological identification, and second, 
incremental learning. Figure 5 shows a positional topology 
processing mechanism based on minimum variance. 
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In Figure 5, the identification samples and the variance 
of each training set are first calculated, followed by 
calculating the minimum variance and comparing them. 
When the sample variance > the minimum variance, the 
sample corresponds to a certain topology in the training set 
and is identified with DNN. When the sample variance <= 
the minimum variance, the sample corresponds to an 
unknown topology. Measurement samples are collected 
from unknown topology structures and annotated. Based on 
this, existing deep learning networks are learned to update 
the network topology structure. It is possible to promptly 
discover previously overlooked or newly generated network 
operating topologies by adopting the processing mechanism. 
The existing DNN is continuously revised and improved 
through an incremental learning mechanism, dynamically 
updating the topology knowledge base. This applies to IDNs 
with flexible and ever-changing topology and constantly 
emerging new operating scenarios. The minimum-maximum 
normalization method is selected for data standardization, 
and its transformation function is represented by formula 
(13). 
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i i
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f ff
f f

−
=

−
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In formula (13), max
if  and min

if refer to feature 

points’ maximum and minimum values, respectively. if  is 

the feature’s initial value. if


 is the standard characteristic
value. The definition of DNN is represented by formula 
(14). 
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The cross entropy in DNN is represented by formula 
(15). 

( , ) ( ) log ( )
x

H p q p x q x= −∑
   (15) 

In formula (15), p  is the probability distribution. q  
is the actual output. The research introduces the incremental 
learning based on the semi-supervised paradigm to increase 
the scalability of the IDN topology identification system 
based on DNN. This mechanism allows the model to learn 
and adapt to new network topologies in real-time at runtime 
by utilizing partially labeled data in the form of pseudo 
supervision. In addition, transfer learning is used to pre-train 
models on similar but smaller networks and reuse these 
pre-trained knowledge to initialize model training on larger 
and more complex networks. The knowledge learned from 
an environment is used to help with the learning tasks in a 
new environment. This improves the training efficiency and 
convergence speed of the model on the new network. 
Meanwhile, the adaptability of the model is enhanced to the 
identification accuracy of the new network topology, thus 
further enhancing the scalability and practicability of the 
system. Besides, the model is integrated into the existing 
power system management infrastructure. Then, it is 
necessary to develop the development data universal 
interface to ensure that the model can receive and process 
the measurement data from the existing system. Finally, an 
IDENIS model that combines Light GBM, DNN, and GSA 
is constructed. Light GBM is responsible for feature 
selection. The improved DNN is responsible for the 
topological recognition model. GSA is used to optimize the 
hyperparameters of DNN. 

The performance of the model may be affected under 
conditions of imbalanced data. If certain topological 
structures are not adequately represented in the training set, 
the model may have difficulty accurately identifying these 
minority categories, leading to a decrease in classification 
performance. To address these issues, research is conducted 
to increase the cost of minority class classification errors 
and to achieve a balance of data during training by 
discarding some majority class samples. The parameter 
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class_weight='balanced' is used to automatically adjust the 
weight to penalize misclassification of minority classes. 

4. Feature selection results and
comparative analysis based on Light GBM

The correctness and superiority of the IDENIS 
algorithm were demonstrated through numerical examples 
and comparisons to verify the feature selection method’s 
effectiveness based on Light GBM. Taking the IEEE33 and 
PG&E69 node distribution networks as research objects, this 
study focused on typical distributed energy access scenarios 
and conducted research and experiments on two topologies: 
radiative and weak loop networks. 

4.1 Feature selection results and comparative 
analysis based on Light GBM in IEEE33 node 
distribution system 

In the running system, 28 representative topology 
structures to be identified were selected and divided into 
0-27. 0-19 mean a radial structure, and 20-27 refer to a
grid-like structure. Under each topology, 1500 sampling
points were simulated, with a total of 42000 samples. The
features included the time-domain cross-sectional
measurements of voltage amplitude and active power of
system nodes, totaling 66 dimensions. The training set
accounted for 80%, and the testing set was 20%. Table 1
presents typical topology line conditions and label diagrams
in the IEEE33 node system.

