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Abstract 

This paper proposes a new data-driven method for power outage detection. By capturing the changes in data distribution 

of smart meters (SM), it can detect power outages in partially visible distributed systems. First, a mechanism based on 

breadth-first search (BFS) is proposed, which decomposes the network into a set of regions to find the location 

information where power outages are most likely to occur. Then, the SM data for each region, generating a generative 

adversarial network (GAN), is used in order to extract unsupervised manner implicit temporal behavior under normal 

conditions. After network training, anomaly scoring technology is used to determine whether the real-time measurement 

data is the data of a power outage event. Finally, in order to infer the location of a power outage in a multi-area network, 

a regional coordination process with interdependence be-tween cross-regions is used. At the same time, the concept of 

entropy is used to provide performance analysis for the algorithm in this paper. This method has been verified on the 

distribution feeder model with actual SM data. Experimental results show that the algorithm is effective and feasible. 
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1. Introduction 

The electrical system faces a difficult problem with outage 

detection, which is crucial in distribution networks where 

there are frequently many outages. At present, the number of 

smart meters has increased significantly, and smart meters 

have basically achieved full coverage in the country. When 

such a large number of smart meters are really put into 

operation, it is necessary to strictly monitor the operational 

reliability of smart meters, and timely diagnose and repair 

meter failures. 

The US Energy Information Administration said that, on 

average, each customer experienced a power outage of almost 

four hours in 2016. The distribution system operator (DSO) 

implements a cutting-edge outage management system 

combining contemporary software tools and protective 

equipment with two-way communication capabilities in order 

to shorten outage time, increase system dependability, and 

boost customer satisfaction. As a result, the DSO is able to 

gather network data in real-time. However, because of their 

high cost, devices with intelligent communication 

capabilities in the distribution system have  
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not been widely adopted. Due to the complex and diverse 

components of smart meters, damage and various faults will 

inevitably occur during operation, such as appearance faults, 

clock unit faults, metering performance faults, etc. Due to the 

accuracy of measurement, reliability of communication and 

safety of use, smart meters bring security risks and economic 

losses to the power system. Therefore, it is an important task 

to find and deal with smart meter faults in time and extend its 

service life to ensure the normal operation of smart grid. The 

customer's fault call and manual inspection are still required 

for the identification of outage events in the distribution 

system. However, these two approaches are not only time-

consuming and expensive, but also labor-intensive [1], [2], 

[3]. Many academics have suggested various power loss 

detection methods in attempt to address these issues. The 

evaluation mechanism for the Delphi approach is utilized in 

[4] to pinpoint several outage areas. In order to quickly 

restore power, reference [5] monitors relay state. The K-

means clustering analysis is used in [6] to partition the 

electric energy data in order to assure accurate classification 

of the data without overlapping parts. The signal conditioning 

circuit is employed in [7] to implement power outage 
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monitoring. When the data uploaded by the current detection 

card is less than the threshold, it is considered that a power 

outage event occurs. This approach, meanwhile, is 

susceptible to mistakes. In [8], switch transposition and 

current mutation are used to realize power outage monitoring, 

which is not robust as in previous literatures. To identify and 

pinpoint the position of damaged lines in a fully visible 

network using signals from SM, a multi-label support vector 

machine classification approach is suggested in [9]. In [10], a 

hierarchical architecture is developed to provide a monitoring 

technique for anomalous line status. The difference between 

normal and erratic power use is tracked in [11] to develop a 

fuzzy Petri nets approach for outage detection. In [12], a real-

time dynamic outage detection scheme based on alternating 

current power flow model and statistical change detection 

theory is proposed, the proposed method can capture system 

dynamics since it retains the time-variant and nonlinear 

nature of the power system. The method is computationally 

efficient and scales to large and realistic networks. In [13], 

proposes a graph-guided quickest change detection approach 

that leverages the grid topology and performs quickest 

change detection in the spectral domain of the graph 

underlying grid's topology. In [14], by formulating the sparse 

line outage detection problem in a standard compressive 

sensing form, a binary matching pursuit algorithm is 

proposed to solve the problem. In [15], [16], [17], [18], 

although many methods have been provided in many 

literatures, power failure cannot be monitored.  

