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Abstract 

INTRODUCTION: With the large-scale integration of new energy into the grid, the safety and reliability of the power grid 
have been severely tested. The optimized configuration of micro power systems is a key element of intelligent power systems, 
playing a crucial role in reducing energy consumption and environmental pollution. 
OBJECTIVES: a power grid optimization scheduling model is proposed that comprehensively considers the issues of power 
grid operating costs and environmental governance costs 
METHODS:  Using quantum particle swarm optimization method to optimize the objective function with the lowest system 
operating cost and the lowest environmental governance cost. In order to improve the search ability of the algorithm and 
eliminate the problem of easily getting stuck in local optima, the Levy flight strategy is introduced, and the variable weight 
method is used to update the particle factor to improve the optimization ability of the algorithm. 
RESULTS:  The simulation results show that the improved quantum particle swarm optimization algorithm has strong 
optimization ability, and the scheduling model proposed in this paper can achieve good scheduling results in different 
scheduling tasks. 
CONCLUSION: （1）The improved particle swarm algorithm, in comparison to itspredecessor, boasts a greater degree of 
optimization accuracy, aswifter convergence rate, and the capability to avoid the algorithm'sdescent into the local optimal 
solution at a later stage of the process. （2）The proposed model can effectively reduce users’ electricity costs and 
environmental pollution, and promote the optimized operation of microgrids. 
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1. Introduction

With the establishment of the strategic goal of carbon
neutrality and carbon peak, which will be accompanied by 
large-scale grid connection of new energy sources, the 
optimal configuration of micro-power systems is a key 
element of smart power systems, which plays a crucial role in 
reducing energy consumption and reducing environmental 
pollution. The optimal scheduling of microgrid is to properly 
distribute the output energy of DG and coordinate the 
transmission energy of microgrid and main network under the 
premise of complying with all the constraints of the system, 

so as to achieve multiple goals such as reducing operating 
costs, reducing pollutants, improving stability and increasing 
power generation benefits [1]. For consumers, optimized 
scheduling of microgrids can significantly reduce their 
electricity bills. On the power supply side, through the 
optimal deployment of micro-grids, we can enhance the 
balance of the grid, reduce energy consumption and 
environmental damage in the power manufacturing process. 
Therefore, it is of great practical value to optimize the 
deployment of micro-grid. 

At present, there are three main aspects of research on 
new energy: predicting the power generation of new energy 
and constructing scheduling models to optimize scheduling. 
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The development of intelligent algorithms has greatly 
improved progress in these areas [2] [3] [4].But in practice, 
the prediction accuracy of these methods can not meet the 
scheduling requirements of the system. Many scholars have 
conducted specific research on the scheduling model and 
strategy of distributed energy uncertainty. Dueas P etal.(2018) 
and Clegg S etal(2019)in references proposes a power system 
model with interactive optimal scheduling considering virtual 
power plants. Li Xinjun's (2023) constructed a multi-
objective model of a gas-electricity interconnected virtual 
power plant, taking operating economic benefits and peak-
shaving and valley-filling effects as optimization objectives. 
Wang, SQ(2023) et al.established a multi-objective model 
considering EV charging and discharging strategy, taking the 
adjustment of operating cost and power fluctuation as the 
objective function, and verified that the proposed model has 
good scheduling capability. However, the above models all 
consider environmental pollution. Liang, HP et al. (2023) in 
order to achieve efficient consumption of new energy and 
reduce system carbon emissions, a new dual-layer low-
carbon optimal scheduling model of power system based on 
carbon emission theory and carbon tax as demand response 
incentive signal is established. Zou, Y(2019) et al. and Chen, 
J(2018) et al  based on the optimization method of load 
forecasting and wind power output forecasting, a new grid-
connected wind power generation model combining energy 
storage and daily operation is studied. A mixed integer 
programming model is set up for the benefit of the combined 
operation of wind power and pumped storage. The test results 
show that the cooperation between pumped storage power 
station and wind farm can greatly reduce the negative impact 
of wind power output randomness on power grid operation. 
Chen, X et al(2021)  used stochastic programming methods 
to explore the complementary scheduling strategies of wind 
power generation and pumped storage in isolated island 
environments. However, the above article is mainly aimed at 
improving the complementary scheduling of micro power 
systems. As for the complementary optimal scheduling of 
large-scale renewable energy grid connection, there are few 
studies. Chen, S.; Xiao, JY.; Huang, YC et al. (2020). 
optimizes the minimum abandonment rate, minimum total 
operating cost and maximum benefit of pumped storage 
power stations. The above research work has achieved certain 
results in the optimization of wind power scheduling models 
and strategies, but there are few studies on the scheduling 
problem using BESS. Energy storage has become more and 
more important in today's society, as a means to smooth the 
wind gap power fluctuations, it can greatly reduce the harm 
caused by power fluctuations to the grid. Therefore, it is 
urgent to consider the research of wind and landscape 
optimization scheduling of BESS. 

The optimization of resource scheduling usually needs 
to consider multiple objectives. The traditional methods such 
as linear programming, dynamic programming and large 
system decomposition and coordination can not meet the 
actual needs when dealing with the problems of multi-
objective complex systems. However, with the progress of 
intelligent algorithms, intelligent optimization algorithms 
have gradually turned into a key tool to solve the power 

optimization scheduling model. Particle swarm optimization 
(PSO) is widely used among them. Particle swarm 
optimization algorithm has the advantages of simple structure, 
easy implementation, fast search speed and so on[12], and has 
been applied by many scholars to the study of optimal 
problems. However, PSO algorithm is easy to fall into local 
optimal solutions, and in the face of multi-objective problems, 
the algorithm can not take into account both global and local 
optimal. For this reason, a large number of scholars have 
improved the PSO algorithm to meet the optimization needs. 
Zou, YQ et al. (2020) a nonlinear inertial weight decline 
strategy is proposed to optimize the PSO algorithm by using 
the niche idea, which improves the convergence ability of the 
algorithm. Cai, GA. et al. (2022) proposes an improved 
dynamic inertial weight particle swarm optimization 
algorithm, which can increase the diversity of the population 
in the early stage of iteration and avoid the algorithm falling 
into local optimality. Although the improved PSO algorithm 
can improve the defects of the original PSO algorithm to a 
certain extent, the PSO algorithm is not a convergence 
algorithm that can solve multi-objective problems and 
conforms to the global convergence criteria, and its global 
search ability depends very much on the setting of the upper 
limit of particle velocity[17]. In recent years, Sun Jun et al. 
proposed a particle swarm optimization algorithm (QPSO) 
with quantum behavior[18]. Compared with the traditional 
particle swarm algorithm, it eliminates the particle velocity 
attribute, has fewer parameters, and has faster convergence. 
LAI Choi-Hong et al.(2019) uses benchmark function to test 
the performance of QPSO algorithm, so as to verify the 
superiority of this algorithm. Compared with the basic 
particle swarm algorithm, the performance has been 
improved in all aspects. To further improve the performance 
of the algorithm. Salimi, M et al.(2019) proposes to introduce 
different chaotic mappings into quantum particle swarm to 
increase the robustness of the algorithm. Zhang et al. 
introduced the variation operator of Gaussian distribution in 
the quantum initialization of position information to increase 
the diversity of the population. However, the improvement 
ideas of these methods focus on optimizing the population 
initialization process and preventing the algorithm from 
falling into convergence too early. The research on attractor 
and search range in the algorithm update criteria, which 
directly affect the position update speed, is not specific 
enough. 

