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Abstract 

INTRODUCTION: Wind turbine gearbox fault diagnosis is of great significance for the safe and stable operation of wind 
turbines. The accuracy of wind turbine gearbox fault diagnosis can be effectively improved by using complete wind turbine 
gearbox fault data and efficient fault diagnosis algorithms.A wind turbine gearbox fault diagnosis method based on EMD-
DCGAN method is proposed in this paper. 
OBJECTIVES: It can solve the problem when the sensor fails or the data transmission fails, it will lead to errors in the wind 
turbine gearbox fault data, which in turn will lead to a decrease in the wind turbine gearbox fault diagnosis accuracy. 
METHODS: Firstly, the outliers in the sample data need to be detected and removed. In this paper, the EMD method is used 
to eliminate outliers in the wind turbine gearbox fault data samples with the aim of enhancing the true continuity of the 
samples; secondly, in order to make up for the lack of missing samples, a data enhancement algorithm based on a GAN 
network is proposed in the paper, which is able to effectively perfect the missing items of the sample data; lastly, in order to 
improve the accuracy of wind turbine gearbox faults, a DCGAN neural network-based fault diagnosis method is proposed, 
which effectively combines the data dimensionality reduction feature of deep learning method and the data enhancement 
feature of generative adversarial network, and can improve the accuracy and speed of fault diagnosis. 
RESULTS and CONCLUSIONS: The experimental results show that the proposed method can effectively identify wind 
turbine gearbox fault conditions, and verify the effectiveness of the algorithm under different sample data conditions. 
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1. Introduction

Wind turbines have developed considerably with the 
increasing global energy problems and the development of 
new technologies. In 2019, the newly installed capacity 
reached a record high. The newly-added wind turbine 
assembly capacity is 60.04GW, and the cumulative installed 
capacity is 658.41GW[1-4]. As shown in Figure 1, one year 
later, the cumulative global installed capacity in 2020 will 
increase to 721.64GW, and the global new installed capacity 
is likely to increase to 78GW in 2021. In 2018, the newly 
integrated wind energy into the National Grid was 
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2.03×107kW, and the cumulative amount was 
1.84×108kW[5-8]. The annual wind power utilization time 
was 2,103 hours, an increase of 153 hours over the previous 
year, and the newly installed capacity remained at about 
2.0×107kW/year.  
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Figure 1. The number of new machines installed and 
the cumulative number of wind turbines installed 

As a power generation equipment, wind turbines are 
subject to significantly higher operation and maintenance 
costs due to the production process materials and the 
operating environment, and random failures may occur in 
various components. In particular, there are numerous 
coupling links in the wind turbine gearbox, and it has a very 
high probability of failure. Although the service life of a 
wind turbine is typically 20 years, the wind turbine gearbox 
will fail many times during the entire life cycle of the wind 
turbine. However, because of long-term working in complex 
environments such as gobi, plateau, seaside, etc, it is difficult 
for wind turbines to reach the service life. In many places, 
wind turbines appear kinds of failuremore than 5 years after 
being put into production[9-14]. The gearbox has a core role. 
Due to its many components and large installation losses, the 
gearbox has become a concentrated location for failures. 
Whether the gearbox is normal or not directly affects the 
normal operation of the wind turbine. 

At present, wind turbine gearbox fault diagnosis has been 
carried out by many research institutions and scholars for a 
large number of studies. Generally speaking, the research of 
wind turbine gearbox fault diagnosis is to monitor some 
characteristic parameters such as thermal imaging 
parameters and vibration parameters during the operation of 
wind turbine gearbox, use the relevant parameters to train the 
diagnostic model, get the deviation between the current state 
and the normal state, and use the judgement of the deviation 
to achieve the wind turbine gearbox fault diagnosis. The 
intelligent algorithms used in the wind turbine gearbox fault 
diagnosis model mainly include traditional intelligent 
algorithms and deep learning algorithms. The research team 
from Henan University of Science and Technology used 