To address these shortcomings, this paper proposes an 

adversarial generative network (GAN)-based approach. It is 

possible to identify outage events in the observable 

distribution system by capturing abnormal SM measurements 

as a result of outage events. Compared to the previous works, 

the suggested approach tackles three difficult problems. 1) 

Unsupervised learning is employed in the proposed model. 

Additionally, anomaly scores are used to evaluate how outage 

occurrences differ from regular data; as a result, data with 

high anomaly scores are regarded as outage events. 2) 

Effective outage detection requires capturing high-

dimensional spatio-temporal relationships in the 

measurement data. However, traditional data distribution 

estimators are limited by the high-dimensional data. The 

strategy suggested in this paper trains GANs to implicitly 

extract the underlying distribution of the data rather than 

explicitly building a sophisticated data likelihood function. 

Two deep neural networks are coupled in each GAN (DNNs). 

3) A mechanism based on breadth-first search (BFS) is 

presented to decompose the large-scale distribution network 

into a set of intersecting regions, taking into account the 

system's local observability. Each region is determined by two 

adjacent observable nodes. Experimental results show that the 

proposed method has good robustness. Compared with the 

traditional method, the outage identification accuracy at low 

samples can be improved. 

2. Real-time Data Processing 

Over 6,000 consumers from the Midwestern United States' 

hourly energy usage (kWh) and voltage data are included in 

the historical Advanced Metering System (AMI) data used in 

this article. Electricity data is collected from January 2015 

through May 2018, in which over 95% of these customers are 

residential and commercial loads. Removing faulty data and 

lost data as a result of communication problems during data 

pre-processing. The protective device isolates the faulted area 

from the load at the lower end of the fault when a radial 

system failure takes place, as a result, the upper observation 

nodes that are not faulty to deviate from the normal samples. 

Define the outage detection area based on the above 

phenomenon. Generally, two observable nodes can be used to 

detect outages in the lower path. To illustrate, a typical 

distribution feeder with two observable nodes (node n and 

node n+N) is given in figure 1, where the voltage drop ∆V 

between these two nodes can be expressed as 
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Figure 1. Schematic area under normal conditions 

where |Vn| and |Vn+N| are expressed as the voltage at the 

observation point, Ii-1,i is the branch current, Z(i-1,i),abc is the 

phase impedance matrix between bus i-1 and bus i. And the 

dimensionality of the variables in Equation 1 depends on the 

number of phases in the distribution line. For example, |Vn|, 

|Vn+N| and Ii-1 are all three-phase feeder, is a 3×1 vector. Z(i-

1,i),abc is a 3×3 vector. The above equation is expressed in the 

form of nodal power. 
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where n+L is the total length of this path. Ki-1,i is the voltage 

drop factor, Li-1,i is the line length between two nodes i-1 and 

i. Pj and cosφj are the node power consumption and power 

factor at node j, respectively. When an interruption occurs at 

the unobservable node s below node n, the value of voltage 

drops △Vo after power failure can be expressed as follows.  
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where △Ps denotes the negative value of the outage event. It 

can be seen that when an outage event occurs at the lower end 

of any two nodes, the value of the voltage drops at the two 

observable nodes changes. And the variation of them is 

proportional to ∆Ps, which can be confirmed by the real AMI 

data. As shown in Figure 2, Pag1 and Pag2 are the total power 

consumption of the first and second observable nodes in the 

region. The three-dimensional gap between the joint data of 

two observable nodes under normal conditions and the data 

of one specific outage condition is shown. Considering that a 

fault event at any location at the lower end of the two nodes 

causes a deviation in their underlying joint measurement data 

distribution during normal operation, the fault detection 

region is defined as follows.  

Definition 1: In a radiation network, an outage detection 

region, Ψi, can be defined as Ψi = {So1, So2, ZΨi}, where So1 and 

So2 are two observable nodes, with the former at the upper end 

of the latter. ZΨi is the set of all branches at the lower end of 

So1. From Definition 1, it is clear that for a specific 

distribution system, different zone selection strategies lead to 

different zone divisions, which affect the performance of 

outage detection and localization. Therefore, this paper 

proposes a BFS region selection method using the tree 

structure of the distribution system. Specifically, the nodes at 

the current depth are used to select regions, and then the nodes 

are moved at the next depth level. The proposed method has 

two advantages: (1) It is able to obtain the optimal set of 

regions for maximizing outage location information in any 

part of the observable network. (2) The proposed BFS-based 

algorithm introduces an effective topological ordering, which 

greatly simplifies the fault location identification process. 