In summary, this article focuses on the operating costs 
and environmental protection costs of microgrid systems, and 
constructs an environmental protection and economic 
dispatch model for microgrids. Using an improved quantum 
particle swarm optimization algorithm to solve the 
optimization model. Firstly, Levy flight strategy is introduced 
to determine the random walk of iterative steps by using Levy 
distribution, and then the search space is more efficient by 
using larger jumps of particles. In addition, variable weight 
method is used to update the particle factor, which can get rid 
of the local minimum of the algorithm to a certain extent and 
improve the search ability. The simulation results show that 
the improved algorithm in this paper performs better than the 
original algorithm and currently popular optimization 
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algorithms.At the same time, scheduling simulation analysis 
is conducted under different conditions to obtain different 
scheduling schemes that can meet the requirements under 
different regulations. 

2. Particle swarm optimization 
 
2.1 Basic particle swarm optimization 

In a particle swarm optimization algorithm, with each 
potential answer to an optimization issue being a point in a 
D-dimensional search space, known as a particle, is the 
fundamental element of the algorithm. The particle traverses 
the search space at a specific velocity.A group of randomly 
generated particles, constantly adjusting its position and 
speed in response to individual and group flight experience, 
is the basis of the particle swarm optimization algorithm's 
search process. After multiple iterations, the optimal position 
is achieved. The standard PSO updates the particle's velocity 
and position in the search space in the following manner. 
𝒗𝒗𝑖𝑖𝑡𝑡+1 = 𝜔𝜔𝒗𝒗𝑖𝑖𝑡𝑡 + 𝑟𝑟1 ⋅ 𝑐𝑐1(𝒑𝒑best − 𝒙𝒙𝑖𝑖𝑡𝑡) + 𝑟𝑟2 ⋅ 𝑐𝑐2(𝒈𝒈best  𝑡𝑡  − 𝒙𝒙𝑖𝑖𝑡𝑡)

𝒙𝒙𝑖𝑖𝑡𝑡+1 = 𝒙𝒙𝑖𝑖𝑡𝑡 + 𝒗𝒗𝑖𝑖𝑡𝑡+1
1 

The running algebra, denoted by 𝑡𝑡 , has a particle 
number, i = 1,2, n; n is the population size of particle swarm; 
and the dimension of the search space, D. The velocity of 
particle i  in generation t  is denoted by 𝒗𝒗𝑖𝑖𝑡𝑡 =
(𝑣𝑣𝑖𝑖1 𝑡𝑡 , 𝑣𝑣𝑖𝑖2 𝑡𝑡 , … , 𝑣𝑣𝑖𝑖𝑖𝑖 𝑡𝑡); the position of particle i in generation 
t is denoted by𝒙𝒙𝑖𝑖𝑡𝑡 = (𝑥𝑥𝑖𝑖1 𝑡𝑡 , 𝑥𝑥𝑖𝑖2 𝑡𝑡 , … , 𝑥𝑥𝑖𝑖𝑖𝑖  𝑡𝑡); and the Personal 
best position of a given particle, 𝒑𝒑best is the best position of 
the particle found thus far.The position of the most 
advantageous particle in the swarm, 𝒈𝒈best  is determined by 
the inertia weight 𝜔𝜔, which will have an effect on the local 
exploration and global development capabilities of the 
particles. Additionally, acceleration constants, c1 and c2, and 
random numbers,𝑟𝑟1 and 𝑟𝑟2, between 0 and 1 to maintain the 
diversity of the population, are also taken into account. The 
particle's flight experience is determined by its current 
position and the individual optimal position𝒑𝒑best , while the 
collective optimal position gbest is the result of the collective 
flight experience. 

2.2 Particle swarm algorithm with quantum 
behavior 
 

The standard particle swarm optimization algorithm can 
solve multi-peak and high-dimensional control optimization 
problems, but when dealing with multi-objective 
optimization problems, 𝒈𝒈best  𝑡𝑡  is no longer unique, and the 
optimization result is not an optimal solution, but a Pareto 
optimal solution set. The computation amount is greatly 
increased and the stability is reduced, and it is easy to fall into 
local optimal. Therefore, PSO can not be directly applied to 
multi-objective optimization problems, and it needs to be 
improved. When the number of variables increases and the 
dimension increases, theoretically it cannot be called a global 
algorithm. Therefore, Sun Jun et al. introduced quantum 

behavior into particle swarm optimization (PSO) and 
proposed a new quantum particle swarm optimization 
(QPSO). In the optimization iteration, the algorithm abandons 
the velocity update as shown in equation (12) and only 
updates the position information of the particles. To ensure 
the convergence of the quantum particle swarm algorithm, 
each particle must be drawn to its own local attractor (also 
known as the center of the potential well), the definition of 
the attractor is as follows: 

𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝜙𝜙𝑝𝑝𝑖𝑖 ,𝑗𝑗(𝑡𝑡) + (1 − 𝜙𝜙)𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝑗𝑗(𝑡𝑡)
(𝑖𝑖 = 1,2,⋯ ,𝑁𝑁; 𝑗𝑗 = 1,2,⋯ ,𝐷𝐷) 2 

Where 𝑝𝑝𝑖𝑖,𝑗𝑗  represents the JTH dimension of the 
individual optimal position of the ith particle in the next 
iteration, which affects the evolution convergence trend of the 
particle in each iteration; 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝑗𝑗  represents the JTH 
dimension of the optimal position of the whole particle 
population; 𝜙𝜙 ∈ [0,1]. 

