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Abstract 

INTRODUCTION: To solve the problems of low quality and weak global optimization of the DWA algorithm, especially 
the problems of unreasonable path planning and the inability to give consideration to speed and driving safety in the process 
of vehicles passing through dense obstacles, this paper proposed an improved DWA algorithm based on ant colony algorithm. 
OBJECTIVES: The traffic capacity and computing efficiency of Self-driving Vehicles in complex dense obstacles can be 
greatly improved. 
METHODS: Through the obstacle density and distance information obtained by high-precision sensors on the vehicle, the 
speed objective function is updating in real time by using ant colony algorithm. And the maneuverability and safety 
performance of vehicles passing through are considering by the way. 
RESULTS: The experimental results show that this method can obviously improve the vehicle's traveling ability and uneven 
path planning in the case of dense obstacles, and the number of iterations of the algorithm is reduced by more than 16%. 
CONCLUSION: The improved DWA algorithm integrated with the ant colony algorithm can effectively improve the 
operating efficiency of the algorithm, reduce the distance the car must go around outside the obstacles, and improve Car 
driving safety. The effectiveness and universality of the improved DWA algorithm were verified through experiments. 
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1. Introduction

Since the 21st century, Self-driving technology has 
attracted wide attention because of its obvious advantages 
in improving vehicle active safety, reducing energy 
consumption and improving traffic efficiency. Self-driving 
car is a complex integrated system which integrates the 
functions of environmental awareness, high-precision map 
and combined positioning, intelligent decision-making and 
motion planning[1]. Path planning is a key part of its 
intelligent decision-making and motion planning system, 
which determines how the car can reach the designated 
goal, mainly involving the perception and calculation of 
environmental information, in order to find a safe and 
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efficient optimal collision-free path. Path planning is 
mainly divided into two stages: global path planning and 
local path planning. Global path planning refers to 
determining the path of a car from the starting point to the 
target point with the help of high-precision maps and other 
positioning information. The specific process includes path 
search, obstacle avoidance, dynamic path adjustment and 
other steps, and needs to consider traffic rules, road 
conditions, traffic flow and other factors. Local path 
planning refers to fine-tuning the driving path on the basis 
of global path planning according to the real-time 
environmental information perceived by the car. The 
specific process mainly considers the dynamic 
performance of the car and the dynamic changes of 
obstacles, so as to ensure that the car can drive safely and 
effectively in the complex traffic environment. 
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At present, the algorithms used in path planning 
mainly include: intelligent algorithms represented by ant 
colony algorithm, genetic algorithm and particle swarm 
optimization; Graph-based search algorithm represented by 
A*, Dijkstra, Hybrid A* and D*. A* algorithm is widely 
used, but when searching in complex unstructured scenes, 
it has a large amount of calculation and serious memory 
consumption, and narrow channels will produce 
oscillation.Aiming at the problem of slow operation speed 
of A*, the paper [2] puts forward the jumping point search 
method, but this method can not guarantee the global 
optimization of the path in complex irregular 
maps.Literature [3] adopts the straight line-arc strategy to 
smooth the path, which greatly improves the smoothness of 
the path. Literature [4] uses differential method to reduce 
the number of inflection points, but the amount of 
calculation increases. Literature [5] optimizes the heuristic 
function of A* algorithm, improves the selection strategy 
of key nodes, and reduces path redundancy. Dijkstra 
algorithm adopts traversal search method, which has a 
large number of path nodes and low computational 
efficiency. Local path planning algorithms include 
artificial potential field method and DWA. DWA algorithm 
carries out real-time local path planning based on sensor 
data, which has good obstacle avoidance ability, but can 
not meet the global path optimization. Reference [6] 
proposed the Curvature Velocity Method (CVM), 
described the obstacle avoidance problem as an 
optimization problem with constraints in velocity space, 
and established an optimization objective function 
including three factors: speed, safety and path. On the basis 
of CVM, a more perfect DWA algorithm is proposed in 
reference [7]. The objective function comprehensively 
considers three factors: heading angle, speed and obstacle 
distance, and the trajectory obtained is relatively smooth, 
which effectively solves the problem of circling around 
obstacles[8]-[11]. 

Considering the high real-time, global, robust and 
adaptive nature of path generation, the existing DWA 
algorithm still has the following problems: (1) There are a 
large number of redundant nodes related to the state in the 
path search process, which leads to an increase in 
computation and a longer operation time; (2) In dense 
obstacle areas, cars tend to choose detours, resulting in 
longer paths; (3) In complex and irregular scenes, the 
vehicle's running track is not smooth, and it is easy to 
oscillate. 