Definition 2: In a radiation network, node B is defined as a 

directly observable lower node of any node A when the 

following two conditions are satisfied: 1) node B is located at 

the lower end of node A; 2) the path connecting A and B 

contains only unobservable nodes. 

 
Figure 2. Joint distribution data during normal and outage 

The proposed algorithm consists of the following steps: 

Step 1: A partially visible distribution system g, containing 

M branches, Bg = {b1,..., bM}, and a set of O+1 observable 

nodes Sg = {Sr, S1, S2,..., SO}, where Sr denotes the root node 

of the network. 

Step 2: Define g and initialize the set of regions and the set 

of neighboring nodes: Ψg and N(g) = {Ø}. where Ψg is the 

ordered set and new elements will be added to the right side 

of the set. Initialize the candidate node set SB={Sr}. The 

region counter k is set to 1. 

Step 3: If N(g) is the empty set, randomly select and remove 

a node So1 from SB. if not empty, randomly select and remove 

a node So1 from N(g).  

Step 4: Find all the observable nodes at the lower end of So1 

(see Definition 2) and randomly select a node from it, denoted 

as So2. If N(g) = {Ø}, add all the visible nodes at the lower 

end of So1 to N(g); otherwise, add them to SB. 

Step 5: Choose a region Ψk with new So1 and So2 and include 

all branches at the lower end of So1 into ZΨk (see Definition 1). 

Add Ψk to the right side of the existing interval. 

Step 6: k = k+1. Then return to Step 3 until N(g) is empty. 

Step 7: Output the ordered set of all network regions, 

Ψg={Ψ1,.... , Ψw}. where w denotes the number of selected 

regions. 

For better understanding, an example is given in Figure 3, 

where Bg= {b1,..., b36} and Sg = {Sr, S1, S2,..., S8}. In the first 

iteration (k = 1), both Ψg and N(g) are empty sets. In step two, 

the root node is chosen as the first observable node: SB = {Sr}. 

In Step 3, So1 is randomly selected and removed from SB since 

N(g) is empty. Thus, So1=Sr and SB={Ø}. In step IV, S1 and S2 

are the lower observable nodes of Sr. Since N(g) is empty, 

these two nodes are added to N(g). Then, So2 is randomly 

selected from {S1, S2}. in this example, So2= S1. in step V, the 

first region is defined based on the selected So1 and So2, which 

are added to the set Ψg; Ψg = {Ψ1}. where Ψ1= {Sr, S1, ZΨ1}. 

The algorithm then returns to step three and re-iterates. The 

region w can be expressed as a function of the number of 

observable nodes: w = O+1-Oend, where O is the number of 

all visible nodes and Oend is the number of observable nodes 

without any observable lower nodes. We can conclude that the 

above indicates that the approach requires the installation of 

sensors at internal nodes in order to form meaningful zoning. 

This requirement is consistent with recent smart grid 

monitoring equipment. In the current distribution system, 

metering devices are generally installed at selected locations, 

such as the root node and other major utilities, which can be 

used to obtain zoning. On the other hand, in many distribution 

systems, monitoring devices are installed only at the terminal 

nodes. To deal with the region selection problem, an 

approximate method is provided in this paper. Definition: 

internally active nodes are a subset of the internal nodes of the 

network with non-zero current injection, and internally 

inactive nodes do not have any injection. The method uses a 

portion of the measurement data of the observed terminal 

nodes to represent the recently unobserved internally inactive 

nodes. The principle is that the voltage drops between an 

internally inactive node and the nearest terminal node is 
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usually negligible. Using this approximation, the proposed 

method achieves a reasonable partitioning of regions when 

only metering terminal buses are available. When the set of 

regions is obtained, each branch in the system will belong to 

at least one region, while no two regions have exactly the 

same set of branches. For example, the branches of region Ψ6 

in Figure 3 are also covered by regions Ψ1...Ψ5. 

 
Figure 3. BFS-based region selection and ranking method 

3. GAN-based Area Monitoring 

In this paper, we use a parameter-free unsupervised learning 

method, GAN, to quantify the deviation of the data 

distribution of power outage events under normal conditions. 

