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Abstract 
To augment the accuracy, stability, and qualification rate of wind power prediction, thereby fostering the secure and 
economical operation of wind farms, a method predicated on quadratic decomposition and multi-objective optimization for 
ultra-short-term wind power prediction is proposed. Initially, the original wind power signal is decomposed using a quadratic 
decomposition method constituted by the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
(CEEMDAN), Fuzzy Entropy (FE), and Symplectic Geometry Mode Decomposition (SGMD), thereby mitigating the 
randomness and volatility of the original signal. Subsequently, the decomposed signal components are introduced into the 
Deep Bidirectional Long Short-Term Memory (DBiLSTM) neural network for time series modeling, and the Sand Cat 
Swarm Optimization Algorithm (SCSO) is employed to optimize the network hyperparameters, thereby enhancing the 
network’s predictive performance. Ultimately, a multi-objective optimization loss that accommodates accuracy, stability, 
and grid compliance is proposed to guide network training. Experimental results reveal that the employed quadratic 
decomposition method and the proposed multi-objective optimization loss can effectively bolster the model’s predictive 
performance. Compared to other classical methods, the proposed method achieves optimal results across different seasons, 
thereby demonstrating robust practicality. 
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1. Introduction

In the face of the evolving global energy structure and the 
escalating energy demand, wind power generation has 
attracted significant attention from countries worldwide, 
showcasing a sustained upward trajectory[1]. However, the 
inherent randomness and volatility of wind speed patterns 
pose substantial constraints on the large-scale integration of 
wind power generation in grid scheduling and stable 
operation due to natural environmental conditions[2]. 
Accurate forecasting of wind power significantly mitigates 
the uncertainty introduced by fluctuations during the 
integration of wind energy into the power grid. This 
enhancement bolsters the grid’s capacity to absorb wind 

a23111010013@stumail.xsyu.edu.cn, bzhang1196438471@163.com, csktong1987@126.com, d1427503003@qq.com 
e*Corresponding author. Email: zhgwang@xsyu.edu.cn; f*huanghai@xsyu.edu.cn 

power, economizes the costs associated with maintaining grid 
stability, and elevates the efficiency of wind energy 
utilization.[3]. Hence, wind power prediction emerges as an 
area of substantial research significance in grid scheduling 
and stable operations. 

Wind power generation is characterized by its intrinsic 
unpredictability and fluctuation, swayed by a plethora of 
meteorological elements. An in-depth comprehension of the 
complex liaison between meteorological observations and 
wind power is indispensable for enhancing the precision of 
wind power prognostication. Wind power prediction 
methodologies can be broadly bifurcated into two primary 
domains: physical and statistical approaches. Physical 
methods primarily utilize meteorological data and the 
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operational principles of wind turbines to construct 
mathematical models. These models consider wind speed, 
wind direction, and turbine characteristics to forecast power 
output[4]. Li et al.[5] have championed a physical approach 
to wind power prediction that utilizes computational fluid 
dynamics to predict wind power output based on computed 
flow fields. Furthermore, Lin and Liu[6] have contrived an 
innovative blueprint for wind power prediction, 
amalgamating deep learning algorithms with the physical 
dynamics of offshore wind turbines. Their framework 
significantly diminishes computational overhead and 
prediction time while maintaining exceptional accuracy. The 
prediction above models enhence the precision of wind power 
forecasting via physical modeling; however, the intricacies 
involved in applying these methods and the substantial 
computational demands limit their widespread adoption and 
application. 

In contrast, statistical methodologies fabricate 
mathematical models to elucidate the convoluted, nonlinear 
relationship between raw data samples and wind power 
output. These approaches are distinguished by their capacity 
to provide high precision and swift computational results[7]. 
Notably, deep learning algorithms have attracted 
considerable attention from researchers in statistical methods. 
Liu et al.[8] introduced a wind power prediction model that 
amalgamates deep learning techniques with transfer learning, 
demonstrating its superiority in predictive accuracy and 
training speed when validated against field data. In a separate 
study, Srivastava et al.[9] conducted a performance 
evaluation of recurrent neural networks, gradient boosting 
tree algorithms, and LSTM networks for wind power 
prediction, conclusively revealing the LSTM network’s 
heightened accuracy. The experimental comparison 
demonstrated that the LSTM network exhibits more excellent 
responsiveness to high-frequency and volatile wind signals, 
rendering it particularly adept for modeling wind power 
profiles. 