fewer sample data for wind turbine gearbox fault diagnosis 
and utilised the least squares support vector machine method 
to achieve wind turbine gearbox faults, and the results show 
that the proposed method can effectively improve the speed 
of diagnosis. There are many fault diagnosis methods for 
wind turbines[15-20]. In the wind turbine gearbox fault 
diagnosis method, the accurate selection of fault features is 
the key to establish an efficient fault diagnosis method. In the 
process of fault feature selection, the use of cost function to 
evaluate the features can effectively evaluate the correlation 
between multidimensional features, which has a better effect 
on fault feature selection.However, it is difficult to accurately 
characterise all the faults in wind turbine gearbox fault 
diagnosis by a single application of the cost function. 
Moreover, the vibration signals of wind turbine gearbox fault 
diagnosis will be affected by the sensors and thus have trend 
terms, which will further adversely affect the results of wind 
turbine gearbox fault diagnosis. 

In summary, this paper proposes a fault diagnosis method 
for wind turbine gearbox based on EMD-DCGAN. First, in 
view of the fault error of the wind turbine gearbox, the 
empirical mode analysis method (EMD) is used to eliminate 
the trend item of the vibration sample waveform of the fault 
data, and the authenticity of the fault sample is improved; 
Database data expansion sample; then, use deep 
convolutional generative confrontation neural network 
(DCGAN) to diagnose fault vibration data; finally, use 
historical data and enhanced data to verify DCGAN, and 
prove that GAN uses EMD processed data Expand the 
training samples to improve the accuracy of DCGAN wind 
turbine gearbox fault diagnosis. 

2. Analysis of wind turbine gearbox fault
diagnosis mechanism

The SCADA system has been widely used in wind turbines 
to detect and record operating parameters. The system 
generally stores and records all the operating data of the wind 
turbines every five minutes. As shown in Figure 2, these data 
are basically installed The sensor inside the wind turbine 
collects and uploads. These numerous SCADA data contain 
a large amount of wind turbine operation information, which 
can be used to analyze the operation status and fault 
diagnosis of wind turbines by using appropriate analysis 
methods or algorithms. 

Wind farm monitoring 
platform

RTU

Fan 1 
sensor ... Fan n 

sensor

SCADA data platform

Constraint conversion 
server server

Real-time data platform 
associated database 

storage

Centralized control 
station monitoring 

interface

Wind field Centralized Control Station
Electric Power 
104 Protocol

OPC/Modbus 
protocol

Fan 2 
sensor

Figure 2. Data transmission mode between the wind 
farm SCADA system and the centralized control 

station 

The control system needs to monitor multiple subsystems, 
the operating state parameters and environmental parameters 
of various parts of the main wind turbine. When the 
measured value of a parameter related to the operating status 
of the entire unit exceeds the safety threshold, an instruction 
will be issued to order the unit to stop. If it is not an 
emergency fault or just reaches the critical value of the safety 
threshold, only an alarm will be issued without shutting 
down. When the unit fails or alarms, the system will write 
the time and specific information of the failure into the 
operation report and store it in the database. The table 
1shows the operating state parameters and environmental 
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parameters of various parts of the wind turbine during 
operation. 