Table 1. IEEE33 node system typical topology 

Line disconnection Topology 
labels Line disconnection Topology 

labels Line disconnection Topology 
labels 

Open 
branch 

Connecting 
branches / Open 

branch 
Connecting 

branches / Open 
branch 

Connecting 
branches / 

/ / 0 4-5 8-21 10 / 25-29 20 

32-33 18-33 1 9-10 9-15 11 / 12-22 21 14-15 12-22
11-12 12-12 2 3-23 18-33 12 / 8-21 22 
14-15 9-15 3 31-32 25-29 13 / 18-33 23 

7-8 8-21 4 6-26 25-29 14 / 9-15 24 8-9 12-22

28-29 25-29 5 7-8 8-21 15 20-21 8-21 25 11-12 12-22 12-22

17-18 18-33 6 3-4 12-22 16 13-14 9-15 26 18-33

24-25 25-29 7 3-4 25-29 17 11-12 12-22 27 18-33
10-11 12-22 8 5-6 25-29 18 / / / 
12-13 18-33 / / / 

2-19 12-22 9 5-6 12-22 19 / / / 
29-30 18-33 / / / 

In Table 1, it is possible to understand the 
characteristics and relationships of different line breaks and 
topology labels to better understand and analyze the lines 
and topology structure in the network. A 5-fold 
cross-validating GSA was used to obtain the optimal 
parameters of Light GBM. Two scenarios were defined. 

Scenario 1: The decision trees are 1000, with a maximum 
depth of 11 for each tree and a learning rate of 0.1. Scenario 
2: The decision trees are 1000, with a maximum depth of 9 
for each tree and a learning rate of 0.1. Figure 6 presents the 
feature importance calculated by the Light GBM-based 
feature selection method in the IEEE33 node system. 
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Figure 6. IEEE33 node system characteristic importance 

Figure 6 shows the importance analysis of the 
characteristics of the IEEE33 node system. 0 to 32 are 
voltage amplitude characteristics. 33 to 65 are active 
characteristics. The importance of each function varied 
greatly. Features with low importance had little impact on 
structural recognition and could be excluded in structural 
recognition. Overall, the importance of voltage amplitude 
characteristics was much greater than active power, 
indicating that topology identification using node voltage 
amplitude was more effective. This conclusion was 
consistent with the physical mechanisms of voltage and 
power distribution at various nodes in the power grid. 
However, no matter how the topology of the distribution 
system changed, the power of a node was determined by the 

load it was connected to. The power of a node was not 
affected by the wiring mode, making it difficult to truly 
reflect the topology characteristics of the network. The 
study compared it with some other common machine 
learning algorithms to verify the advantages of DNN. Each 
algorithm was optimized using a GSA that had undergone 
cross-validation in the corresponding scenario. Starting from 
all features, these features were reduced in order of 
importance to obtain the corresponding subset of features to 
observe the relationship between the quantity of selected 
features and the accuracy. Then, the learned model was 
trained separately. Figure 7 shows the communication 
between the quantity of features and the accuracy of the test 
set. 
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Figure 7. The relationship between the accuracy of four learning algorithm test sets and the number of features 

In Figure 7, as the features decreased, the accuracy of 
test cases showed a decreasing trend. These experiments 
confirmed that DNN-based models had the largest training 
samples and the best topology recognition ability. All four 
training methods could meet the needs of online applications. 
In Figure 7 (a), the accuracy of the test set reached 0.9817. 
After the features exceeded 16, the accuracy of the test 
samples remained stable. However, when the features were 
less than 16, the accuracy of the test samples dropped 
sharply. In Figure 7 (b), compared with the original feature 
set, the extracted feature subset required 81.8% less features, 
while the recognition accuracy only decreased by 1.3%, 
reaching 0.9724. Compared with Support Vector Machine 
(SVM), this algorithm improved accuracy by 1.6% when the 

number of features was large. When the number of features 
was small, it decreased by about 3.6%. 

4.2 Feature selection results and comparative 
analysis based on Light GBM in PG&E 69 
node distribution system 

Under supervised learning, the gradient descent method 
was used to minimize the model error and optimize the 
parameters of the neural network. In each iteration of the 
loop, the loss function of each loop changes in a gradient 
manner, thereby controlling the learning rate in Figure 8. 

