
EAI Endorsed Transactions  
on Energy Web                                 Research Article 
 

1 

Development of an Energy Planning Model Using 

Temporal Production Simulation and Enhanced NSGA-

III 

Xiaojun Li1*，Yilong Ni1，Shuo Yang1，Zhuocheng Feng1，Qiang Liu1，Jian Qiu1，Chao Zhang1
 

1Information Data Department Guangdong Electric Power Trading Center Co. Ltd., Guangzhou, Guangdong 

510000, China 

Abstract 

This paper presents an innovative model of Energy Planning Model which allows navigating the complexities of modern 

energy systems. Our model utilizes a combination of Temporal Production Simulation and an Enhanced Non-Dominated 

Sorting Genetic Algorithm III to address the challenge associated with fluctuating energy demands and renewable sources 

integration. The model represents a significant advancement in energy planning due to its capacity to simulate energy 

production and consumption dynamics over time. The unique feature of the model is based on Temporal Production 

Simulation, meaning that the model is capable of accounting for hourly, daily, and seasonal fluctuations in energy supply 

and demand. Such temporal sensitivity is crucial for optimization in systems with high percentages of intermittent 

renewable sources, as existing planning solutions largely ignore such fluctuations. Another component of the model is 

the Enhanced NSGA-III algorithm that is uniquely tailored for the nature of multi-objective energy planning where one 

must balance their cost, environmental performance, and reliability. We have developed improvements to NSGAIII to 

enhance its efficiency when navigating the complex decision space associated with energy planning to reach faster 

convergence and to explore more optimal solutions. Methodologically, we use a combination of in-depth problem 

definition approach, advanced simulation, and algorithmic adjustments. We have validated our model against existing 

models and testing it in various scenarios to illustrate its superior ability to reach optimal energy plans based on efficiency, 

sustainability, and reliability under various conditions. Overall, through its unique incorporation of the Temporal 

Production Simulation and an improved optimization algorithm, the Energy Planning Model provides novel insights and 

practical decision support for policymakers and energy planners developed to reach the optimal sustainable solutions 

required for the high penetration of renewables. 
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1. Introduction 

Effective planning is an essential aspect of managing energy 

to ensure sustainability, reliability, and cost-effectiveness. 

Energy planning is the process of allocating resources in such 

a way as to satisfy current and future needs, considering 

factors such as environmental impact, technological 

innovation, and 

 

∗Corresponding author. Email: lixj2024@126.com  

 

economic justification. The emphasis on renewable energy 

sources is explained by the necessity to reduce greenhouse 

gas emissions and counteract the consequences of climate 

change. Planning, however, is difficult given the complexity 

and dynamics of energy systems currently, characterized by 

the increasing contribution of renewable sources and varying 

loads. Indeed, a typical energy planning model does not take 

into account these multi-dimensional dynamics and 
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constraints. The first limitation is that, generally, only the 

spatial dimension is considered. This means that the 

production and consumption of energy are averaged without 

considering the hourly, daily, or seasonal variation which are 

typical of the grid mixes and insufficiency related to 

renewable source fluctuations. In fact, the above-mentioned 

flaws may lead the planner to take an incorrect decision so 

that calculating the ideal investments or others on the basis of 

source’s availability. A second flaw is the lack of temporal 

dimension when modeling many existing patterns. For 

instance, most models relate the production potential of solar 

panels with an average insulation pattern during the year. This 

may not ensure that, in a frame of many days without the sun 

or insubstantial work during the night, the average insulation 

should trigger the production. 

The Energy Planning Model proposed in this paper is 

designed to address gaps in existing energy planning 

approaches by integrating temporal production simulation 

with an enhanced version of the NSGA-III algorithm [1], [2]. 