Table 1. Operating state parameters of various parts of the wind turbine 

Wheel 
speed 

Blade 
angle 

Wind 
speed 

Absolute 
wind 
direction 

Bearing 
temperat
ure 

temperat
ure 

Minimum 
gearbox 
vibration 
frequency 

Maximum 
gearbox 
vibration 
frequency 

1.53 30.93 2.26 128.85 10.2 14.9 0 -0.24
6.15 3.32 2.41 98.492 12.7 15 0 -0.27
2.54 54.53 2.01 103.78 16.5 15 0 -0.29
0.37 63.14 2.72 113.94 15.9 14.9 -0.05 -0.21
5.44 6.44 3.08 126.57 16.8 14.5 0 -0.27
7.27 0.5 3.68 119.84 20.5 14.2 0 -0.24
7.28 0.5 3.57 114.24 23.5 13.9 -0.04 -0.23
7.44 0.5 4.31 111.43 26 13.6 -0.05 -0.25
7.59 0.5 4.37 104.96 28.1 13.1 -0.05 -0.21
8.75 0.5 5.39 104.50 30.2 12.8 -0.03 -0.22
8.73 0.5 5.12 101.16 32.3 12.4 -0.07 -0.23
8.16 0.49 4.73 104.94 33.9 12.1 0 -0.21
9.17 0.49 5.38 99.99 35.2 11.9 0 -0.21
9.25 0.5 5.35 100.85 37 12.2 -0.08 -0.2
9.61 0.5 5.73 109.78 38.1 12.3 -0.03 -0.22
8.85 0.5 5.24 112.68 39.2 12.5 -0.04 -0.24
10.65 0.5 6.41 113.86 40.2 12.4 -0.05 -0.23
10.5 0.5 6.25 118.59 41.7 12.5 -0.05 -0.22
10.46 0.5 6.38 109.12 42.6 12.5 0 -0.22
9.94 0.49 6.06 109.92 43.4 12.4 0 -0.24
9.7 0.5 5.83 111.92 44 12.4 -0.04 -0.24
… … … … … … … …
10.29 0.5 5.9 107.64 44.7 12.6 -0.06 -0.22
10.31 0.49 6.4 116.94 45.2 12.6 0 -0.22
10.57 0.5 6.56 109.64 45.9 12.6 -0.05 -0.21

Figure 3. The location of the gearbox vibration 
measurement point 

According to the characteristics of the wind turbine model, 
as shown in Figure 3, the gearbox vibration detection data 
has four detection points 1234 along the transmission 
direction, and each position is tested for the horizontal and 

vertical speed waveforms and frequencies, as well as 
acceleration waveforms and frequencies. In addition, the 
acceleration demodulation spectrum detection item is added 
to the detection position on No. 2 and later to facilitate the 
analysis of the gear teeth and bearing status, as shown in 
Table 2. 
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Table 2 Various parameters monitored by the observation points on the gearbox 

Location number Measuring point 
number 

Location name Testing direction Contents of detection 

1I
a Gearbox input Horizontal Gearbox vibration 

frequency/vibration 
wave type 

b Gearbox input Vertical Gearbox vibration 
frequency/vibration 
wave type 

2I
a Gearbox low 

speed shaft output 
end 

Horizontal Gearbox vibration 
frequency/vibration 
wave type 

b Gearbox low 
speed shaft output 
end 

Vertical Gearbox vibration 
frequency/vibration 
wave type 

3I
a Gearbox high 

speed shaft output 
end 

Horizontal Gearbox vibration 
frequency/vibration 
wave type 

b Gearbox high 
speed shaft output 
end 

Vertical Gearbox vibration 
frequency/vibration 
wave type 

4I
a Planetary end of 

gearbox 
Horizontal Gearbox vibration 

frequency/vibration 
wave type 

b Planetary end of 
gearbox 

Vertical Gearbox vibration 
frequency/vibration 
wave type 

Vibration signals can characterise the operating status of 
wind turbines, and therefore, they play a crucial role in the 
fault diagnosis of wind turbine gearboxes. Assuming that the 
rated rotational speed of the wind turbine is 2,900 rpm and 
the frequency is 2,900/60=48.33 Hz, and that the wind 
turbine rolling bearing adopts the traditional structure, which 
consists of the outer ring, the inner ring, the cage, and the 
rolling body, the formula for calculating the characteristic 
frequency of the key components of the wind turbine rolling 
bearing is as follows: 

）（ αcos1
2
1

601 D
dNrf −=             (1) 

）（ αcos1
2
1

602 D
dNrf +=             (2) 

）（ αcos1
2
1

603 D
drf −=            (3) 

））（（ α22
4 cos1

2
1

60 D
d

d
Drf −=    (4) 