QPSO algorithm introduces the particle behavior of 
quantum state, using a wave function Ψ(𝑥𝑥, 𝑡𝑡) to describe the 
particle's position state, and then solving the Schrodinger 
equation to obtain the particle's probability density function 
Q and probability distribution function D, and determine the 
probability of the particle appearing somewhere in the 
workspace: 

⎩
⎪
⎨

⎪
⎧𝑄𝑄 �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1)� =

1
𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡)

𝑒𝑒
−
2�𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡)−𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡+1)�

𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡)

𝐷𝐷 �𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1)� = 𝑒𝑒
−
2�𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡)−𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡+1)�

𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡)

3 

Where 𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡) represents the feature length between 
particles, which is used to determine the search range of 
particles, and calculated by equation (4) : 

𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡) = 2𝑎𝑎 ∣  mbest 𝑗𝑗(𝑡𝑡) − 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡) ∣ 4 
Where 𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑗𝑗(𝑡𝑡) = 1

𝑁𝑁
∑𝑖𝑖=1
𝑁𝑁  𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡) is a new parameter 

defined in the QPSO algorithm, representing the average 
optimal position of all particles at the 𝑡𝑡 iteration. 𝑎𝑎 represents 
the contraction and expansion factor. 

So far, the specific position of the particle in space can 
be obtained by Monte Carlo inverse transformation method 
[19], and the position update equation is shown in equation 
(5): 

𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡) ±
1
2
𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡) ln �

1
𝑢𝑢
� 5 

U represents random numbers evenly distributed from 0 
to 1, and the equation is' + 'when u>0.5; When u<0.5 the 
equation is "-". 

As can be seen from equation (4), factor a becomes the 
only parameter that needs to be controlled and adjusted in the 
algorithm process, and the previous particle movement no 
longer affects the particle's next position update, which makes 
it more random and improves the degree of swarm 
intelligence. Theoretically, the optimal solution can be found 
in the search space. Therefore, based on these characteristics, 
this paper improves and optimizes the particle search range 
of the QPSO algorithm to better coordinate the global and 
local search capabilities of the algorithm and ensure the 
algorithm has better convergence speed and solving accuracy. 
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Then, the improved QPSO algorithm is used to solve the 
inverse kinematics of the robot. 

 
2.3 Improved quantum particle swarm 
optimization algorithm 
 

As can be seen from equation (5), particle local attractor 
𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡) and feature length 𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡)  two key factors in the 
position updating process of QPSO algorithm, play a great 
influence, and 𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡) determines the direction of population 
evolution. 𝐿𝐿𝑖𝑖,𝑗𝑗(𝑡𝑡)is used to determine the search range of the 
particle, and is determined by two factors: the contraction 
expansion factor and the optimal average position. Based on 
the above characteristics, this paper improves the QPSO 
algorithm in two aspects, so that the algorithm can 
continuously optimize and adjust the search amplitude and 
scope according to the actual situation during the operation of 
each particle, improve the accuracy and robustness of the 
QPSO algorithm, accelerate the overall convergence, and 
prevent the algorithm from falling into the local optimal 
solution. 

 
2.3.1 Introducing Levy Flight Strategy 

From equation (2), it can be seen that the center of the 
potential well of a particle is determined by the individual 
optimal of the current particle and the historical optimal of 
the current population. However, when the historical optimal 
value 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡falls into local optimal in the iterative process, due 
to the linear combination relationship between 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡and 𝑝𝑝𝑖𝑖,𝑗𝑗 
in the calculation formula, 𝑝𝑝𝑖𝑖,𝑗𝑗  will also fall into local 
optimal, resulting in premature convergence of the algorithm. 
In order to solve such problems, this paper decides to 
introduce Levy flight strategy to improve. According to the 
relevant literature [20][21], in the current researches on many 
intelligent optimization algorithms, such as particle swarm 
optimization algorithm and ant colony algorithm, the Levy 
distribution is used to determine the random walk of iterative 
step length, and then the search space is more efficient 
through larger particle jumps, so as to get rid of the local 
minimum of the algorithm to a certain extent. Improve search 
capabilities. Therefore, this paper decides to introduce the 
Levy flight strategy into the calculation of the center of the 
potential well, and redistribute the particle positions when the 
population evolution direction falls into the local optimal, so 
as to improve the early convergence of the QPSO algorithm. 

Levy flight is a class of non-Gaussian random processes 
whose random walks obey the Levy stable distribution. First 
define a step factor s that fits the Levy distribution： 

𝑚𝑚 = 𝑟𝑟𝑎𝑎𝑟𝑟 𝑑𝑑(𝑚𝑚𝑖𝑖𝑠𝑠 𝑒𝑒(𝐷𝐷)) ⊕ 𝐿𝐿𝑒𝑒𝑣𝑣 𝑦𝑦(𝑘𝑘) ∼
𝜇𝜇

|𝑣𝑣|
1
𝑘𝑘

6 

In the definition of 

 𝜎𝜎𝜇𝜇2 = �
Γ(1+𝑘𝑘)sin �𝑘𝑘𝑘𝑘2 �

Γ��1+𝑘𝑘2 �2(𝑘𝑘−1)/2�
�
1/𝑘𝑘

,𝜎𝜎𝑣𝑣2 = 1。Γ  is the value of 

the 𝐷𝐷  -dimension standard gamma function obtained 
according to formula (18), and 𝑘𝑘 is a random number between 

[1,3] ; Both 𝜇𝜇  and 𝑣𝑣  conform to the standard normal 
distribution, 𝜇𝜇 ∼ 𝑁𝑁�0,𝜎𝜎𝜇𝜇2�，𝑣𝑣 ∼ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) . Then put the 
defined step factor 𝑚𝑚 into the calculation formula of the center 
of the potential well, as shown in equation (7) : 
𝑝𝑝𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑚𝑚 �𝑥𝑥𝑖𝑖,𝑗𝑗 − �𝜙𝜙𝑝𝑝𝑖𝑖 ,𝑗𝑗(𝑡𝑡) + (1 − 𝜙𝜙)𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡,𝑗𝑗(𝑡𝑡)��
(𝑖𝑖 = 1,2,⋯ ,𝑁𝑁; 𝑗𝑗 = 1,2,⋯ ,𝐷𝐷)

7 

Thus, equation (2) and equation (7), as two renewal 
modes of particle local attractors, can be selected according 
to different situations. In the algorithm initialization process, 
each particle is given a bound value lim and the trace value 
trial is initialized to 0. If the fitness value of the new particle 
generated in each iteration is not improved, the tracking value 
is increased once. If the fitness value corresponding to the 
iterated new particle is improved compared with the previous 
one, set trial =0. When trial >lim occurs, it means that the 
algorithm has fallen into a local optimal situation, and the 
fitness value converges prematurely. At this time, Levy flight 
method is adopted, and the local attractor position is 
recalculated according to equation (7) for subsequent 
iterations. 