Yu Ma 

EAI Endorsed Transactions 
on Energy Web | 

| Volume 12 | 2025 |



11 

Very large
Large
Small

Moderate

Very large
Large
Small

Moderate

(a) The impact of learning 
rate on weight optimization

(b) The influence of learning rate on 
error convergence

Weight Iterations
0 200 400 600 800 1000

0.01

0.03

0.05

0.07

0.09

Figure 8. The impact of different learning rates on gradient descent 

In Figure 8, the starting point of the training was set at 
the vertex to the left of the error curve. Overfitting might 
occur if the learning rate was below 0.03. Then, the network 
parameter updated slowly, and the training cost was slower. 
The lowest point and the optimal parameters of the curve 
were well found with the appropriate learning rate. When it 
was higher than 0.05, the system parameters oscillated 
around the optimization solution, but they could not reach 
the optimal solution. At this point, a large number of 
parameter updates were required. As iterations increased, 
the loss function also increased, making it difficult to find 
the optimal parameters. Therefore, the learning rate should 

be set within an appropriate range. In practical applications, 
continuous hyperparameters had infinite possible values, 
while discrete hyperparameters reduced the search space, 
making the search process more efficient. Using a 5-fold 
cross-validating GSA, Light GBM’s best parameters were 
obtained and two scenarios were defined. Scenario 1: The 
number of decision trees is 1500, with a maximum depth of 
20 for each tree and a learning rate of 0.05. Scenario 2: The 
number of decision trees is 2000, with a maximum depth of 
18 for each tree and a learning rate of 0.1. Figure 9 presents 
the feature importance calculated by the Light GBM-based 
feature selection method in the PG&E 69 node system. 
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Figure 9. Feature importance of PG&E 69 node system 

In Figure 9, numbers 0-68 refer to voltage amplitude 
characteristics, and 69-137 refer to active power 
characteristics. The importance of some active power 
features is 0, which has no impact on topology identification. 
The reason is that these nodes do not contain loads or power 
generation equipment. The active power injection is always 

0. The feature selection process was used to study the
sorting of features based on their importance after
evaluating the importance of features, gradually reducing
the number of features to observe their impact on the model
performance. Through this approach, researchers could
determine which features are redundant (i.e., the information
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they provide can be replaced by other features) or have less 
information (i.e., their contribution to model prediction is 
minimal). Figure 10 shows the performance of four learning 

algorithms after training. 
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Figure 10. The relationship between the accuracy of four learning algorithm test sets and the number of features 

In Figure 10 (a), the required features were reduced by 
85.5% compared to the original feature set, while the 
identification accuracy could reach 0.9738, only a decrease 
of 0.51%. The Light GBM algorithm determined the 
importance of the feature by training the model and 
evaluating the contribution of each feature in the model. 
This allowed Light GBM to identify which features 
influenced the model predictions most and which features 
might be less important. Then, the feature selection process 
was reduced. When using the original feature set for training, 
the test set’s accuracy was 0.9788. Considering the trade-off 
between the number of features and classification accuracy, 
the top 20 important features were selected to form a feature 
subset. Compared to SVM, DNN had an accuracy increase 
of about 1.5% when there were more features, and about 
2.1% when there were fewer features. In Figure 10 (b), its 
accuracy in the test set was 0.9795. The top 15 important 
features were selected to form a feature subset. The required 
number of features was reduced by 89.1% compared to the 
original feature set. The identification accuracy could reach 

0.9717, only a decrease of 0.8%. Compared to SVM, DNN 
had an accuracy increase of about 1.1% when there were 
more features, and about 2.4% when there were fewer 
features. Four learning models were trained using the 
selected feature subset. Table 2 shows the accuracy and 
calculation time of the test set. The calculation equation for 
its accuracy is shown in formula (16). 

 Accuracy TP TN
TP TN FP FN

+
=

+ + +
(16) 

In formula (16), TP  is the number of samples 
correctly predicted as positive. TN  represents the number 
of samples correctly predicted as negative. FP  is the false 
positive case FN  indicates the number of samples falsely 
predicted as negative. Accuracy directly reflects the 
classification performance of the model, which is a key 
indicator for measuring the accuracy of model prediction. 
The calculation time reflects the operational efficiency of 
the model. 
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Table 2. Performance of four learning algorithms 

Learning algorithm Scenario 1 Scenario 2 
Test set accuracy Calculation time/s Test set accuracy Calculation time/s 

RF 0.7439 7.06×10-4 0.8223 8.07×10-4 
Light GBM 0.8022 1.07×10-5 0.8697 4.97×10-4 