The advantage of GAN is that it can implicitly represent 

complex data distributions without constructing a high-

dimensional likelihood function, thus solving the problem 

posed by dimensionality. In addition, GAN does not have a 

priori parameter structure on the data distribution, which 

ensures the performance of outage detection. Also, our 

approach is not prone to blackout data shortage problem 

because the model training uses only the data under normal 

conditions. When the training is completed, the GAN-based 

anomaly scores are assigned to real-time measurements to 

detect power outage events in the region. 

For each region, the GAN is trained to learn the joint 

distribution of the measured variables (X= {△Vt, Pt
n, Pt

n+N 

}T
t=1) for a time window of T (Figure 1). Where Pt

n and Pt
n+N 

are the power consumption of two observable nodes in the 

region. △Vt is the voltage difference between the two nodes 

at time t. The purpose of defining time windows on the 

observed variables is to exploit the temporal relationships 

between consecutive data samples in the distribution network 

for more effective anomaly detection. Based on the results of 

the grid search method, T is chosen to be 3 hours. Although 

the training process of GAN is an offline process, the 

computational complexity of the grid search method does not 

affect the real-time performance of the algorithm. The 

training set consists of historical SM data for each region and 

is denoted as XΨ1 in the interval Ψi. Considering that seasonal 

variations in customer behavior may mislead to detect the 

boundary overlap between normal and fault, the dataset is 

decomposed into separate seasons to train different GAN 

models. Each dataset is randomly divided into three separate 

subsets for training (70% of the total data), validation (15% 

of the total data) and testing (15% of the total data).The GAN 

relies on two interconnected DNNs that are trained 

simultaneously by an adversarial process: the generator G and 

the classifier D. This is shown in Figure 4 (part a). The 

interaction between these two DNNs can be modeled by game 

theory. 

 

( ) ( )( , ) [log( ( ))] [log(1 ( ( )))]maxmin i i i

G D

x p x i z pz zV D G D x E D G z  
 

=  + −

(4) 

 

where θG and θD are the learning parameters of G and D, and 

pXΨ1 is the underlying probability density function of the 

relevant historical data acquired by the two observable nodes. 

At each iteration, D is trained to maximize the probability of 

assigning the correct label. On the other hand, G is trained to 

generate artificial samples that maximize the probability of 

mislabeling the classifier D. The input to G is defined as z, 

representing a uniformly distributed pz(z) noise signal. In this 

case, d = 4 shows the best performance on the validation set. 

After several iterations of training, G and D will reach a 

unique global optimum. The training process is performed 

offline, and the steps are shown in Algorithm 1. In this paper, 

a random search algorithm is used to calibrate the hyper 

parameter set of GAN. Thus, G consists of three parts:4 

neurons in the input layer, 8 neurons in the two hidden layers, 

and 9 neurons in the output layer. The D also has three parts:9 

neurons in the input layer, 8 neurons in the two hidden layers, 

and 1 neuron in the output layer. In addition, {α, m, nD} are 

chosen as 0.01, 100, and 1, respectively. Minibatch stochastic 

gradient descent is used only in order to be able to update θG 

and θD. 

Arithmetic 1  GAN training of the interval Ψi 

Requirement: Normal data for region Ψi 

Requirement: Learning rate α，m of batch m, Initial 

learning parameters of G and D: θG and θD 

for t=0，…，nD   do 

Generate sample batches 

   Pz→{(zj)}m
j=1 

Obtain sample batches from historical data 

   pXΨi→{xΨi(j)}m
j=1 

Update classifier parameters using gradient descent 
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m
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end while 

 

 
Figure 4. GAN-based learning and testing structure 

As shown in Figure 4(b), in order to detect potential 

outages in each region, the data of online SM is evaluated 

based on the anomaly scores of GAN. The anomaly consists 

of the residual δR(•), and the classification error δD(•). When 

a new data xt
new is obtained, the residuals are expressed as 

 

   ( ) ( )min
t t

R new new
z

x x G z = −     (5) 

 

After training, the generator G learns the mapping of the data 

distribution from the latent space z to the regional 

measurements. Therefore, if xtnew comes from the normal 

case, its residual value is zero. To obtain the optimal solution 

z* during the test, the solver fmincon is used in this paper. if 

the residual value deviates from the normal residual value 

indicates an outage event in the region. The classification 

error δD(xt
new) is defined according to the trained classifier D. 