 
2.3.2 The variable weight method updates the 
optimal position of particles 

The average optimal position 𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑗𝑗(𝑡𝑡)introduced in 
the QPSO algorithm is only calculated by adding the 
individual historical optimal values of all particles in the 
population. Such a calculation automatically assumes that the 
individual optimality of each particle plays a consistent role 
in the final average optimal value, as shown in equation (8). 
However, the fitness value of each particle is not the same in 
the actual calculation, and the larger the fitness value is, the 
more important the particle is in the population. Therefore, it 
is not accurate enough to calculate the individual optimal 
value of these particles uniformly to obtain the average 
optimal value. Therefore, in this paper, the particles are 
arranged in descending order according to the size of the 
fitness value, and Then use the same method as Hozouri, 
M.A. et al. (2019)[23] to assign weight coefficients of 
different sizes to the sorted particles.. The larger the overall 
compliance fitness value is, the greater the role it plays in the 
process of global convergence approaching the optimal 
solution, and the larger its weight coefficient should be. The 
adjusted average optimal position is calculated as shown in 
Equation (9) : 

𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑗𝑗(𝑡𝑡) = �
1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝑝𝑝𝑖𝑖 ,1(𝑡𝑡),
1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝑝𝑝𝑖𝑖,2(𝑡𝑡),⋯ ,
1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝑝𝑝𝑖𝑖,𝑖𝑖(𝑡𝑡)� 8 

𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑗𝑗  (𝑡𝑡) = �
1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝛼𝛼𝑖𝑖,1𝑝𝑝𝑖𝑖,1(𝑡𝑡),
1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝛼𝛼𝑖𝑖,2𝑝𝑝𝑖𝑖,2(𝑡𝑡),⋯ ,

1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝛼𝛼𝑖𝑖,𝑖𝑖𝑝𝑝𝑖𝑖,𝑖𝑖(𝑡𝑡)�

9 

Where 𝛼𝛼𝑖𝑖,𝑗𝑗  represents the weight coefficient, which in 
this paper varies linearly from 1.5 to 0.5 according to the 
fitness of different particles. 

When solving the potential well center𝑝𝑝𝑖𝑖,𝑗𝑗 of quantum 
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particle swarm, it may fall into the local optimal problem, and 
Levy flight strategy is used to make it jump out of the local 
minimum value to avoid early settlement of the algorithm. In 
order to solve the problem that the original feature length 𝐿𝐿𝑖𝑖,𝑗𝑗 
does not fully consider the coordination between global 
search and local search, an improved method such as 
nonlinear dynamic adjustment of contract-expansion factor 
and variable weight method to calculate the average optimal 
position is developed to improve the accuracy and robustness 
of QPSO algorithm. 

 
2.4 Algorithm Flow 
 

The specific steps are as follows: 
(1) Initialize population parameters such as population size, 
dimension and maximum number of iterations, set the starting 
position of particle iteration, limit value lim and tracking 
value trial. 
(2) The fitness value of the current process is obtained 
according to the objective function shown in formula (11), so 
as to determine the individual optimal p_(i,j) and the global 
optimal𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡.𝑗𝑗. 
(3) Enter the cycle and calculate the local attractors of each 
particle. 
(4) Calculate the average optimal position 𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑗𝑗 by using 
the variable weight method described above; According to 
the distance difference between the current point and the 
historical best point, the shrinking-expansion factor is 
dynamically adjusted, and the feature length 𝐿𝐿𝑖𝑖,𝑗𝑗is calculated. 
(5) The latest position of the particle is obtained according to 
the iterative equation of the IQPSO algorithm, and its fitness 
value is calculated to determine whether it is optimized. 
(6) If there is optimization, it indicates that the particle is in a 
normal search state, set the tracking value trial to 0, and jump 
to step (8); If there is no optimization, it indicates that the 
particle may fall into a locally optimal region, and the 
tracking value increases by 1 and turns to determine whether 
the limit lim is exceeded. 
(7) If trial < lim is established, jump to step (8); When the 
comparison expression is not valid, the local attractor update 
method with Levy flight strategy is adopted and step (4) is re-
entered. 
(8) Individual optimal 𝑝𝑝𝑖𝑖,𝑗𝑗  and global optimal 𝑔𝑔best. 𝑗𝑗  are 
determined by analyzing the fitness value of the new particle. 
(9) Determine whether the termination conditions are met. If 
the final 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡  output is met, if not, return to step (3) to enter 
the next iteration. 
 
2.5 Simulation verification and analysis 
 
2.5.1 Test functions 

In order to confirm the effect of the optimized particle 
swarm optimization algorithm, we select ZDT1, ZDT2 
adnZDT4 as three reference functions to evaluate the effect 
of the algorithm. For the detailed meaning of the function, 
please refer to Table 1. Meanwhile, we also compare with 
NSGA II, PSO, NSPSO and MOPSO, four common multi-

objective optimization methods. Consider 2 evaluation 
indicators as follows: 

1) Close to the best frontier of pareto, namely 
convergence; 

Assuming that the Pareto optimal solution set of the 
multi-objective optimization problem is certain, we choose 
some points equally from the optimal state of Pareto, and then 
find the shortest distance between the results generated by the 
algorithm and these points, and take the square root of all the 
shortest distances as the evaluation index γ of convergence. 

𝛾𝛾 = �∑  |𝐴𝐴|
𝑖𝑖=1 𝑑𝑑𝑖𝑖
|𝐴𝐴| 10 

Where, is the minimum Euclidean distance between 
the I-th non-inferior solution and all Pareto optimal solutions 
on the Pareto optimal front end. 

2) Solutions are uniformly distributed on pareto frontier, 
that is, diversity. 

According to the specific objective function value, all 
the good solutions generated by the algorithm are arranged in 
the objective space in an orderly manner, then the diversity 
index Δ : 

𝛥𝛥 =
∑  𝑀𝑀
𝑚𝑚=1 𝑑𝑑𝑚𝑚 + ∑  |𝐴𝐴|−1

𝑖𝑖=1 |𝑑𝑑𝑖𝑖 − 𝑑𝑑∗|
∑  𝑀𝑀
𝑚𝑚=1 𝑑𝑑𝑚𝑚 + (|𝐴𝐴| − 1)𝑑𝑑∗

11 

Where, is the Euclidean distance between the 
boundary solution obtained by the algorithm on the m-th 
objective and the extreme solution on the m-th objective on 

the Pareto optimal front end;  Is the average value of . 
 