The Energy Planning Model (EPM) is designed to implement 

a novel perspective on energy planning problems’ objectives 

which captures and optimizes the spatial dynamics of energy 

production and consumption in concert with many other 

objectives, using multiple levels of refinement in space and 

time [3],[4]. It is one of its most significant contributions. The 

Energy Planning Model (EPM) is designed to provide 

policymakers and other stakeholders with a better 

understanding of the temporal trade-offs inherent in energy 

planning. This correlation, for instance, allows it to analyze 

the long-term consequences of various energy planning 

alternatives. The model helps to discover the best set of 

answers that are resilient to significant variations in the 

availability of power. Additionally, the EPM contains an 

enhanced version of the NSGA-III algorithm, which 

significantly improves its performance by enhancing the 

optimization process [5]. It assists in locating the best answers 

while also aiding in the taming of the multi-objective energy 

planning issue. The Energy Planning Model (EPM) aims to 

achieve two goals; the use of multiple resolutions in time to 

blend with the multidimensional spatial resolution and the 

ability to handle multi-objective optimization times. Since the 

Energy Planning Model (EPM) achieves these goals, it is 

reasonable to assume that it will greatly contribute to energy 

planning in the near future. 

2. Literature Review 

Energy planning comprises a wide range of methodologies 

and models, each developed to efficiently and sustainably 

produce, distribute, and consume energy throughout the 

spectrum. The traditional models are tasked with the 

responsibility of single-objective optimization with cost 

minimization as the primary focus. However, the increasing 

recognition of the environmental impacts of energy, the 

deregulation of the energy markets, and the integration of 

unpredictable renewable energy sources have necessitated the 

adoption of more sophisticated, multi-objective optimization 

models [6]. Various factors must be considered, such as 

economic costs, environmental impacts, system reliability, 

and social acceptability, in the development of these models. 

The models have evolved to integrate stochastic elements to 

address the variability and uncertainty inherent in renewable 

energy and dynamic models capable of simulating energy 

systems over time, with optimization algorithms and 

modeling approaches continuing to advance to cope with the 

complexity and scale of modern energy systems. Recent 

academic contributions reveal that methodologies in energy 

planning have made a tremendous leap due to some 

advancement, especially by the application of NSGA-II, 

NSGAIII and other related approaches. Nonetheless, the 

review identifies gaps for improvement in the future. 

Distributed Photovoltaic and Battery Energy Storage Systems 

integration is a contemporary energy planning model that is 

being given significant weight [8]. A study that applied the 

NSGA-III algorithm sought a Mult objective joint planning 

model to minimize the DN cost, voltage fluctuation, and 

network loss . The results underscore the suitability of 

NSGA-III for addressing multi-dimensional complex 

optimization problems for more integrated and efficient 

energy systems [6]. 

The steel industry consumes a substantial amount of 

energy, and a newly developed NSGA-II approach has been 

employed to formulate energy plans that focus on the two 

concurrent goals of saving and optimizing consumption 

reduction [9]. Through the development of a mixed-integer 

nonlinear planning model to represent the qualities of the 

energy flow network among the process of steel production, 

this study has demonstrated how the algorithm efficiently and 

effectively addresses energy optimization challenges unique 

to the sector. These two unrelated parallel machine tasks must 

also be scheduled under changing power costs if the net 

energy costs of manufacturing are to continue to be the focus. 

The implementation of the NSGA-II approaches to address 

the bi-optimal challenge indicates the importance of including 

setup times that are dependent on the sequence of plans in 

making important conclusions regarding real-world energy 

consumption patterns and the ensuing cost reductions [9]. 

In the expanded application of Integrated Energy Systems, 

the application of NSGA-II-MOABC, a hybrid algorithm that 

combines NSGA-II and Multiple Objective Artificial Bee 

Colony, illustrates the approach’s flexibility in optimizing 

multi-dimensional energy flow [14]. This type of 

optimization solves scheduling concerns in IES but also 

enhances overall system output and reliability, emphasizing 

the increased inclusion of integrative energy plans. 