 
*( ) log ( ) log(1 ( ( )))t t

D new newx D x D G z = − − −
         

(6) 

 

The GAN-based anomaly score in region Ψi is defined as a 

weighted sum of two error metrics. 

 

   
( ) (1 ) ( ) ( )t t t

i new R new D newx x x    = − +              (7) 

 

Where λ is a user-defined weighting factor whose value is 0.1 

in this paper. to determine the critical threshold of the 

anomaly score, all training samples of region Ψi are trained to 

obtain the GAN-based anomaly score ζΨi. the sample mean 

μΨi and sample variance σΨi of the anomaly score of the 

training data samples are calculated to determine the range of 

the normal operation anomaly score. When power failure 

occurs, the real-time measurement data samples are expected 

to have anomaly scores higher than this range. Due to the use 

of a rolling window, power outages can be detected in a single 

interval. The length of the time interval depends on the 

resolution of the smart meter data. The details of the anomaly 

identification process will be elaborated in the next section. 

Using the trained GAN and the GAN-based anomaly 

scoring method, outages within each region can be detected 

by comparing the anomaly scores of the new samples with the 

critical threshold. Since the granularity of location 

information depends on the number of candidate branches, it 

is necessary to reduce this number as much as possible. To 

achieve this goal, a GAN-based region coordination method 

is proposed. The method consists of the following steps by 

integrating the anomaly scores of multiple regions. 

Step 1: Each region is assigned a GAN, Ψi∈Ψg, while 

learning measurement data using historical data from two 

observable nodes of Algorithm 1 in each region. 

Step 2: After training in each region Ψi, obtain the anomaly 

scores of the training samples in the region and determine the 

sample mean and sample variance of the anomaly scores(μΨi

、σΨi). 

Step 3: Observe the anomaly scores of all data in the set Ψg. 

Step 4: Select the first region on the right side of the set Ψg 

and denote it as Ψa. where a=argmaxξ ξ, satisfied ζΨξ 

>μΨξ+h•σΨξ. where h is a user-defined threshold factor.  

Step 5: Output the set of candidate branches with outage 

potential locations: Bc=ZΨa\{ZΨa+1∪ZΨa+2∪…∪ZΨw}, where 

A\B is denoted as the elements of the set A that are not in the 

set B. 

The minimum candidate branches affected by the outage 

can be obtained based on the results of regional coordination, 

thus maximizing the outage information that will help 

maintenance personnel to find the fault location quickly. 

Given the unbalanced nature of the distribution network, the 

proposed method is applicable to each phase, and therefore, it 

is necessary to obtain the set of regions for all three phases. 

In the power grid, faults such as on-load tap-changer and 

capacitor switching occur frequently in the distribution 

system, and these faults have a significant impact on the 

actual data distribution. Therefore, the proposed outage 

detection method needs to be customized to consider the 

impact of these events (as shown in Figure 5). 
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Figure 5. The outage identification framework of this paper 

4. Improved outage recognition architecture 

 The framework proposed in this paper has the following three 

properties. 

4.1. Effective topological ordering of regions 

The framework introduces an effective topological ordering 

among regions, which can be used to simplify the outage 

locations in large-scale networks and can be expressed as 

Ψi>Ψj. This implies that Ψi has a higher topological ordering 

than Ψj. Note that Ψg={Ψ1,...,Ψw} follows a valid topological 

ordering, i.e., it is Ψ1>...>Ψw. When a power outage occurs, 

the anomaly fraction of the subset of regions will increase 

above the normal range. To infer the branch where the outage 

event occurs, all normal regional branches below the 

threshold are removed, which helps to select the smallest set 

of branches directly from thousands of candidate branches. 

4.2. Maximum outage location information 

extraction. 

In locally observable systems, the algorithm is able to obtain 

the optimal set of regions because it maximizes the 

information of outage locations. First, the outage location 

information is evaluated in Ψg using entropy. The set γg(bj) is 

defined as γg(bj)={∀Ψi : bj∈ZΨi, Ψi∈Ψg
}. Thus γg(bj) is the set 

of all regions of Ψg containing bj. For each Ψg, the set of 

undetectable branching sets is defined as U(Ψg) = {u1, ..., uV} 

where uk={bkn, …, bkn : ∀bki, bkj, γg(bki)= γg(bkj) }. Thus, uk 

defines a set of branches that are covered by identical regions 

and cannot be distinguished from each other at the outage 

locations. Considering the set of outage information U(Ψg) 

can be measured using the concept of entropy, expressed by 

the following equation. 