2.5.2 Algorithm Parameter Settings 
The function evaluation times of all algorithms are 

15000 times, the size of the output external file is 100, the 
population size of MOPSO and SMOPSO is 50, and the 
iteration times are 500. The population size of NSPSO and 
NSGA II was 100 and there were 250 iterations. . The IQPSO 
algorithm in this paper has a population size of 100 and a 
maximum number of iterations of 250. 𝐴𝐴maxis 100,𝑎𝑎max and 
𝑎𝑎min are 70 and 50 respectively, 𝜔𝜔 decreases linearly from 
0.95 to 0.35, 𝑐𝑐1 = 𝑐𝑐2 = 2, ℎ = 30,𝐶𝐶 = 4,𝐶𝐶max = 2. 

 
2.5.3 Simulation results and analysis 

In order to accurately reflect the performance of IQPSO 
algorithm, 30 independent experiments were conducted for 
each test function, and the mean and variance of evaluation 
indexesγ andΔ were calculated. Table 2and Table 3show the 
mean M and variance V of convergence index γand diversity 
index Δ when the proposed algorithm runs the 3 test functions 
30 times respectively. Table 4 shows the average value ofγ 
under different evolutionary algebras of the algorithm, and 
the algebras required for each comparison algorithm to run 
when γ=0.01 is reached. It is not difficult to see from the data 
table that in addition to the algorithm in this paper, the best 
performance is NSGA2 algorithm. In order to 
comprehensively compare the output solutions of NSGAII 
algorithm and the algorithm in this paper, the optimal 
solutions obtained from 30 independent experiments are 

id

md

*d id
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superimposed and displayed together to evaluate the 
convergence, diversity and stability of the algorithm. As 
shown in the picture: 

Table 1. ZDT test functions 
 

function Variable 
dimension Value range Objective function 

Optimal 
solution 

condition 

Function 
feature 

ZDT1 n=30 [0,1] 

𝑓𝑓1(𝒙𝒙) = 𝑥𝑥1
𝑓𝑓2(𝒙𝒙) = 𝑔𝑔(𝒙𝒙)�1 −�𝑓𝑓1(𝒙𝒙)/𝑔𝑔(𝒙𝒙)�

𝑔𝑔(𝒙𝒙) = 1 + 9� 
𝑛𝑛

𝑖𝑖=2

(𝑥𝑥𝑖𝑖)/(𝑟𝑟 − 1)
 

𝑥𝑥1 ∈ [0,1]
𝑥𝑥𝑖𝑖 = 0
𝑖𝑖 = 2, … ,𝑟𝑟

 convex 

ZDT2 n=30 [0,1] 

𝑓𝑓1(𝒙𝒙) = 𝑥𝑥1
𝑓𝑓2(𝒙𝒙) = 𝑔𝑔(𝒙𝒙)[1 − (𝑓𝑓1(𝒙𝒙)/𝑔𝑔(𝒙𝒙))2]

𝑔𝑔(𝒙𝒙) = 1 + 9� 
𝑛𝑛

𝑖𝑖=2

(𝑥𝑥𝑖𝑖)/(𝑟𝑟 − 1)
 

𝑥𝑥1 ∈ [0,1]
𝑥𝑥𝑖𝑖 = 0
𝑖𝑖 = 2, … ,𝑟𝑟

 non-
convex 

ZDT3 n=30 [0,1] 

𝑓𝑓1(𝒙𝒙) = 𝑥𝑥1
𝑓𝑓2(𝒙𝒙) = 𝑔𝑔(𝒙𝒙)�1 − �𝑓𝑓1(𝒙𝒙)/𝑔𝑔(𝒙𝒙)

−
𝑓𝑓1(𝒙𝒙)
𝑔𝑔(𝒙𝒙)

sin (10𝜋𝜋𝑥𝑥1)�

𝑔𝑔(𝒙𝒙) = 1 + 9� 
𝑛𝑛

𝑖𝑖=2

(𝑥𝑥𝑖𝑖)/(𝑟𝑟 − 1)

 
𝑥𝑥1 ∈ [0,1]
𝑥𝑥𝑖𝑖 = 0
𝑖𝑖 = 2, … ,𝑟𝑟

 Convex 
segment 

Table 2. Comparison of convergent gamma 
 

algorithm  ZDT1 ZDT2 ZDT4 

NSGA II M 0.33 0.072 0.115 
V 0.00475 0.03168 0.00794 

MOPSO M 0.098 0.246 0.184 
V 0.00062 0.05770 0.00351 

PAES M 0.082 0.126 0.024 
V 0.00868 0.03688 0.00001 

IQPSO M 0.00123 0.00084 0.00440 
V 0.00000 0.00000 0.00000 

In order to test the convergence of the algorithm, the 4 
algorithms proposed in this article were applied to test 3 ZDT 
functions, and 30 experiments were conducted respectively. 
The experimental results are shown in Table 3. The mean and 
variance of the convergence index γare used as evaluation 
indicators. From the table It can be seen that the algorithm 
proposed in this article is significantly lower than other 
algorithms in two indicators, which verifies the excellent 
convergence of this algorithm. 

 
Table 3. Diversity Δ comparison 

 
algorithm  ZDT1 ZDT2 ZDT4 

NSGA II M 0.39 0.43 0.74 
V 0.00187 0.00472 0.01971 

MOPSO M 0.68 0.62 0.51 
V 0.000623 0.00618 0.00865 

PAES M 1.23 1.17 0.79 
V 0.00484 0.00769 0.00165 

IQPSO M 0.18592 0.18582 0.43620 

V 0.00010 0.00006 0.00044 
In terms of the diversity of the bundle solutions, the 

optimal solutions of the proposed algorithm have a good 
diversity because of the adaptive weight strategy. Compared 
with the other 3 algorithms, the three test functions have 
significant advantages. Therefore, the algorithm has good 
diversity 

As for the convergence speed of the algorithm, it can 
be seen from 4 that for each ZDT standard test function, the 
𝛾𝛾 value of the algorithm reaches 0.01 earlier. Compared 
with other multi-objective optimization algorithms, the 
proposed algorithm reaches the 𝛾𝛾 value of other algorithms 
early in the 3 test functions. This algorithm can converge to 
pareto frontier quickly. 
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Figure 1. IQPSO and NSGAII algorithm run ZDT1 

function for 30 times to obtain pareto optimal solution 
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Figure 2. IQPSO and NSGAII algorithm run ZDT2 

function for 30 times to obtain pareto optimal solution 
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Figure 3. IQPSO and NSGAII algorithm run ZDT4 

function for 30 times to obtain pareto optimal solution 
 

From FIG. 1 to FIG. 3, it can be seen that the output 
results of the algorithm on the three ZDT test functions not 
only converge precisely to the pareto optimal frontier, but 
also the 30 experimental results are highly overlapping, 
which further indicates that the algorithm has good stability. 