Based on the above analysis, this paper puts forward 
an improved global path planning method of DWA road, 
which combines ant colony algorithm to solve the 
problems of increasing path nodes, blind search, unsmooth 
vehicle trajectory and long trajectory in complex and dense 
obstacle scenes, obtains the map information of 
surrounding environment by vehicle sensors, and applies 
the idea of parameter adaptation to construct an adaptive 
DWA algorithm to obtain a more reasonable and safe 
global optimal path. 

2. Ant colony algorithm model 

The basic principle of ant colony algorithm has been 
explained in detail in DORIGO M[7][8]and other works. 
The following only briefly explains the state transition rate 
and pheromone increment model in the core of the 
algorithm. 

2.1 State transition rate 

At time t, the state transition rate of ants moving from state 
node I to adjacent state node J can be defined as: 

    Pijm(t) =

⎩
⎨

⎧ τij
α(t)∙ηij

β(t)

∑ τis
α (t)∙ηis

β (t)s∈Um
, if  j ∈ Um

0,           else
        

          (1) 

In the formula:Pijm(t)is the state transition probability 
of the m-th ant moving from state node I to state node J at 
time T.τijα(t)is the pheromone concentration on the path 
(i,j), where α  is the information heuristic factor[8][9], 
reflecting the influence of pheromone on the ant's path 
selection;ηij

β(t) is the heuristic function of the m-th ant to 
select the adjacent state node J at the state node I, where β 
is the expected heuristic factor, reflecting the importance 
of heuristic information in guiding the ant colony search 
process;Umis the next node set that the ant has not visited;S 
is an optional node set adjacent to the current 
position;τisα (t)is the pheromone concentration of the m-th 
ant between the current state node I and the adjacent state 
nodes; ηis

β (t) is the heuristic function of the m-th ant 
between the current node I and the adjacent state nodes. 

Heuristic function ηij(t) can be expressed as: 
                         ηij(t) = 1/Dij                   (2)             
In the formula:Dij is the distance between state node I 

and state node J. 

2.2 Pheromone concentration update model 

At present, the common pheromone concentration updating 
models are Ant-Density System(ADS), Ant-Quantity 
System(AQS) and Ant-Cycle System(ACS)[10]. ADS 
model and AQS model adopt local updating strategy, while 
ACS model adopts global updating strategy[10]. 
Considering the solution speed and obstacle avoidance 
ability of the algorithm, this paper adopts AQS model as 
the prototype. 

Suppose that the set of state nodes of path (i,j) that the 
m-th ant currently circulates through is 
X{(i, j)|i = 1,2, … , n; j = 1,2, … , n},so: 

            ∆τijm(t) = �
Q
Dij

,    if(i, j) ∈ X

0,   else
                    (3) 

In the formula: ∆τijm(t) is the path pheromone 
concentration increment of the m-th ant moving from the 
state node I to the adjacent state node J from time t-1 to 
time T;Q is the pheromone intensity, which is a constant 
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greater than 0. 

3. Improved DWA algorithm design 

3.1 Classical DWA algorithm 

The implementation process of the classical DWA 
algorithm is to convert the position control of the self-
driving car into the speed control, and describe the obstacle 
avoidance problem as an optimization problem with 
constraints in the speed space of the car[11], including the 
speed of the car, the driving direction and the position 
constraints of obstacles in the surrounding 
environment[12]. 

As determined by the physical constraints of obstacles 
around the vehicle trajectory node, the speed set Us(ua,ωr) 
composed of the longitudinal speed of the autonomous 
vehicle and the angular velocity limit of the yaw which 
determines the direction of the vehicle must be met: 
Us = {(ua,ωr)|0 ≤ ua ≤ uamax,−ωrmax ≤ ωr ≤ ωrmax}  (4) 

The vehicle trajectory can be considered to be 
composed of n broken line segments in n time periods, and 
the connection point of the broken line segment is 
considered to be close to the position of the obstacle on the 
premise of meeting the expansion size limit of the 
obstacle[13]. In order to ensure that obstacles encountered 
in the process of automobile movement do not collide, after 
the time dt can be obtained by kinematic conditions,The 
speed set Ua must satisfy: 
Ua = �(ua,ωr)�ua ≤ �2 ∙ dist(ua,ωr) ∙ uȧ,ωr ≤ �2 ∙ dist(ua,ωr) ∙ ωṙ � (5) 

In the formula: dist(ua,ωr)  indicates the linear 
distance between the car and the obstacle at the next 
moment. 