The optimization of hyperparameters constitutes a pivotal 
aspect in bolstering the predictive performance of deep 
learning models[7]. Manual hyperparameter tuning is a 
formidable task and often does not yield optimal outcomes. 
Hence, researchers strive to pinpoint optimal 
hyperparameters by deploying intelligent optimization 
algorithms. Wang et al.[10] utilized the particle swarm 
optimization algorithm to optimize pivotal parameters such 
as the number of time steps, hidden layer node count, and 
batch size in deep learning networks, thereby enhancing the 
predictive accuracy of natural gas price forecasts. Similarly, 
Liu et al.[11] optimized the learning rate of a hybrid neural 
network using an enhanced differential optimization 
algorithm, demonstrating that their proposed approach 
significantly bolsters the network’s predictive performance 
and generalization capabilities. 

While deep learning models have demonstrated promising 
results in wind power prediction, the inherent unpredictability 
and volatility of wind signals pose significant challenges to 
accurate forecasting. Signal decomposition, a technique that 
involves the dissection of complex signals into their 
constituent modal components, offers a strategy for 

mitigating these signals’ inherent randomness and 
instability[12]. The application of signal decomposition 
algorithms for mitigating the nonlinearity in high- and low-
frequency signals has garnered growing interest among 
researchers in time-series signal processing. For short-term 
photovoltaic (PV) power prediction, Liu et al.[11] integrated 
variational modal decomposition with an enhanced Informer 
model. Meanwhile, Li et al.[13] employed time-varying 
filter-based empirical modal decomposition (TVFEMD) to 
deconstruct raw data into multiple intrinsic modal function 
(IMF) components, subsequently incorporating sample 
entropy (SE) for signal reconstruction, yielding an effective 
prediction of the air quality index. 

In summary, current wind power prediction methodologies 
predominantly emphasize accuracy while often overlooking 
stability. Ultra-short-term wind power forecasting is crucial 
in providing early warnings for integrating wind power into 
the grid, where stable and highly accurate predictions are 
essential for ensuring the grid’s safe operation. Lu et al.[14] 
introduced a multi-objective optimization approach that 
concurrently emphasizes prediction accuracy and stability for 
offshore wind power prediction. The experimental results 
show that the multi-objective optimization approach is 
beneficial to improve the model’s prediction accuracy. 
Ensuring the cost-effective operation of wind farms is 
paramount for rapidly advancing wind energy production. 
Countries worldwide have gradually established qualification 
standards for wind power forecasting, and any deviation from 
the anticipated qualification rates could potentially impose 
significant economic repercussions on wind farms. 
Consequently, this study develops a loss function for multi-
objective optimization to enhance the accuracy, stability, and 
cost-efficiency of wind power prediction. This loss function 
guides the training of network models and ultimately elevates 
the overall performance of wind power prediction. 

In the quest to enhance the precision of wind power 
prediction, boost grid-connection qualification rates, and 
guarantee the stability of such predictions, this study 
introduces an ultra-short-term wind power prediction 
methodology predicated upon quadratic decomposition and 
multi-objective optimization. A quadratic decomposition 
technique encompasses CEEMDAN, FE, and SGMD. This 
technique is utilized to dissect the modes inherent in the initial 
wind data, thereby attenuating the inherent volatility and 
randomness of the raw dataset. Subsequently, all the 
decomposed methods are integrated into the DBiLSTM 
neural network for time-series modeling. The DBiLSTM 
network is intelligently optimized by deploying the SCSO 
algorithm to enhance performance. Finally, a multi-objective 
optimization loss function is formulated, encompassing 
aspects of prediction accuracy, stability, and qualification 
rates, to guide the model training process, with the 
overarching aim of further facilitating the performance of the 
wind power prediction model.  
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2. Data Preprocessing

2.1. Characteristic information correlation 
analysis 

To meticulously examine the relationship between wind 
power and meteorological factors, this work employs 
Spearman’s correlation coefficient[15]. This coefficient 
enables a quantitative analysis of the correlation between 
wind power and various meteorological variables, including 
wind speed (at elevations of 10m, 30m, 50m, 70m), wind 
direction (at heights of 10m, 30m, 50m, 70m), temperature, 
barometric pressure, and humidity. This paper visually 
represents the correlation coefficients between 
meteorological parameters and wind power. Figure 1 displays 
the procured results. 

Figure 1. Spearman Correlation Coefficient Matrix 

As depicted in Figure 1, the wind speed at the 70m wind 
measurement tower exhibits the highest correlation with wind 
power, at 0.9156. Therefore, this study selects the wind speed 
at the 70m wind measurement tower and wind power as 
feature inputs and normalizes both to ensure the features 
share the same measurement scale. 