 
3. Optimize and schedule yarn production 
 
 
 

3.1 System operating costs 
 

The cost of power generation refers to the cost required 
for the active power generated by the distribution system 
within the time range t. The microgrid system model 
considered in this article is shown in Figure 5, which includes 
various distributed power sources, including PV, WT, DE, 
MT, and energy storage. When calculating the operating cost 
of the system, in addition to considering the cost of power 
generation, the uncontrollability of wind and solar power is 
also taken into account. With the large-scale integration of 
this energy into the grid, it will increase the risk of microgrid 
system operation, causing incalculable losses. Therefore, the 
introduction of wind and solar power curtailment is expected 
to serve as a risk cost, in order to better optimize distribution   
scheduling. 

The objective function is to minimize the operating cost 
of the system, and the specific objective function is as follows: 

𝐸𝐸𝑐𝑐 = ∑𝑡𝑡=1
𝑇𝑇  ∑𝑖𝑖=1

𝐼𝐼  ∑ℎ=1
𝐻𝐻  �𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝑖𝑖,𝑡𝑡𝑆𝑆𝑆𝑆 + 𝐶𝐶𝑡𝑡𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑡𝑡𝑖𝑖𝐷𝐷�

ℎ

+𝐶𝐶𝑠𝑠𝑖𝑖𝑏𝑏𝑘𝑘,𝑊𝑊𝑇𝑇 + 𝐶𝐶𝑠𝑠𝑖𝑖𝑏𝑏𝑘𝑘,𝑃𝑃𝑃𝑃 12
 

Among them, 𝐸𝐸𝑐𝑐is the cost of the dispatching system; 
𝐶𝐶𝑖𝑖,𝑡𝑡 and 𝐶𝐶𝑖𝑖,𝑡𝑡𝑆𝑆𝑆𝑆 are the fuel costs and start-stop costs of thermal 
power generation. 𝐶𝐶𝑡𝑡𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠is the cost of connecting the BESS to 
the grid. 𝐶𝐶𝑠𝑠𝑖𝑖𝑏𝑏𝑘𝑘,𝑊𝑊𝑇𝑇and 𝐶𝐶𝑠𝑠𝑖𝑖𝑏𝑏𝑘𝑘,𝑃𝑃𝑃𝑃represents the risk cost of wind 
power systems and the risk cost of photovoltaic systems, 
respectively. 

𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑖𝑖(𝑔𝑔𝑖𝑖𝑡𝑡)2

𝐶𝐶𝑖𝑖,𝑡𝑡𝑏𝑏𝑏𝑏 = �𝑢𝑢𝑖𝑖𝑡𝑡�1 − 𝑢𝑢𝑖𝑖,𝑡𝑡−1��𝑁𝑁𝑖𝑖𝑡𝑡

𝑁𝑁𝑖𝑖𝑡𝑡 = �
𝑁𝑁𝑖𝑖hot ,𝑇𝑇𝑖𝑖min < 𝑇𝑇𝑖𝑖𝑡𝑡off ≤ 𝐻𝐻𝑖𝑖off 

𝑁𝑁𝑖𝑖cold ,𝑇𝑇𝑖𝑖𝑡𝑡off > 𝐻𝐻𝑖𝑖off 

𝐻𝐻𝑖𝑖off = 𝑇𝑇𝑖𝑖min + 𝑇𝑇𝑖𝑖cold 

𝐶𝐶risk ,𝑊𝑊𝑇𝑇 = ∑𝑡𝑡=1𝑇𝑇  �𝐶𝐶𝑤𝑤𝑊𝑊loss,WT 
𝑡𝑡 + ∑𝑖𝑖=1

𝑁𝑁  𝛾𝛾𝑖𝑖𝑑𝑑𝑅𝑅𝑖𝑖,𝑡𝑡𝑑𝑑 + ∑𝑖𝑖=1𝑁𝑁  𝛾𝛾𝑖𝑖𝑢𝑢𝑅𝑅𝑖𝑖,𝑡𝑡𝑢𝑢 �
𝐶𝐶risk ,𝑃𝑃𝑃𝑃 = ∑𝑡𝑡=1𝑇𝑇  �𝐶𝐶𝑃𝑃𝑊𝑊loss ,PV

𝑡𝑡 + ∑𝑖𝑖=1𝑁𝑁  𝛾𝛾𝑖𝑖𝑑𝑑𝑅𝑅𝑖𝑖,𝑡𝑡𝑑𝑑 + ∑𝑖𝑖=1𝑁𝑁  𝛾𝛾𝑖𝑖𝑢𝑢𝑅𝑅𝑖𝑖,𝑡𝑡𝑢𝑢 �

13 

 
 

Table 4. Average values of γ obtained by MOPSO-GL under different evolutionary algebras 
 

Test 
function 

Evolutionary algebra 𝛾𝛾 ≤
0.01gives 

algebra 

𝛾𝛾 ≤Other 
algorithms 

minimum algebra 60 80 100 150 200 250 

ZDT1 0.001
77 

0.0012
1 

0.0012
4 

0.001
23 

0.001
22 

0.0012
3 43.267 30.400 

ZDT2 0.001
13 

0.0008
4 

0.0008
5 

0.000
81 

0.000
80 

0.0008
4 36.433 26.400 

ZDT3 0.013
58 

0.0052
5 

0.0045
1 

0.004
36 

0.004
40 

0.0044
0 61.253 31.033 

Among them, 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 , 𝛾𝛾𝑖𝑖are the fuel cost coefficients of 
generators; 𝑁𝑁𝑖𝑖cold is the cost coefficient incurred by the 
generator set from stopping to starting; 𝑁𝑁𝑖𝑖hot is the startup cost 
of generator i; 𝑇𝑇𝑖𝑖min  is the minimum allowable downtime of 
generator i; 𝑇𝑇𝑖𝑖𝑡𝑡off is the continuous downtime time of generator 
i; 𝑇𝑇𝑖𝑖cold  is Generator cold start time; 𝑇𝑇𝑖𝑖𝑡𝑡off is the shutdown time 

and cold start time of generator i. 𝐶𝐶𝑤𝑤and 𝐶𝐶𝑃𝑃  is the penalty 
coefficient for wind abandonment and the penalty coefficient 
for light abandonment, respectively; 
𝑊𝑊loss,WT 