Assume that the speed set of the self-driving car at the 
current moment is (uacurr,ωrcurr)，then the speed set Ud 
at the next moment must satisfy: 
Ud=(uad,ωrd)=

� uacurr − uamaẋ dt ≤ ua ≤ uacurr + uamaẋ dt
ωrcurr − ωrmaẋ dt ≤ ωr ≤ ωrcurr + ωrmaẋ dt           (6) 

The final speed set u can be expressed as: 
                U = Us ∩ Ua ∩ Ud                              (7)                      
The car predicts the speed set at the next moment 

through the objective function. The objective function 
defined in this paper comprehensively considers the 
moving speed, orientation and collision safety, as shown 
below: 
G(𝑢𝑢𝑎𝑎𝑎𝑎,𝜔𝜔𝑟𝑟𝑟𝑟) = 𝑙𝑙 ∙ 𝜃𝜃+𝑚𝑚 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢𝑎𝑎,𝜔𝜔𝑟𝑟) + 𝑛𝑛 ∙ 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(8) 

Where:  θ indicates the included angle between the 
driving direction of the vehicle and the target line; 
dist(ua,ωr)indicates the shortest distance between the car 
position and the obstacle; L, M and N are three weight 
coefficients respectively, which are usually normalized 
into constant coefficients between [0,1]. 

The objective function G(uad,ωrd) corresponding to 
each possible trajectory of the car's movement is calculated 
through formula (8),The speed set that maximizes the 
function value is the optimal set. Each weight coefficient 

in the common DWA algorithm is fixed[14]. Using the grid 
method to model and run the environment map of the self-
driving car, it can be seen that when all the weight 
coefficients are large, the number of running steps for the 
car to move from the starting point to the target point is 
relatively small, and the calculation time is short (as shown 
in Figure 1). In the case of a smaller angle weight 
coefficient, the number of running steps is too many and 
the calculation time is long (as shown in Figure 2). In the 
case of a small distance and speed weight coefficient, the 
number of running steps increases significantly and the car 
detours. The calculation time increases significantly (as 
shown in Figure 3). 

 
Figure 1.   High weight coefficients trajectory 
 

 
 
Figure 2.    Low angle weight coefficient trajectory  
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Figure3.   low distance and low speed weight 

coefficients trajectory   
 

Therefore, when a self-driving car is moving at high 
speed, if the density of surrounding obstacles is too high, 
the classic DWA algorithm will cause the car's passability 
to significantly deteriorate, and the planned path will make 
the car too close to the obstacles, significantly reducing 
driving safety. Especially when the density of obstacles 
further increases, the above algorithm will cause the car to 
go around multiple obstacles, resulting in a path that is too 
long. In some cases, the path will not be smooth, causing 
the car to oscillate between multiple obstacles. The 
fundamental reason for the above problems is that once the 
weight coefficient in the vehicle speed planning objective 
function is determined, it cannot adapt to various complex 
and changeable environmental factors. 

This paper combines the advantages of the ant colony 
intelligence algorithm in global optimization and 
continuous convergence of the search process, and 
considers the three weights of the above objective function 
from the aspects of reducing the car's detour distance 
between dense obstacles and improving driving 
maneuverability and safety[15-20]. The coefficients are all 
iterated and updated globally according to the ant colony 
algorithm. The specific process of dynamically updating 
the above weight coefficients based on the ant colony 
algorithm model will be elaborated below. 

3.2 Improvement of DWA algorithm 
integrating ant colony algorithm 

The high-precision radar installed in self-driving cars can 
quickly detect the size and distance information of 
obstacles in the surrounding environment. Assume that at 
the current time t, there are obstacles with a certain density 
in the area in the direction of the car, as shown in Figure 1. 

If the number of obstacles in the area is M,The 
shortest distance between the car and the i-th obstacle is Di, 
The azimuth angle is θi. Define that when M is greater than 
the threshold, the area is a dense area of obstacles.Define 
the shortest distance between the i-th obstacle and the j-th 

obstacle as Dij: 

Dij = �Di
2 + Dj

2 − DiDjcos(θi − θj)，θi ≫ θj     (9) 

Taking into account the safety and maneuverability of 
a car passing between obstacles, in order to measure the 
passability of a car between two obstacles, the car's passing 
function number Ds is defined as: 

Ds = a ∙ θmax
ωramx

+ b ∙ uamx
uȧ

                    (10) 
In the formula: ωrmax  is the maximum value in ωr , 

θmax is the maximum value in θi, a and b are constants. 
The larger the azimuth angle, the easier it is for the car to 
pass through, and this number is directly proportional to it. 
The greater the yaw angular velocity of the car, the worse 
the handling stability and the reduced driving safety. This 
number is inversely proportional to it. The greater the 
maximum speed of the car, the easier it is for the car to pass 
through, and this number is directly proportional to it. The 
greater the vehicle's longitudinal acceleration, the weaker 
its braking ability and reduced driving safety, and this 
number is inversely proportional to it. 