                1

( ( )) log
V

i ig

i

u u
H U

M M=

 = −                         (8) 

 where |ui| is the cardinality of the set ui. A higher entropy 

value implies more distinguishable branches and thus more 

information about the location of the outage. The theoretical 

upper limit of entropy is log(M), which indicates that any 

individual branch can be distinguished using two regions that 

intersect exactly in that branch. The theoretical lower bound 

value of entropy is zero, which means that all branches are 

covered by the same set of regions. 

4.3. Framework Robustness 

Bad data from AMI generates high anomaly scores, so it is 

essential to mask them in the outage detection algorithm. In 

this paper, a bad data detection mechanism is integrated using 

the redundancy of existing regions in Ψg. The basic idea is 

that since the bad measurement data is not actually generated 

by the outage event. If the cross-regions do not share data 

from the same measurement devices, the possibility of bias in 

the anomaly scores assigned to several cross-regions at the 

same time is small. To enhance the robustness to bad data, a 

set of redundant regions is chosen for Ψa. This set consists of 

regions with a lower topological ordering than Ψa. Denoted 

as: ΨR = {Ψr1, …, Ψrn},where Ψa⊂Ψri，∀Ψri∈ΨR. Ψa is 

defined as bad data if ζΨri≤μΨri+h•σΨri. The number of 

remaining regions|ΨR| depends on the reliability of the 

algorithm. If each region receives abnormal data with 

probability η, then the probability of bad data being classified 

as an outage event increases with η|ΨR|. 

5. Experimental results 

The proposed fault detection method was tested on a real 

distribution feeder using hourly SM data (for a total of three 

years). To provide convincing results, the most complex real 

distribution feeder was selected from the dataset. The 

topology of this network is shown in Figure 6, and the feeder 

consists of 164 nodes and about 800 customers. It is assumed 

that there are 6 observable nodes in this feeder (node 8, node 

22, node 31, node 83, node 109 and node 158). Where 5 

regions {Ψ1,...,Ψ5} are defined based on these nodes, which 

include the lower branches of node 8, node 22, node 31, node 

83 and node 109 (Ψ1>Ψ2...>Ψ5) respectively. 
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Figure 6. Feeder topology of 164-nodes 

5.1. Performance of the GAN model 

In order to verify the performance of GAN, the loss values of 

G and D are calculated in this paper, which can be used to 

verify whether the model has converged. The loss values are 

calculated according to the objective function of GAN. In the 

training process, G is trained so that log(D(G(z))), while D is 

trained to maximize the probability of correct labels. The 

results of the GAN model after training are shown in Figure 

7. The research in this paper was conducted on a standard PC 

with an Intel Xeon CPU running at 3.70 GHz and 32.0 GB 

RAM. the average computation time for training each GAN 

on the available SM dataset is about 840 seconds. Multiple 

GANs can be trained independently and in parallel, reducing 

system reconfiguration and adaptive time after capacitance 

switching. Since the training process is offline, this parallel 

training approach can be easily scaled to large distribution 

systems. 

 

Figure 7. Training results of GAN model 

 As in Figure 6 the blackout is located between node 142 and 

node 164. The outages were simulated to evaluate the 

performance of the method under three different outage 

scenarios. The first case was a small event where about 20 

customers were affected (40 kW per hour). The second case 

was a medium-sized outage where about 50 customers were 

affected (100 kW per hour). The third case is a large event 

with about 80 customers (150 kW per hour). For each case, 

the GAN is trained using historical SM data from five regions. 

The three outage cases are simulated in OpenDSS, where the 

voltage drop is calculated based on the simulation results. 