SVM 0.9557 4.22×10-4 0.9611 2.73×10-4 
DNN 0.9738 2.93×10-6 0.9717 9.26×10-6 

In Table 2, applying Light GBM reduced the required 
number of features by 89.1% compared to the original 
feature set. The identification accuracy could reach 0.9717, 
only a decrease of 0.8%. Compared to SVM, DNN had an 
accuracy increase of about 1.1% when there were more 
features, and about 2.4% when there were fewer features. 
Multiple experimental groups were designed to verify the 
strong robustness of the IDENIS-based online topology 
recognition system for distribution networks against noise, 
measurement missing, and other situations. Firstly, the 
IDENIS model (Group 1) without introducing any noise or 
measurement missing information was applied. 
Subsequently, the uncertainty in actual operation was 

simulated by gradually increasing Gaussian noise (Group 2 
to Group 4), random measurement missing (Group 3 to 
Group 4), and extreme salt and pepper noise and 
measurement missing (Group 5). In addition, traditional 
machine learning algorithms such as SVM (control group A) 
and Random Forest (RF, control group B) were introduced 
and evaluated to compare the performance of the IDENIS 
model under the same noise and measurement missing 
conditions. The evaluation indicators include accuracy, 
precision, recall, F1 score, and calculation time to 
comprehensively evaluate the performance of different 
models under different conditions. The experimental results 
are shown in Table 3.

Table 3 Experimental results of model robustness testing 

Group Noise type Measurement 
missing rate Accuracy Recall F1 score Computation time 

(s) 
Group 1 Nothing 0% 0.9817 0.9790 0.9824 0.05 

Group 2 Gaussian 
noise 5% 0.9780 0.9750 0.9780 0.06 

Group 3 Nothing 10% 0.9700 0.9675 0.9700 0.07 

Group 4 Gaussian 
noise 10% 0.9650 0.9630 0.9650 0.08 

Group 5 Pretzel noise 20% 0.9500 0.9470 0.9495 0.10 
Comparison 
group A Pretzel noise 20% 0.9400 0.9250 0.9300 0.09 

Comparison 
group B Pretzel noise 20% 0.9200 0.9100 0.9125 0.11 

According to Table 3, the IDENIS model exhibited 
strong robustness in dealing with uncertainty factors such as 
noise and measurement missing. In the absence of noise and 
missing measurements (Group 1), the IDENIS model 
achieved high accuracy, recall, and F1 score. With the 
increase of noise and measurement missing, although the 
model performance had declined, it still maintained a 
relatively stable level. Especially under extreme conditions 

(Group 5), the IDENIS model can still maintain higher 
accuracy, recall, and F1 score compared to traditional SVM 
(Group A) and RF (Group B), demonstrating its superior 
robustness. In addition, the IDENIS model also performed 
well in terms of computation time, maintaining relatively 
efficient computation speed even under complex conditions, 
further proving its effectiveness in online topology 
recognition tasks in distribution networks.

5. Conclusion

The IDN network’s topology structure will continue to
change to ensure the safe and economical operation of the 
power system. In response to the lack of measurement 

equipment in distribution networks, an IDN topology 
recognition framework suitable for large-scale distribution 
networks was constructed. This was transformed into a 
multi-class classification problem under a machine learning 
framework to solve the topology characteristics of radial and 
weak loop networks in distribution networks. A new neural 

Construction and Application Analysis of an Intelligent Distribution Network Identification System Based on Deep Neural   
Networks

EAI Endorsed Transactions 
on Energy Web | 

| Volume 12 | 2025 |



Yu Ma 

14 

network-based IDN network topology recognition algorithm 
was proposed in this study. The proposed algorithm was 
experimentally validated using the IEEE33 node system. Its 
adaptive ability was studied under different noise levels and 
missing measurement data conditions. These experiments 
confirmed that the proposed method could identify the 
real-time topology of the distributing network only by 
measuring the instantaneous cross-section of local nodes. Its 
computational speed was fast and could meet the real-time 
requirements. Compared to SVM, DNN had an accuracy 
increase of about 1.1% when there were more features, and 
about 2.4% when there were fewer features. However, this 
method still has some shortcomings, such as the high cost of 
manually annotating the data used in research. On this basis, 
future work will delve into how to achieve automatic 
topology labeling of measurement data, thereby improving 
the adaptability and promotion ability of topology 
recognition. Future methods can automatically annotate 
measured data to reduce the cost of manual annotation and 
further optimize the feature set. 
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