2.2. Time Lag Characterization 

In this investigation, Pearson correlation coefficients are 
calculated between the input features and the predicted power 
for the initial 11 lag moments, and the outcomes are depicted 
in Figure 2. It merits emphasis that Li et al.[16] have proposed 
that correlation coefficients exceeding 0.8 signify a robust 
and more productive correlation in time series data, which is 
beneficial for feature extraction. As can be seen from Figure 
2, there are nine groups with correlation coefficient values 
exceeding 0.8, from t-1 to t-9. Therefore, the first nine 
moments are selected for time series modeling. 

Figure 2. Pearson correlation coefficient at different 
times 

3. Ultra-Short-Term Wind Power Prediction

3.1. Quadratic Decomposition of Wind Power 
Signal 

This work employs a combination of quadratic 
decomposition and FE to tackle the variability and 
unpredictability inherent in wind power generation. 
Established signal decomposition methods encompass 
variational modal decomposition(VMD)[17], singular 
spectrum analysis(SSA)[18], and empirical modal 
decomposition(EMD)[19], among others. VMD needs more 
flexibility to select the number of components[20], which can 
lead to inaccurate decomposition due to either under-
decomposition or modal repetition[21]. The success of SSA’s 
decomposition hinges on the empirical selection of the 
window function length[22]. While EMD is a fully automated 
decomposition method that does not necessitate manual 
parameter configuration, its decomposition outcomes are 
susceptible to modal aliasing. 

The CEEMDAN is a modal decomposition method 
introduced by Torres[23]. It tackles the issues of modal 
aliasing in empirical modal decomposition and the problem 
of arbitrary residual noise in aggregated empirical modal 
decomposition. However, various sub-components of the 
CEEMDAN decomposition may contain varying degrees of 
noise. The FE serves as a metric for quantifying each 
component’s stochasticity, and the smoothness level for each 
component can be identified through FE value[24]. An 
appropriate FE value is used as a threshold to differentiate 
between non-smooth and smooth components. 

The SGMD employs the symplectic geometric similarity 
transformation to solve and reconstruct component 
signals[25], effectively eliminating noise while enhancing 
noise robustness and adaptivity in in reconstructing 
component patterns[22]. Therefore, this work initially applies 
CEEMDAN to decompose wind power signals; subsequently, 
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it calculates the FE value of each sub-component, 
distinguishing between stationary and non-stationary 
components; finally, it superimposes and reconstructs the 
non-stationary parts, using SGMD to perform secondary 
decomposition on the reconstructed pieces. 

Wind power and wind speed are decomposed using 
CEEMDAN, outputting 11 and 12 sub-components, 
respectively, with decomposition results shown in Figure 3 
(only the first five components of wind power and wind speed 
are displayed). Following CEEMDAN decomposition, the 
nonlinearity of the signal is significantly reduced, mitigating 
the randomness and volatility of the original signal. 

(a) Wind power component

(b) Wind speed component

Figure 3. CEEMDAN decomposition result 

Taking wind power as an example, the FE values for each 
Intrinsic Mode Function (IMF) component range from IMF1 
to IMF13. The corresponding results are provided in Table 1. 

As demonstrated in Table 1, the FE values of IMF1-IMF4 
all surpass 0.2, markedly exceeding those of IMF5-IMF11. 
FE values that exceed 0.2 are indicative of non-stationary 
components[26]. Therefore, in this section, IMF1, IMF2, 
IMF3, and IMF4 are superimposed and reconstructed. The 
same methodology is applied to wind speed. Upon 
computation, the FE values of the decomposed IMF1, IMF2, 

and IMF3 components of the wind speed signal exceed 0.2. 
Therefore, superimpose and reconstruct them as well. 

Table 1. FE value of 11 components 

Component FE value Component FE value 
IMF1 0.2808 IMF7 0.0213 
IMF2 0.2509 IMF8 0.0051 
IMF3 0.2576 IMF9 0.0003 
IMF4 0.2134 IMF10 0.00008 
IMF5 0.1265 IMF11 0.00001 
IMF6 0.0639 

The SGMD methodology is applied to decompose the 
combined components, resulting in a quadratic signal 
decomposition. For the reconstructed non-stationary parts of 
wind power and wind speed, SGMD generates 15 and 13 sub-
components, respectively. Figure 4 presents the results, 
illustrating the first five components. Figure 4 confirms that 
the subsequences after secondary decomposition display 
improved stability and clarity. 