3. Empirical Mode Decomposition (EMD)
fault data processing and deep
convolutional generative countermeasure
network (DCGAN) fault diagnosis model

3.1. Principles of Generative Adversarial 
Network (GAN) 

Generative Adversarial Network needs to train the network 
using input data z and real samples x. At the same time, the 
generator is used to output the result G(z), and the 
discriminator is used to output D(x) and D(G(z)) results 
respectively. If the sample data meets the pre-conditions, 
then the discriminator outputs the wanted state as D(x)=1. 
D(G(z))=0. The GAN network can be optimised using the 
discriminator outputs as well as the network parameters to 
build the optimisation model as follows: 

x ( )min max ( , ) log ( ) log(1 ( ( )))
dataP z pz zG D

J D G E D x E D G z− −= + −

(5) 
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where: V(D,G) represents the overall objective function of 
the generated confrontation network, min V(D,G) 
represents the objective function of the generator, and max 
V(D,G) represents the objective function of the 
discriminator. z-p(z) indicates that z conforms to the coded 
statistical p(z), that is, z is a random number sampled from 
the coded statistical distribution[14-16]. 

Generative Adversarial Networks are characterised by the 
use of alternating training of the generator and the 
discriminator thus enabling the optimisation process of the 
final network. Specifically, the parameters of the generator 
and discriminator are updated alternately and iteratively, and 

there is no simultaneous parameter update. In the early stage 
of network training, the generator is significantly weaker 
than the discriminator due to its generative effect, therefore, 
at this time, the discriminator will not be updated with 
parameters, and only the generator G network parameters 
will be updated, and after the update iteration, in order to get 
a better generative adversarial network, the parameters of the 
discriminator D network need to be updated, and ultimately, 
under iterative updating of the generator network and the 
discriminator network, we get the maximum value of (D, G) 
condition of the optimal objective function V.The specific 
workflow is shown in Figure 4:

Start
Mass 

production of 
virtual images

Mixed real 
and fake 
pictures

Discriminator 
recognition

Network 
parameter 

update

Update 
repeatedly

Several 
trainings

Figure 4. Train of Thoughts on Sample Training of Generative Adversarial Neural Network 

3.2 Empirical Mode Decomposition (EMD) 
processing fault data 

EMD has a better effect on signal smoothing, which is 
due to the fact that EMD uses the fluctuation 
characteristics and trend characteristics of signals of 
different time scales to process non-smooth signals, which 
can reflect the characteristics of signals at different 
frequencies, and the characteristics can better reflect the 
real pattern of the original signals.[17]. Each band of the 
signal sequence has a mode function corresponding to it, 
and each IMF has specific conditions: 

(1) IMF should contain at least two extreme values,
reflecting the maximum and minimum ranges of IMF. 
And there are strict requirements on the number of IMF 
poles, i.e., the number of poles is the same as or differs 
from the number of over-zero points by one. 

(2) If the local maximum of the signal is defined as the
upper envelope and the local minimum of the signal is 
defined as the lower envelope, then the average of the 
upper and lower envelopes computed for each time point 
on the time scale should be zero as well. 

EMD, the signal processing mechanism on this time 
scale, is defined as a filtering process for the data. 
Assuming that the original signal is x(t), the signal 
processing process based on EMD according to the EMD 
processing signal mechanism is as follows: 

a) Use the original signal as the input to the EMD to
obtain the maximum value of the original signal.; 

b) Fitting to the maximum value, the maximum and
minimum values of the original signal are fitted by the 
cubic spline interpolation function. If the local maximum 
value of the signal is defined as the upper envelope e+(t) 
and the local minimum value of the signal is defined as 

the lower envelope e-(t), the average value obtained by 
using the upper and lower envelopes is defined as m1(t): 

( ) ( ) ( )( ) 21 ÷+= −+ tetetm  (6) 
c) According to the EMD processing signal

mechanism, the difference values affected by the original 
signal x(t) and the average value m1(t) are calculated to 
obtain the difference function z1.1(t) as follows: 