𝑡𝑡 and𝑊𝑊loss ,PV
𝑡𝑡 respectively represent the curtailment 

power;  𝛾𝛾𝑖𝑖𝑑𝑑 and 𝛾𝛾𝑖𝑖𝑢𝑢 are the cost coefficients for increasing and 
decreasing unit power, respectively; 𝑅𝑅𝑖𝑖,𝑡𝑡𝑑𝑑 and 𝑅𝑅𝑖𝑖,𝑡𝑡𝑢𝑢 represents 
the increase and decrease of risk reserve for the unit. 
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3.2 System carbon emissions 
 

With the extraction and utilization of fossil fuels, the 
global greenhouse effect is becoming increasingly severe. 
Green energy has the characteristics of clean and sustainable 
development, and has become the trend of future energy 
development. Compared with traditional coal power 
generation, wind and solar power generation does not 
produce polluting gases, thus avoiding greenhouse effect, 
acid rain formation, and ozone layer damage. Currently, with 
a series of environmental policies in China, pollutants 
generated by traditional coal-fired power must be treated 
before they can be discharged, which has also increased the 
cost of thermal power generation. In order to reflect the 
environmental benefits of wind and solar power scheduling, 
this article takes minimizing the cost of pollutant control as 
the objective function, and the specific relationship is as 
follows: 
𝐸𝐸𝐸𝐸  = ∑𝑡𝑡=1

𝑇𝑇  �∑𝑖𝑖=1
𝑁𝑁  𝐸𝐸SO2𝑖𝑖(𝑃𝑃𝑖𝑖

𝑡𝑡) ⋅ 𝜀𝜀SO2 + ∑𝑖𝑖=1
𝑁𝑁  𝐸𝐸CO2𝑖𝑖(𝑃𝑃𝑖𝑖

𝑡𝑡) ⋅ 𝜀𝜀CO2
+∑𝑖𝑖=1

𝑁𝑁  𝐸𝐸NO𝑥𝑥𝑖𝑖(𝑃𝑃𝑖𝑖
𝑡𝑡) ⋅ 𝜀𝜀𝑁𝑁𝑂𝑂𝑥𝑥�

14 

Where 𝐸𝐸𝐸𝐸  is the environmental cost of the system; 
𝐸𝐸SO2𝑖𝑖(𝑃𝑃𝑖𝑖

𝑡𝑡) , 𝐸𝐸CO2𝑖𝑖(𝑃𝑃𝑖𝑖
𝑡𝑡) , 𝐸𝐸NO𝑥𝑥𝑖𝑖(𝑃𝑃𝑖𝑖

𝑡𝑡)  represent the 
corresponding amount of SO2, CO2 , and 𝑁𝑁𝑂𝑂𝑥𝑥  generated by 
the generator set when generating active power. 𝜀𝜀SO2，𝜀𝜀CO2
，𝜀𝜀𝑁𝑁𝑂𝑂𝑥𝑥  represents the corresponding treatment costs for the 
three pollutants. 

 
3.3 Constraints 
 

The constraints of the model proposed in this article are 
as follows: 

(1) Distributed power output 
𝑃𝑃min_wt ⩽ 𝑃𝑃wtf (𝑡𝑡) ⩽ 𝑃𝑃max_wt 

𝑃𝑃min _pv ⩽ 𝑃𝑃pvf(𝑡𝑡) ⩽ 𝑃𝑃max_pv

𝑃𝑃minG ⩽ 𝑃𝑃G(𝑡𝑡) ⩽ 𝑃𝑃maxG
                    15 

Where, 𝑃𝑃max_wt  and 𝑃𝑃min_wt are the upper and lower 
limits of the output of the wind turbine unit; 𝑃𝑃min _pv  and 
𝑃𝑃max_pvare the upper and lower limits of the output of the 
photovoltaic unit; 𝑃𝑃minGand 𝑃𝑃maxGare the upper and lower 
limits of the output of the generator . 

(2) Energy storage battery constraint 
𝑃𝑃D𝑚𝑚𝑖𝑖𝑛𝑛 ⩽ 𝑃𝑃ES(𝑡𝑡) ⩽ 𝑃𝑃Dmax
𝑃𝑃ES(𝑡𝑡) = 𝑃𝑃D(𝑡𝑡)𝜂𝜂D
𝑆𝑆(𝑡𝑡) = 𝑆𝑆(𝑡𝑡 − 1) + 𝑃𝑃D(𝑡𝑡)
𝑆𝑆min < 𝑆𝑆(𝑡𝑡) < 𝑆𝑆max
𝑆𝑆(0) = 𝑆𝑆(𝑟𝑟)

16 

𝑃𝑃𝑖𝑖(𝑡𝑡) is the charge and discharge power of the energy 
storage system at time t, 𝑃𝑃𝑖𝑖𝑚𝑚𝐷𝐷𝑥𝑥is the upper limit of charge 
and discharge power, 𝑃𝑃𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛is the lower limit of charge and 
discharge power, 𝜂𝜂𝑖𝑖  is the charge and discharge efficiency; 

𝑆𝑆(𝑡𝑡) is the capacity value of the energy storage equipment at 
the end of time t; 𝑆𝑆max，𝑆𝑆minis Capacity upper and lower 
limits.  

(3) Micro grid system power constraint 
The total power of the system should satisfy the 

following formula： 
𝑃𝑃G(𝑡𝑡) = 𝑃𝑃L(𝑡𝑡) − 𝑃𝑃wtf(𝑡𝑡) − 𝑃𝑃pvf(𝑡𝑡) + 𝑃𝑃ES(𝑡𝑡) 17 

Where 𝑃𝑃G(𝑡𝑡) is the output power. 
 

3.4 Solution of the model 
 

Determine whether the fitness 
value is optimized

Star

 Initialize the economic benefits objective function 
EE and carbon emissions EC of the microgrid as 

IQPSO particles, set population size, external file 
size, learning factor, and inertia factor 

Calculate the fitness values of each particle 
and update Pi,j和 gbest,j

Calculate the local attractor position

Calculate the average optimal position mbestj 
by variable weight method 

Calculate the feature length Li,j to obtain the 
latest particle position Xi,j

Calculate the fitness values of each particle

Trial=0

Update particle individual optimal Pi,j 
global optimal gbest, j

Whether the termination 
conditions are met

Output final value

Iterations+1

Adopting Levy flight to recalculate local 
attractors, resetting tracking values to 

0

Determine whether the fitness 
value is optimized

T
r
ia

l=
T

ria
l+

1

N

N

N

 
 

Figure 4. Basic flow chart of improved QPSO algorithm 
 

4. Calculation results and analysis 
 
4.1. Calculation parameters 
 

The microgrid system in this article is as shown below, 
including various distributed power sources, including PV, 

EAI Endorsed Transactions on 
Energy Web 

| Volume 11 | 2024 |



Research on optimal scheduling of microgrid based on improved quantum particle swarm optimization algorithm 
 
 
 

9 

WT, DE, MT and energy storage. Table 5 displays the 
operating parameters and costs of each DG in the microgrid, 
Table 6 displays the operating parameters and costs of each 

DG，Table 7 dispaly the energy storage parameters. Real-
time electricity price reference[19]. 