Also, to represent the standard measurement deviation, error 

samples were generated from a normal distribution with zero 

mean and 1% variance, and the error samples were added to 

the voltage values. Figure 8 shows the histogram of anomaly 

scores for a region under normal and outage conditions. The 

mean and variance for the normal case are 1.263 and 7.7e-5, 

while the mean and variance for the outage are 1.33 and 2.7e-

4. As can be seen from Figure 8, it is easy to distinguish 

between normal and blackout, due to the large difference in 

anomaly scores. Also, Figure 9 gives the training set and test 

set anomaly scores for the normal case of the system. When 

the outage occurs in the region, the real-time anomaly scores 

reach quite high values. Figure 10 shows the distribution of 

the change in anomaly scores for individual regions when 

outages of different magnitudes occur outside the region. The 

plot depicts the histogram of ∆ζ = ζn-ζout, where ζn is the 

anomaly score at normal times and ζout is the anomaly score 

when the outage occurs outside the zone. For out-of-area 

outages, there is no change in the anomaly score for the area, 

which indicates that outages inside and outside the area can 

be correctly distinguished based on the anomaly score. To 

evaluate the outage detection performance of the method in a 

multi-zone network, accuracy (Accu), precision (Prec), recall, 

and F1 are used for scoring. The performance values for the 

three outage scenarios and different regions are given in Table 

1. The performance of the proposed outage detection method 

improves with increasing event size due to the large bias in 

the conventional data distribution. For medium and large 

outage cases, all metrics are greater than 0.9. The average 

performance of the GAN with different size training datasets 

is also tested (as shown in Figure 11). As can be seen from the 

figure, the performance of the GAN can achieve acceptable 

detection accuracy with smaller training sets (about 700 data 

samples, i.e., about 3 days of data). To continue to 

demonstrate the superior performance of the method in this 

paper, another test was conducted with more smart meter 

data, resulting in a finer region. It is assumed that the feeder 

has 33 nodes (nodes 

8,9,12,18,21,22,26,29,31,35,39,41,43,48,53,73,75,83,85,90,

93,95,99,106,108,109,110,114,125,129,134,141,158, 

respectively). Nineteen regions were obtained using the 

region selection method: {Ψ1,..., Ψ19}. The values of the 

statistical indicators are shown in Table 2. from this table, it 

can be seen that most of the statistical indicators are above 

0.9, which proves the good detection performance. When no 
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power outage occurs in these regions, the accuracy of these 

regions is maintained ideally. 

Table 1. Outage detection performance analysis 

District Case Accu Recall Prec F1 

Ψ1 

1 0.752 0.645 0.82 0.72 

2 0.913 0.967 0.872 0.917 

3 0.928 0.997 0.876 0.932 

Ψ2 

1 0.835 0.784 0.874 0.826 

2 0.943 1.000 0.898 0.946 

3 0.943 1.000 0.898 0.946 

Ψ3 

1 0.673 0.506 0.768 0.607 

2 0.912 0.984 0.860 0.917 

3 0.914 0.988 0.860 0.919 

Ψ4 

1 0.922 0.884 0.964 0.922 

2 0.953 0.939 0.966 0.952 

3 0.981 0.995 0.968 0.981 

Ψ5 

1 0.834 0.738 0.913 0.816 

2 0.960 0.991 0.934 0.961 

3 0.965 1.000 0.934 0.966 

Table 2. Outage Detection Performance Analysis (19 regional 

cases) 