( ) ( ) ( )tmtxtz 11.1 −= (7)
The original signal x(t) can be represented by the IMF 

component as 

( ) ( ) ( )trtctx n

n

i
i +=∑

=1
(8) 

According to the EMD processing signal mechanism, it can 
be seen that the decomposition strategy is to decompose the 
original signal at different frequencies, and the final 
decomposed signal includes fixed modal components and 
residuals, which are equivalent to the original signal. 
Different natural modal components contain different 
frequency components, and as the order of IMF increases, 
the frequency components contained in them gradually 
decrease, and the lowest frequency component is rn(t). The 
first few IMF components obtained by empirical mode 
decomposition usually contain most of the information of 
the original signal[18-20]. Combined with the long period of 
the trend term, that is, the characteristics of low frequency, 
the first few IMF components are summed to obtain an 
approximate signal of the original signal. This 
approximation The signal is the useful signal after 
removing the trend item. 
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3.3 Enhanced model for wind turbine 
gearbox fault diagnosis sample data based 
on DCGAN neural network 

Convolutional neural networks are good at dealing 
with multidimensional nonlinear feature data, this is due 
to the fact that convolutional neural networks contain 
convolutional and pooling layers, which can achieve the 
extraction of data features from the network structure 
perspective. The convolutional layer serves as a key link 
in the convolutional neural network, but has special 
structural characteristics, so the convolutional layer is 
sparsely connected to other layers. 

(1) Convolution surface calculation
The convolutional layer generally has multiple

convolution kernels, mainly for extracting deeper 
features, so the parameters of the convolution kernel are 
emphasized during network training. The input matrix of 
the convolutional layer is defined as x and the matrix has 
M rows and N columns, then the size of the convolutional 
kernel is also the same as the input matrix, the 
convolutional kernel is defined as w, and the bias in the 
convolutional network is defined as b. The convolutional 
layer is calculated as: 

h x w b= ∗ +


(9) 

If each channel is input, there are D matrices x1, 
x2,...xD, and the corresponding convolution kernels are w1, 
w2,...wD, and the offset is b, which means that the formula 
is: 

1

D

i i
i

h x w b
=

= ∗ +∑ 

(10) 
(2) Partial response normalization
The value on the convolution surface is defined as y

and the local response as bix, then the normalised value of 
y is calculated as follows: 

min( 1, /2)
2

, , ,
max(0, /2)

= / ( ( ) )
N i n

i i j
x y x y x y

j i n
b a k a βα

− +

= −

+ ∑
(11) 

wher,e n is the number of neighbouring convolutional 
surfaces in the convolutional layer, k, α and β are tunable 
parameters in the convolutional layer which can be 
adjusted according to the data characteristics, and N is the 
total number of convolutional surfaces. Since the local 
response has been normalised, the convolutional network 
needs to be re-tuned for the corresponding parameters. 
The expression of the objective function E is: 

1
, , ,

1
, ,,

(2 ) ,
-2 ,

j i j
x y i x y x y i

i ji
x y x y ix y

b M a b M j i
a b M j ia

β αβ
αβ

− −

−

∂ − • • • =
 ≠∂  (12) 