Main 
network 

Figure 5. Microgrid example system structure diagram 

Table 5. Unit parameters 
 

parameter name Diesel 
generators fan photovoltaic Main

net gas turbine 

Power upper 
limit/kW 50 30 50 30 30 

Power lower 
limit/kW 6 0 0 -30 3 

Climbing power 
upper limit/(kW/min) 1.5 0 0 0 1.5 

Operation and 
maintenance unit 
price/(yuan/kW.h) 

0.128 0 0 0 0.0293 

Table 6. Pollutant emission coefficient and cost 
 

Pollutant 
type 

Governance 
costs /（

yuan/kg） 

Pollutant emission coefficient (g/kW·h) 

PV WT DE Gird MT 

CO2 0.023 0 0 680 889 724 
SO2 6 0 0 0.306 1.8 0.0036 
NOx 8 0 0 10.09 1.6 0.2 
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Table 7. Energy storage parameters 

 

type parameter numerical 
value parameter numerical 

value 

 
battery 

Maximum 
capacity 150 Initial energy storage capacity 

/（kW·h）） 50 

minimum 
capacity 5 Maximum output power /kW 30 

Maximum input 
power 30 Charge and discharge rate 0.9 

En
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Figure 6. pareto front and coordinated solution 

 
Table 8. Scheduling results of microgrid under 

different objectives 
 

Scheduling type environmental 
cost /yuan 

Operating 
cost/yuan 

economic 
dispatch 116.37 916.33 

environment 
scheduling 468.34 317.98 

Comprehensive 
dispatch [116.37,468.34] [317.98,916.33] 

 
According to the data in Figure 6 and Table 8, we can 

infer that in the process of executing economic dispatch, 
due to the increased investment cost of highly polluting 
diesel generators, the power generation cost of the 
microgrid also increases, thus causing an increase in 
environmental costs. . Similarly, in the process of 
implementing environmental dispatch, the cost of pollutant 
treatment and punishment also increases the environmental 
cost, thus causing the operating cost of the unit to increase 
accordingly. When performing comprehensive dispatching 
of these two methods, environmental costs and operating 
costs are within a specific value range. Therefore, during 
the dispatching process, we need to comprehensively 
consider the distribution of wind and solar resources. 
Scheduling should be planned appropriately based on a 

variety of factors, including fuel costs and waste disposal 
costs. 

 
4.2 Comparative analysis of objective 
functions 
 

This article considers the minimum operating cost and 
the minimum pollution control cost in microgrid system 
power scheduling, establishes a model, and uses these two 
as optimization objectives to conduct optimization 
scheduling simulation. Table 8 shows the scheduling range 
values considering different scale objectives, because this 
problem is a multi-objective problem, and the Pareto 
optimal solution cannot simultaneously satisfy the two end 
optima, Therefore, the following analysis aims to obtain 
the optimal scheduling results within their respective scope 
requirements. 

Under the lowest cost

Time/h

Po
w

er
/k

W

 
Figure 7. The optimal extreme solution results 

considering the lowest operating cost 
 

The diagram of the dispatch result, with the operating 
cost of microgrid economic dispatch at 317.98 yuan, is 
depicted above. Evidently, fuel cells have the least 
expensive power generation, thus power generation is 
always given priority.Should the load surpass the fuel cell's 
peak output power, if the micro gas turbine's power 
production cost is less than the electricity cost from the 
distribution network at that juncture, the micro gas turbine 
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will generate electricity; otherwise, the electricity is bought 
from the distribution network.Should the load surpass the 
peak power produced by the fuel cell and micro gas turbine, 
if the diesel generator's power production cost is less than 
the electricity cost of the distribution network then, the 
diesel generator will generate electricity; otherwise, the 
electricity is bought from the distribution network. 

The diagram of the dispatch result, with the operating 
cost of microgrid economic dispatch at 317.98 yuan, is 
depicted above. Evidently, fuel cells have the least 
expensive power generation, thus power generation is 
always given priority.Should the load surpass the fuel cell's 
peak output power, if the micro gas turbine's power 
production cost is less than the electricity cost from the 
distribution network at that juncture, the micro gas turbine 
will generate electricity; otherwise, the electricity is bought 
from the distribution network.Should the load surpass the 
peak power produced by the fuel cell and micro gas turbine, 
if the diesel generator's power production cost is less than 
the electricity cost of the distribution network then, the 
diesel generator will generate electricity; otherwise, the 
electricity is bought from the distribution network. 

The lowest environmental cost

Time/h

Po
w

er
/k

W

 
Figure 8. The optimal extreme solution result 

considering the lowest environmental cost 
 

The figure above shows the output of the distributed 
power supply, the battery supercapacitor hybrid energy 
storage system and the transmission power of the microgrid 
and distribution network in a dispatching cycle 
corresponding to the extreme solution with the optimal 
environmental cost of the microgrid system. It can be seen 
from the figure that due to the high pollutant emission 
coefficient of the distribution network, when considering 
the minimum environmental cost, it almost does not 
participate in the system operation. Among distributed 
power sources, micro gas turbines have the lowest pollutant 
emission coefficient, so their advantage of giving priority 
to output is fully reflected. When the load exceeds the 
maximum output power of the micro gas turbine, the fuel 
cell generates electricity. When the load exceeds the 
maximum power generated by the fuel cell and micro gas 

turbine, it is the diesel generator's turn to generate 
electricity. 

 
5. Conclusions 
 

This paper takes the operating cost of the microgrid 
system and the environmental protection cost as the 
objectives to construct a multi-objective optimal dispatch 
model of the microgrid in the grid-connected mode, and 
uses the improved IQPSO algorithm to solve the proposed 
model. Through simulation, the following conclusions are 
drawn: 
(1) The improved particle swarm algorithm, in comparison 
to itspredecessor, boasts a greater degree of optimization 
accuracy, aswifter convergence rate, and the capability to 
avoid the algorithm'sdescent into the local optimal solution 
at a later stage of the process.  
(2) The proposed model can effectively reduce users’ 
electricity costs and environmental pollution, and promote 
the optimized operation of microgrids. 
(3) The output structure can reduce the overall power 
generation cost of the system, and can also reasonably 
allocate network resources for power dispatching while 
considering environmental pollution. 
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