Additionally, NSGA-III has played an essential application 

role in optimizing reactive power application in distribution 

networks, especially those with a large number of new energy 

elements such as wind and PV. As demonstrated by this study, 

the fundamental optimization problems of minimizing 

voltage offset, minimizing network loss, and ability to quickly 
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resolve the bi-optimal equation are dire need of efficient 

algorithms, especially with the aspect of a more extensive 

penetration of renewable energies. Furthermore, the new 

NSGA-II algorithm has proven efficient in multi-objecting 

problem solutions in integrated energy [15]. These alternative 

applications have improved the efficiency of NSGA 

algorithms, making them more applicable to multiple other 

novelties and critical emerging energy applications 

[11]. 

Moreover, joint optimization models for multi-region 

integrated energy systems, along with flexible demand 

response, are essential to prove the capabilities of mixed 

integer linear programming in energy planning efficiency 

uplift. These models incorporate planning and operation 

optimization through several regions and demonstrate how 

vital flexibility and adaptability for modern energy systems to 

function effectively. However, NSGA-III and related 

algorithms have indeed made considerable advancements in 

the sector, some diverse gaps of current energy planning 

approaches are still left. One of the most notable is the under 

consideration of temporal dynamics and uncertainties [10]. 

NSGA-III, for example, is undoubtedly optimal for multi-

objective optimization, but incorporating temporal 

production simulation provides the potential to significantly 

increase the accuracy and robustness of energy planning 

approaches, especially in terms of renewable energy sources, 

which introduce significant variability. Scalability and 

computational efficiency gaps must also be addressed. 

Developing further generations of NSGA-III algorithms that 

can perform with a reduced computational load but with the 

prevailing accuracy levels would benefit energy planning in 

many ways. Finally, more consideration for socio-economic 

factors would be beneficial. Even though NSGA-III and other 

multi-objective optimization algorithms have made a 

significant contribution to the field of energy planning, there 

is a lot more to develop [12]. Filling the gaps of temporal 

dynamics, computational efficiency, and holistic socio-

economic factor consideration would enable the development 

of more sustainable, resilient, and equitable energy systems. 

Energy planning models and strategic positions need to 

follow the demand and complexity of the expanding world’s 

energy and assure they can help to solve the contemporary 

and future issues. 

3. Proposed Model 

To tackle these ever-changing and complex requirements of 

energy planning, our model offers a fresh perspective through 

the incorporation of Temporal Production Simulation using 

the Enhanced NSGA-III Algorithm [13]. This configuration 

offers a more precise representation of the dynamic nature of 

energy systems and, as such, allows for a more efficient 

resolution of multi-objective problems that are inherent in 

energy planning processes. This results in a more flexible and 

efficient decision-making process. 

3.1. Temporal Production Simulation 

This approach recognizes that energy production, storage, 

distribution, and consumption are profoundly impacted by 

temporally relevant variables, such as fluctuations in the 

generation of renewable energy resulting from the weather, 

the energy required at various times of the day or the season 

and the usage cycles of energy infrastructure, and others. The 

temporal aspect of energy systems introduces a level of 

unpredictability due to the variability associated with 

renewable energy and demand patterns. For example, solar 

energy production is predominantly available during sunny 

midday hours and is null at night, while the presence of wind 

is more consistent, although the output is largely altered by 

the weather. Additionally, while energy production may 

remain constant, demand does not follow the same trends. 

Energy demand is at its peak in the morning and evening and 

lowest late at night. 

Furthermore, demand trend variations are also observed in 

temporal intervals such as summer and winter. The Temporal 

Production Simulation methodology consists of three 

processes: data collection, modeling, and computational 

simulation. Initially, historical records of energy production 

and consumption are studied to determine the trends and 

correlations. Subsequently, mathematical models that portray 

the nature of energy production and consumption, as well as 

storage, are drafted. These models are then employed in 

computational simulations, which can be altered in various 

ways to test energy planning scenarios. 