4. Example simulation

The convolutional neural network used in the wind turbine 
gearbox fault diagnosis model in this paper consists of an 
input layer, a convolutional layer, a pooling layer, and a 
convolutional residual module, in which the convolutional 
layer is denoted by conv1 with the number of 4, the 
maximum pooling layer is denoted by maxpool with the 
number of 4, and the convolutional residual module is 
denoted by onv2_x, conv3_x, conv4_x and conv5_x. with 
the number 4. Firstly the vibration signal data is input, for 
the first convolutional layer the amount of convolutional 
kernels in the layer is set to 16, the size of the convolutional 
kernel is preferred to be 3 x 3 according to the vibration 
signal data and the step size is 1. The training parameters 
are set to 448 accordingly. The pooling layer step size is 
2x2 and 1. For the second convolutional layer the number 
of convolutional kernels is set to 32, the convolutional 
kernel size is preferred to be 3 x 3 based on the vibration 
signal data and the step size is 1. The training parameters 
are set to 4640 accordingly. The pooling layer step size is 
2x2 and 1. For the third convolutional layer the number of 
convolutional kernels is set to 64, the size of the 
convolutional kernel is preferred to be 3 x 3 based on the 
vibration signal data, and the step size is 1. The training 
parameters are set to 18,496 accordingly. The pooling layer 
has a step size of 2x2 and a step size of 1. For the fourth 
convolutional layer the number of convolutional kernels is 
set to 128, the convolutional kernel size is preferred to be 
3 x 3 based on the vibration signal data and the step size is 
1. The training parameters are set to 73,856 accordingly.
The pooling layer step size is 2x2 and 1. For the fully 
connected layer in the wind turbine gearbox fault diagnosis 
model, the activation function needs to be selected, and in 
this paper, the relu function is selected as the activation 
parameter. The number of convolutions in the fully 
connected layer is set to 100, and the training parameters 
are set to 43 059 300 accordingly. The relu function is 
selected as the activation function of the second fully 
connected layer. The number of convolutions in the second 
fully connected layer is set to 10, and the training 
parameters are set to 43 059 300 accordingly. The softmax 
function was chosen as the activation function for the 
second fully connected layer. The number of convolutions 
in the third fully connected layer is set to 2 and the training 
parameters are set to 202 accordingly. 

4.1 EMD eliminates data trend items 

In order to verify the feasibility and efficiency of the 
empirical mode decomposition method for optimizing 
fault vibration data, this paper selects the fault vibration 
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waveform diagram prepared in Matlab before the study as 
the source signal, as shown in Figure 5, observe the wind 
speed and weather conditions before the vibration 
detection , Avoid extreme weather operations. During the 
acquisition process, the wind turbine is started. When the 
generator speed reaches 1,200 rpm and is relatively stable, 
the data will be collected. When the acquisition time 
meets the requirements, it will move to the next 
acquisition point for vibration data acquisition. 

Figure 5. Vibration diagram of wind turbine during 
normal operation 

Vibration signals containing trend items will have a 
greater impact on the subsequent analysis results, and 
even deviate far from the normal analysis results. 
According to the above analysis, using the empirical 
mode decomposition method to process vibration signals 
containing trend items can eliminate The influence of the 
trend item on the analysis result. Common trend items 
mainly include linear trend items, polynomial trend items 
and exponential trend items, which are defined as follows: 

Linear trend item 

( ) taatc 10 += (13)

Polynomial trend term 

( ) n
ntatatataatc +++++= 3

3
2

210
(14)

Index trend item 

( ) btaetc −= (15)

In order to verify the effectiveness of the empirical 
modal decomposition method to eliminate the trend item 
in the vibration signal, the on-site wind turbine equipment 
vibration data and the trend item generated by the 
simulation are combined to form the vibration data 
containing the trend item on the MATLAB platform. 
Perform processing and compare and analyze the data 

before and after processing. Select 5,000 data from the 
vibration data set of the on-site wind turbine equipment. 

Figure 6. Comparison before and after EMD 
treatment 

As shown in Figure 6, it can be seen from the processed 
graph that it mainly fluctuates up and down at zero, 
indicating that these data do not contain trend items. This 
is mainly because the trend items may only appear after the 
collection equipment has been working for a long time. The 
data collection of the experimental platform was completed 
in a relatively short time, and the preprocessing of the 
vibration data was completed by using empirical mode 
decomposition. 