District Case Accu Recall Prec F1 

Ψ1 

1 0.752 0.645 0.82 0.72 

2 0.913 0.967 0.872 0.917 

3 0.928 0.997 0.876 0.932 

Ψ2 

1 0.949 0.955 0.944 0.949 

2 0.950 0.956 0.944 0.951 

3 0.951 0.958 0.944 0.951 

Ψ3 

1 0.922 0.929 0.916 0.923 

2 0.922 0.930 0.916 0.923 

3 0.917 0.920 0.915 0.917 

Ψ4 

1 0.835 0.784 0.874 0.826 

2 0.943 1.000 0.898 0.946 

3 0.943 1.000 0.898 0.946 

Ψ5 

1 0.933 0.932 0.934 0.933 

2 0.931 0.928 0.934 0.931 

3 0.936 0.938 0.935 0.936 

Ψ6 

1 0.973 0.972 0.973 0.973 

2 0.975 0.977 0.974 0.975 

3 0.976 0.978 0.947 0.976 

Ψ7 

1 0.945 0.940 0.950 0.945 

2 0.975 0.940 0.950 0.945 

3 0.946 0.942 0.950 0.946 

Ψ8 

1 0.902 0.908 0.898 0.903 

2 0.905 0.914 0.898 0.906 

3 0.906 0.916 0.900 0.907 

Ψ9 

1 0.673 0.506 0.768 0.607 

2 0.912 0.984 0.860 0.917 

3 0.914 0.988 0.860 0.919 

Ψ10 
1 0.929 0.929 0.930 0.929 

2 0.930 0.931 0.930 0.930 

3 0.929 0.930 0.930 0.929 

Ψ11 

1 0.922 0.884 0.964 0.922 

2 0.953 0.939 0.966 0.952 

3 0.981 0.995 0.968 0.981 

Ψ12 

1 0.940 0.940 0.940 0.940 

2 0.940 0.940 0.940 0.940 

3 0.940 0.941 0.940 0.940 

Ψ13 

1 0.960 0.960 0.960 0.960 

2 0.961 0.962 0.960 0.961 

3 0.958 0.956 0.959 0.957 

Ψ14 

1 0.962 0.962 0.963 0.962 

2 0.962 0.961 0.962 0.962 

3 0.963 0.964 0.963 0.963 

Ψ15 

1 0.945 0.946 0.944 0.945 

2 0.945 0.947 0.944 0.945 

3 0.946 0.948 0.944 0.946 

Ψ16 

1 0.834 0.738 0.913 0.816 

2 0.960 0.991 0.934 0.961 

3 0.965 1.000 0.934 0.966 

Ψ17 

1 0.929 0.930 0.928 0.929 

2 0.928 0.928 0.927 0.928 

3 0.934 0.940 0.928 0.934 

Ψ18 

1 0.976 0.972 0.979 0.975 

2 0.977 0.974 0.979 0.976 

3 0.978 0.977 0.980 0.978 

Ψ19 

1 0.911 0.908 0.914 0.911 

2 0.916 0.918 0.915 0.916 

3 0.919 0.924 0.915 0.920 

均值 

1 0.905 0.881 0.922 0.899 

2 0.940 0.952 0.932 0.941 

3 0.944 0.957 0.931 0.945 

Figure 8. Histogram of abnormal scores under normal and 

outage conditions 
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Figure 9. Anomaly scores of the training set 

 
Figure 10. Histogram of △ζ 

 
Figure 11. Sensitivity of fault detection accuracy to training 

set size 

To further verify the performance of the fine-tuning 

algorithm, an experimental comparison was performed 

(shown in Figure 12). Let a certain capacitor switch occur at 

12:00 noon. Due to the change in the underlying data 

distribution, the performance of the method drops from about 

97% to about 76%. This is caused by the fact that the newly 

obtained training data set is very small and the critical 

threshold for recalculating the anomaly score. Then, as the 

size of the training data increases, the average accuracy of the 

method improves significantly. After about one day, the 

method in this paper reaches a similar level of accuracy as 

before the capacitance switch, which means that the proposed 

method has adapted to the change in system conditions. 

Compared with the results in Figure 11, the data acquisition 

time can be reduced from 3 days to 1 day using the fine-tuning 

strategy in this paper. 

 
Figure 12. Performance of capacitor tuning strategy 

To demonstrate the superiority of the proposed strategy, it 

is compared with a support vector machine. The results show 

that the proposed method can achieve good and better outage 

detection accuracy with a smaller number of smart meters. As 

shown in Figure 13, for three different outage cases, the 

support vector machine requires a higher level of 

observability (almost 10 times higher than the method in this 

paper) to achieve a similar detection accuracy. It is shown that 

the proposed scheme is able to detect outages accurately. 

 
Figure 13. Comparison between the proposed method and 

SVM 

5. conclusion 

In this paper, a new data-driven approach is proposed to 

detect and locate outages in partially observable power grids 

using SM data. The GAN-based detection method proposed 

in this paper is able to implicitly represent the data 

distribution under normal conditions and identify potential 

online outages. The proposed multi-area outage detection 

mechanism is based on an unsupervised learning method, 

which can solve several difficulties in detection: 1) Due to the 

limited SM data, the system has poor observability. 2) Data 

imbalance caused by the scarcity of power outage data. 3) 

High dimensionality of data caused by spatio-temporal 

relationship. At the same time, the proposed region selection 

and ranking mechanism based on BFS ensures that the 

maximum amount of outage location information can be 

obtained in any observable system. The proposed method is 
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validated on real public feeders using SM data, and its 

performance is more effective than the existing support 

vector machine algorithms. 
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