3.2. Enhanced NSGA-III Algorithm 

The Non- dominated Sorting Genetic Algorithm III is one of 

the leading algorithms in solving mult objective optimization 

problems. However, for the purpose of applying it to the 

specific requirements of energy planning, which involves the 

temporal nature of energy systems, our approach suggests 

modifications to the baseline NSGA-III algorithm [2], [3]. 

The Enhanced NSGA-III Algorithm includes adjustments to 

enhance the performance of the non-dominated sorting 

algorithm while working with a multi-dimensional and time-

dependent problem, which is characteristic of energy 

planning. Our approach includes the NSGA III and specific 

crossovers and mutations based on the features of the 

temporal nature of production and consumption. In so doing, 

with the significant search space and a relatively large number 

of dimensions, the algorithm converges faster and finds high-

quality solutions [16]. An important conceptual piece of our 

model is the integration of the Temporal Production 

Simulation with the Enhanced NSGA-III Algorithm [4]. This 

mechanism allows us to perform temporary optimizations, 

meaning the algorithm can determine the best outcomes over 

time and it also makes decisions based on how effective such 

optimal allocation would be across diverse time periods. 
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Figure 1. Flow chart of non-dominated sorting genetic 

algorithm III (NSGA-III) 

3.3. Mathematical Model for Energy Planning 

In order to model the complexity of energy planning, a multi-

objective optimization framework is created in this research 

study. In this model, three essential aspects of energy 

planning are combined, including its economic feasibility, 

environmental impact, and overall system capacity to ensure 

every individual is supplied [17]. This model must also define 

the variables that represent decision points within the energy 

system. 

Variables 

• Pgt: Power generated by source g at time t. 

• Dt: Demand at time t. 

• Cg: Capacity of generation source g. 

• Et: Emissions at time t. 

• Sgt: State of generation source g at time t, where 0 is 

offline and 1 is online. 

• Ig: Investment in generation source g. 

• Bt: Battery storage level at time t. 

• Rgt: Renewable energy generated by source g at time t. 

3.4. Objective Functions 

The model aims to minimize cost and emissions while also 

maximizing reliability, establishing a multi objective 

optimization problem with three primary objectives: 

   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  ∑ ∑ (𝑡𝑔 𝑂𝑔 ∗  𝑃𝑔𝑡 +  𝐼𝑔 ∗  𝐶𝑔)              (1) 

where Og represents the operational cost per unit of energy 

generated by source g. 

 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍2 =  ∑ 𝐸𝑡𝑡                                              (2) 

 

Et might depend on the mix of generation sources utilized at 

time t. 

   

        𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍3 =  − ∑ |𝐷𝑡 − ∑ 𝑃𝑔𝑡|𝑔   𝑡                                (3)                                                                          

  

   

Constraints 

∑ 𝑃𝑔𝑡𝑔 =  𝐷𝑡          ∀𝑡          (4) 

   

Demand-Supply Balance: The total power generated must 

meet the demand at all times. 

 0 ≤ Pgt ≤ Cg · Sgt ∀g,t (5) 

Generation Capacity Limit: The power generated by each 

source cannot exceed its capacity. 

 Et  ≤ Emax ∀t (6) 

Emissions Constraint: Emissions at any given time must not 

exceed a specified threshold, reflecting environmental 

policies or goals. 

 ∑ 𝑅𝑔𝑡𝑔∈𝐺𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒   ≥ 𝜃 ∑ 𝐷𝑡𝑔                            (7) 

 

Renewable Generation Targets: A certain percentage of total 

generation must come from renewable sources to meet 

sustainability goals. 

 

Bt+1 = Bt + η ∑ (Pgtg − Dt) ∀t         (8) 

 

Storage Dynamics: The level of battery storage is affected by 

the surplus or deficit in generation relative to demand, 

considering the efficiency of storage. 

∑ 𝐼𝑔𝑔 ≤ 𝐼max                                                (9) 

Investment Constraints: Limitations on the investment for 

expanding the capacity of different energy sources to ensure 

financial viability. 