Taking into account the expansion radius of the 
obstacle and introducing the expansion radius influence 
coefficient σ , the conditions for a car to pass safely 
between two obstacles is: 

      Ds >
Dij
σ

                             (11) 
Then the update model of dynamic pheromone is as 

follows: 

      ∆τijm = �

σ∙Dmax−Dij
Dij−σ∙Dmin

, δ > ε
Dij−σ∙Dmax

Dij−σ∙Dmin
, δ ≤ ε

                (12) 

In the formula: δ = Dmax−Dmin , ε is the acceptable 
error for the nth iteration, which is a constant, Dmax refers 
to the maximum value of the traversing function number 
obtained by moving between any two obstacles after the 
car moves to the local obstacle avoidance area, Dmin refers 
to the maximum value of the traversing function number 
obtained by moving between any two obstacles after the 
car moves to the local obstacle avoidance area. The 
minimum value of the number of travel functions. 

3.3 Algorithm flow 

Step 1: Obtain environmental map information from 
vehicle-mounted sensors, locate the starting point and 
target point of vehicle movement; obtain information on all 
state nodes in the space, and calculate the adjacent matrix 
and heuristic information matrix. 

Step 2: Parameter initialization. The number of 
initialization iterations is N, the ant colony size M, the 
information heuristic factor α , the expectation heuristic 
factor β, the pheromone volatilization coefficient ρ, and 
the pheromone concentration τ. 

Step 3: Calculate the density of obstacles, the actual 
distance and orientation between the car and each obstacle 
in real time. 

Step 4: Path selection update. Query the adjacent 
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matrix to obtain the set of nodes where it is feasible for the 
current node i to move to the next node, and calculate the 
probability of the m-th ant selecting the adjacent node 
according to formulas (1) to (3). During the node update 
process, based on the map information captured by the 
vehicle-mounted sensor, the obstacle density, actual 
distance and orientation between the car and each obstacle 
and other information are used to determine whether it has 
entered the obstacle-dense area: if it has entered, go to steps 
five to seven; If you do not enter, all weight coefficients in 
step five will be set to fixed values. 

Step 5: Eliminate the node set with dist(ua,ωr) 
greater than the threshold from the global path planning 
nodes, and update the ant sequence number.The on-board 
processor calculates the distance Dij  between the 
obstacles and the car's passing function number Ds , 
obtains the Dmax and Dmin values, calculates and updates 
the pheromone, and obtains the dynamically updated 
weight coefficients l, m and n. 

Step 6: Obtain the alternative speed space U(ua,ωr) 
according to formula (8), normalize the three weight 
coefficients respectively, and obtain the optimal speed set 
of the car at time t+1. 

Step 7: Execute the speed to determine whether the 
target point is reached: if so, end the iteration process; 
otherwise, return to step 1. 

4. Simulation test and analysis 

4.1 Simulation parameter initialization 

In order to verify the global performance of the improved 
DWA algorithm, this paper uses the raster method to 
construct an environment map of 10 × 10 (as shown in 
Figure 1), and conducts autonomous vehicle path planning 
experiments on this basis. In Figure 1, the red square 
represents the starting point and the target point, the black 
square represents the obstacle, and the white square 
represents the open space[24]. The area of the square 
reflects the expanded size of the car and obstacles, and the 
dotted line with an arrow represents the initial start of the 
global planned path. Value, the colored solid line 
represents the actual running path. The parameter selection 
during simulation operation is shown in Table 1 and Table 
2. The location information of the starting point and target 
point is shown in Table 3. 

     Table 1.   DWA algorithm parameters 

Table 2. Ant colony algorithm parameters 

 

 

Table 3.   Position information of starting point and 
target point 

 
4.2 Algorithm optimization results 

The DWA algorithm integrated with the ant colony 
algorithm can significantly speed up the local path dynamic 
update capability when the car approaches the obstacle area. 
Through the obtained optimal objective function, the car's 
movement speed, driving direction and collision safety can 
be guaranteed. As shown in Figure 4, when the raster map 
enters the obstacle-dense area, at time 10.450s, the 
predicted trajectory line of the classic DWA algorithm is 
green, and the trajectory line of the improved DWA 
algorithm fused with the ant colony algorithm is red. It can 
be seen that the car driving path represented by the green 
line has increased significantly. At this time, the distance 
between the car and the nearest obstacle, vehicle speed, 
yaw angular velocity and objective function in the two 
situations are shown in Table 4 below. At this moment, the 
objective function obtained by the classic DWA algorithm 
is significantly greater than that of the improved DWA 
algorithm. According to the algorithm logic of maximizing 
the objective function, the classic DWA algorithm will 
cause the car to continue to increase its speed and 
deflection angle, further bypassing the obstacle-dense area, 
and finally causing path growth. 
 