4.2 GAN fault virtual data generation 

In this experiment, the experimental data collection was 
completed by replacing the different faulty parts of the 
experimental wind turbine. In the experiment, the fault 
vibration waveform diagram is used as input data, and 
multiple locations in the wind turbine gearbox are collected 
separately, and the inner ring and outer ring of the gearbox, 
around the bearing, etc, are used for neural network 
training for 6 different vibration and electrical fluctuations, 
as shown in Figure 7. Show: 
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Figure 7. Vibration signal: a) tooth surface wear b) 
gear pitting c) gear broken tooth d) bearing failure 

The vibration signal characteristics are in a non-linear 
distribution state, and there is no regularity between each 
sample data. The new sample data distribution state 
expanded by GAN is infinitely close to the original 
sample data distribution state, which verifies the validity 
of the wind turbine gear fault and bearing fault sample 
data generated by GAN，as shown in Figure 8. 

Figure 8. Training sample distribution 

The loss rate of the diagnosis result of the generative 
adversarial neural network in training is 0%. Put the test 
samples into the trained neural network to judge the 
training results of wind turbine faults without error, and 
continuously upgrade and evolve through the generator 
and discriminator. The fluctuation of the training 
homeopathic rate was originally smaller and decreased, as 
shown in Figure 9. 

Figure 9. Network training accuracy and loss rate 

4.3 Fault diagnosis of wind turbine gearbox 
based on DCGANN 

The diagnostic model is modelled using a deep 
convolutional neural network, and the size of the data 
volume and the number of iterations will affect the 
accuracy of the model. According to the experimental 
results, it can be seen that the higher the number of 
iterations, the better the convergence of the diagnostic 
model, which also represents a better training effect of the 
neural network. The effectiveness of the diagnostic model 
is verified for 1000 groups of test samples, and the results 
show that the computational effect of the neural network 
reaches the optimum when the number of iterations is 
100, and at this time, it is able to effectively diagnose the 
wind turbine gearbox faults. 
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Figure 10. Network accuracy and loss rate of 
different iteration times 

Assuming that all other conditions are the same except for 
the sample capacity, the accuracy of the neural network 
model gradually increases with the increase of the sample 
capacity. Through the extension of DCGAN, in order to 
meet the requirements of wind turbine gearbox fault 
diagnosis accuracy, the learning efficiency of the model 
can be improved by increasing the training set of the 
sample capacity, which provides a solution idea for the 
inefficiency in the process of solving the diagnosis problem 
using deep learning. 

Figure 11. Sample network influence with trend 
items 

As shown in the figure 10 and 11, through comparison, it 
can be found that after the trend item of vibration waveform 
data is decomposed by empirical mode after inputting the 
training data generated in the optimized deep convolutional 
neural network, it is better than the traditional generative 
formula. The accuracy of the training data generated by the 
adversarial neural network is much improved. 

5. Conclusion

In this paper, a wind turbine gearbox fault diagnosis
model based on EMD-DCGAN is proposed to address the 
problem of low diagnostic efficiency due to inaccurate 
data sources faced in wind turbine gearbox fault 
diagnosis. The model uses the signal processing 
mechanism of EMD to effectively eliminate the trend 
term of the vibration signal, and adopts the GAN deep 
neural network to classify the high-dimensional nonlinear 
vibration signal, so as to achieve the accurate 
identification of wind turbine gearbox faults. The specific 
conclusions are as follows: 

(1) Use EMD to improve data accuracy and solve the
problem that the vibration signal is affected by the trend 
item, and the vibration acceleration signal will deviate 
from the baseline. The signal processing mechanism of 
EMD can effectively eliminate the trend term of the 
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vibration signal, and make the sample data more suitable 
for the training of the diagnostic model, improve the 
training accuracy and speed of the diagnostic model, and 
provide a data basis for the diagnosis of wind turbine 
gearbox faults.. 
(2) Using DCGAN to construct a fault diagnosis model to
monitor the wind turbine gearbox, optimize the network
structure and adjust the parameters to improve the accuracy 
of network training. The experimental results show that
EMD-DCGAN can solve the problem of insufficient
training samples and can significantly strengthen the
training of the network Ability,fault diagnosis accuracy
rate has obvious advantages over other neural networks.
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