This mathematical model for energy planning is designed 

to optimize across multiple objectives, capturing the trade-

offs between cost, environmental impact, and reliability. 
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4. Methodology 

The methodology of the proposed model’s implementation 

and evaluation consists of the following steps. First, the data 

needed to run the optimization model is collected. In order to 

apply simulation on the costs, emissions and reliability and to 

optimize them against each other, data for energy production, 

demand and pollution rates, and environmental impact studies 

will be collected [18]. The data collected is mainly used to 

simulate the energy system, and the inputs collected during 

this first step are vital to accurately setup the simulation. On 

the collection of the necessary inputs for this model, these 

inputs need to be preprocessed to achieve normalization when 

inputs have different scales. Missing data also needs to be 

substituted and the whole dataset is segmented before 

normalization [19]. These preprocessing steps are essential 

for the preparation of the inputs for the upcoming simulation 

and optimization. Following preprocessing, the simulation is 

then set up temporally. The production of energy needs to be 

simulated over long periods of time to simulate different 

demand profiles and production capacities to observe the 

systems behavior. After this simulation is running the 

optimization process can be applied. The algorithm used is an 

enhanced NSGA-III [20], where the optimization is aware of 

the temporal production simulation and the cost, emission and 

reliability is optimized at the same time. The algorithm is 

enhanced to want to use to tackle the complexities of the 

trade-offs encountered in the model of the energy research 

model. 

The next step is post-optimization, where the proposed 

solutions are evaluated on the effectiveness of optimizing the 

desired fields, and on feasibility of the investments given the 

constraints [21]. Sensitivity analyses on key parameters are 

also performed to assess the model’s robustness and 

flexibility. Finally, Scenario testing is performed. These tests 

input the model with hypothetical input variations 

corresponding to different planning objectives [22], [23]. For 

example, some scenarios might involve varied demand 

patterns, production constraints, or policy settings. The 

methodology outlined, ranging from data input to scenario 

testing, provides a comprehensive strategy for developing and 

testing an energy planning model suitable for optimization. 

Each of the methodologies encompasses key activities that 

must be undertaken for optimal planning. 

5. Results and Discussion 

The deployment of an enhanced Non-dominated Sorting 

Genetic Algorithm III for energy system optimization marks 

a significant advance towards the strategic planning and 

operational performance of power systems. In that regard, the 

model’s structuring based on temporal dynamics and multi-

objective analysis, considering the balance between 

generation costs, emissions and reliability, offers a more 

detailed solution to the challenges faced by the contemporary 

power systems. 

 

Figure 2. Baseline Scenario Cost for 24-Hours 

 

Figure 3. Baseline Scenario Carbon Emissions for 24-

Hours 

The comparison with the existing models accentuates the 

enhanced capability of the NSGA-III approach [24] existing 

generation-based issues reflect a more simplistic generation, 

focusing on the individual 

 

Figure 4. Baseline Scenario Reliability 

objective with minimal consideration over time or the 

environmental and reliability aspect. Instead, the proposed 

solution dynamically adjusts to the hourly fluctuations, while 

simultaneously considering the cost, emission and reliability 

indices. The latter assertion is particularly important in the 

context of increasing integration of renewable energy 

sources, calling forward a more sophisticated analysis of the 

optimal performance [25]. Statistical analysis supports the 
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model, as all optimized scenarios developed in the model 

show statistical significance over all objectives in comparison 

with the baseline allocations [26]. The reduction of the system 

costs and emissions and the increase of the reliability were 

consistently significant for variations in the demand and 

generator assets. Thus, the statistical validation not only 

makes the model robust, but also boundedly rational, 

adaptable to the realistic operational conditions. 

 

Figure 5. Optimized Results of Cost Minimization 

The model outcomes expose its strategic capacity in 

negotiating the trade-offs of the multi-objective analysis [27], 

[28]. During the 24-hour allocation period, the model 

effectively balances system costs and emissions with 

reliability. Particularly, during the peak hours, the model 

sufficiently emphasizes the emission reduction capacity at a 

lower cost, pointing out to the possibility of including more 

environmentally friendly sources without drawback of the 

reliability or operation costs. 