 
Figure4.  Predicted trajectory at 10.450s 

parameter x/m y/m 𝜃𝜃/rad 𝑢𝑢𝑎𝑎/(km/h) 𝜔𝜔𝑟𝑟/(rad/s) 
starting point 0.25 0.05 0.68 10 0.20 
Target point 0.65 0.95 0.21 0 0 

Puffing 
radius 

m 

Time 
resolution 

s 

Resolution 
of  linear 
speed 

m/s 

Resolution 
of  angular 
velocity 

rad/s 

Prediction 
time 

s 

Distance 
threshold 

m 

0.5 0.01 0.02 1 30 0.5 

K M α β ρ Q 

100 80 2 7 0.2 100 
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Table 4.   Car driving status information 

 
Improved DWA test under changing vehicle speed 
As shown in Figure 4: the car's starting speed is 10km/h, 
the speed is relatively slow, and some oscillations occur 
between the three obstacles. In order to verify the impact 
of vehicle speed on the improved DWA algorithm, the 
initial vehicle speed of the vehicle was increased to 50km/h, 
and the predicted trajectory as shown in Figure 5 was 
obtained. It can be seen that the trajectory oscillation is 
significantly eliminated as the vehicle speed increases. 

 

 
 

Figure 5.  Predicted trajectory of changing starting 
speed 

 
Figure 6 shows the simulation results of the objective 

function in this case. It can be seen that when the three 
weight coefficients of the objective function are iterated by 
the ant colony algorithm, if the car is far away from the 
obstacle, the optimized alternative speed set is higher; if the 
car is closer to the obstacle, the optimized speed set The 
alternative speed set is lower. The above algorithm logic is 
fully consistent with the guiding ideology of dynamically 
adjusting the speed and trajectory of autonomous vehicles, 
ensuring the mobility and safety of the vehicle in dense 
obstacle areas. 

 
 

 
Figure6.  3D diagram of the objective function at 

50km/h 

Improved DWA test when the number of obstacles 
changes 
 
 
  
 
 
 
 
  

 
 
 
 
 

Figure7.   Predictive trajectory of more obstacles 
 
As shown in Figure 7: after adding a gray obstacle to 

the grid map, the initial vehicle speed is set to 50km/h. Run 
the improved DWA algorithm and find that: the new 
predicted trajectory represented by the green line is slightly 
weaker than the previous oscillation. Under the premise of 
ensuring safety, the overall efficiency of the car's 
movement from the starting point to the target point has 
been significantly improved. Calculating the number of 
iterations it was reduced by 20.69%, and the total running 
time dropped by 16.78%. Figure 8 shows the simulation 
results of the objective function in this case. 

 
Figure8.  3D diagram of the objective function 

after increased obstacles 
 

parameter dist/m 𝑢𝑢𝑎𝑎/(km/h) 𝜔𝜔𝑟𝑟/(rad/s) G 
Classic DWA 0.309 36 0.20 0.91 
Improve DWA 0.167 27 0.78 0.67 
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In order to quantitatively compare the comprehensive 
performance before and after the improved algorithm in a 
variety of different scenarios and verify the universality of 
the algorithm, due to space limitations, Table 5 below only 
lists the comparison results of several different obstacle 
numbers. It can be seen that according to the improved 
DWA algorithm for car path planning, increasing the 
number of obstacles will have little impact on the car's 
motion performance. 

Table 5.     Comparison results of different number of 
obstacles 

5. Conclusion

This article proposes a path planning method for self-
driving cars to drive in areas with high density of obstacles. 
The improved DWA algorithm integrated with the ant 
colony algorithm can effectively improve the operating 
efficiency of the algorithm, reduce the distance the car must 
go around outside the obstacles, and improve Car driving 
safety. The effectiveness and universality of the improved 
DWA algorithm were verified through experiments. This 
method significantly improved the convergence speed of 
the optimization of the global path of autonomous vehicles. 
In the future, we will further study the applicability of the 
DWA algorithm in dynamic obstacle scenarios on this 
basis. 
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