 

Figure 6. Optimized Results of Emissions Reduction 

 

Figure 7. Optimized Results of Enhanced Reliability 

Temporal granularity is one of the most critical added 

features of the model’s optimization process to provide 

profound insights about the operational flows of energy 

system [29]. The model’s ability to change the cost of energy 

in an hourly manner also enables it to provide information that 

is very relevant to real-world energy management systems; 

especially when managing the optimization of the wide 

extents of renewable energy sources. This variable temporal 

approach is essential in managing the natural variation found 

in renewables to counteract the unmanageable deviation and 

to calculate the human and financial costs of the unanticipated 

need for resources. However, NSGA-III is a very advanced 

evolutionary algorithm that is specifically designed to handle 

multi-objective problems efficiently [30]. It is very good at 

finding a set of Pareto-optimal solutions that provides the best 

possible tradeoffs among the competing objectives. By using 

the algorithm, the code is able to find its way through the 

complex energy system solution space to arrive at plausible 

outlets that offer value-based information about the best 

tradeoff between cost, emissions and reliability. 

6. Conclusion 

The outcomes of the investigation into energy systems’ 

optimization of such results, conducted with sustainability, 

economic feasibility, and reliability principles in mind, 

exceed the typical framework of energy planning. By 

producing a variety of consistent, non-dominant, and Pareto 

optimal solutions via the application of the Enhanced Non-

dominated Sorting Genetic Algorithm III, the results of the 

investigation offer novel insights into the delicate balances 

and potential synergies in the energy domain. The outcomes 

of the investigation are several, reaching from the 

demonstration of the capabilities of the NSGA-III algorithm, 

their realization through practical applications, and the 

horizon of future technologies and innovations in the realm 

of energy planning. However, the key outcome of the 

investigation is the application of the NSGA-III algorithm to 

discover the optimum solutions for energy systems’ 

complexity. Because this approach is concerned with not only 

the reduction of costs and the maximum level of emissions 

reduction but also the extent of failure of the existing supply 

conditions, the investigation emphasizes economics and 

planning as multi-layered phenomena. The NSGA-III’s 

capacities to formulate a variety of Pareto optimal solutions 

allow investigation outcomes to reveal the intricate responses 

in energy systems’ responses. This, in turn, helps 

policymakers, planners, and industry participants to make 

better informed decisions. 

Overall, the implications of this study for the field of 

energy planning are profound. In the age when the transition 

to sustainable energy sources becomes not only a choice but 

a necessity, the ability to navigate the trade-offs between 

economic, environmental, and reliability objectives with 
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precision could be a gamechanger. The realization and 

integration of the NSGAIII algorithm in this field represent a 

significant leap forward, overcoming the constraints of 

conventional optimization. By providing a systematic 

framework for the evaluation of the implications of various 

energy strategies, the model serves as a bridge between 

theoretical optimization and the actual implementation. It also 

creates a system for an integrated evaluation of renewable 

energy potential, energy distribution efficiency, and novel 

technological solutions based on sustainable, economic and 

reliability principles. However, the potential increase of 

efficacy in this area, suggests multiple paths for further 

research and development. This may concern the integration 

of renewable sources in the model and the ways of managing 

their variability, thus, outlining effective storage and 

distribution solutions. The other area may involve microgrid 

and off-grid systems, where the optimization of energy 

resources is crucial in improving accessibility and 

independence opportunities. 

This research paper offers a valuable addition to the 

incessant conversation in the field of sustainable energy 

planning. This study underlines a vision of a future where 

energy systems are less wasteful and more robust and live up 

to the demands of environmental preservation and economic 

viability. As we progress along this path, the finding and 

discoveries unveiled by this work will undoubtedly become 

fundamental in an effort to design the energy system of the 

future, propel further discovery, and stimulate curiosity. 
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