(a) Quadratic decomposition component of wind power

(b) Quadratic decomposition component of wind speed

Figure 4. SGMD decomposition result diagram 
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The raw data undergoes quadratic decomposition, 
producing 24 wind speed components and 25 wind power 
components. 

3.2. DBiLSTM Timing Model Based on SCSO 
algorithm 

The SCSO algorithm, a meta-heuristic technique, draws 
inspiration from the behaviour of sand cats in the wild. This 
algorithm is distinguished by its rapid convergence and high 
computational efficiency[27]. Long Short-Term Memory 
(LSTM) model is a prevalent method for time series 
prediction, which entails training a neural network to 
propagate the state updates of the hidden layer through 
unidirectional time series inputs[28]. However, in wind 
power prediction, where temporal dependencies span past 
and future time periods, conventional training methods may 
overlook global information embedded in historical data. 
Moreover, when the duration of the dataset is extended, the 
LSTM network may disregard the early stages of learning. To 
mitigate these challenges, the BiLSTM neural network is 
employed. This network comprises two independent LSTM 
networks operating at the forward and backward poles. The 
output of each time step is a fusion of these forward and 
backward LSTM networks[29]. By learning in both 
directions, this network is more adept at capturing valid 
information from historical data. Figure 5 depicts the 
fundamental structure of the network. 

Figure 5. DBiLSTM neural network structure 

The assembly of multiple layers of bidirectional long and 
short-term memory neural network hidden layers forms the 
DBiLSTM neural network. Each hidden layer integrates the 
forward and backward LSTM neural network outputs to 
generate the final result for that specific layer, as indicated in 
Eq. (1). 

[ ]1join pos rev
 ,t  ,t  ,ta a ,a  , ,ϑ ϑ ϑ ϑ ϑ = ∈        (1) 

The outputs of the forward LSTM neural network, reverse 
LSTM neural network, and bidirectional long-short-term 
memory neural network in the ϑ th hidden layer at time t are 
denoted as 

pos
 ,ta ϑ ,

rev
 ,ta ϑ  and 

join
 ,ta ϑ , respectively. Here, ϑ  

represents the total number of hidden layers. 
The SCSO algorithm enhances the DBiLSTM network’s 

performance by determining the optimal number of nodes in 
the hidden layer and the most appropriate initial value of the 

network weights, thereby improving the network’s prediction 
accuracy. Figure 6 illustrates the optimization flow of SCSO-
DBiLSTM, with the specific steps detailed below: 

Step 1: Inputting the quadratic decomposed wind signal 
into the DBiLSTM network, and the SCSO and DBiLSTM 
network parameters are initialized. 

Step 2: The individual adjustment, Ft = 1/LMulti-Obj, is 
calculated, where LMulti-Obj represents the test set loss of the 
DBiLSTM network. 

Step 3: The individual position and velocity of the sand 
cat are adjusted. 

Step 4: The termination condition is checked, i.e., whether 
the maximum number of iterations has been reached. If so, 
the optimal parameters are provided. If not, the process 
returns to step 2. 

Step 5: The optimized parameters are incorporated into the 
DBiLSTM network. 

Figure 6. SCSO-DBiLSTM Optimization Flow 

The SCSO-DBiLSTM network determines the number of 
hidden layer nodes for each BiLSTM cell through SCSO 
optimization. The timing modeling process is depicted in 
Figure 7. Initially, wind speed and power signals undergo 
decomposition and are then amalgamated into timing signals. 
These timing signals serve as the input for the SCSO-
DBiLSTM network, represented as X = [f1, f2, …, fn], where 
xi symbolizes the signal obtained by the quadratic 
decomposition of wind speed and power at the i th moment. 
The SCSO-DBiLSTM network is then utilized to extract 
features from the input time-series signals, yielding the output 
feature combination F = [f1, f2, …, fn]. Finally, the feature 
combination F is employed for regression prediction through 
a fully connected layer to derive the predicted wind power. In 
Figure 7, the i th wind speed decomposition signal at the 
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moment t - k is denoted as si(t - k), with i ranging from 1 to 
25. Similarly, the j th power decomposition signal at the
moment t - k is represented by pj(t - k), with j ranging from 1
to 24. The k and n values are set to 9, as detailed in Section 1.

Figure 7. SCSO-DBiLSTM time series model 

3.3. Ultra-short-term wind power prediction 
process 

The framework flow of the proposed prediction method is 
shown in Figure 8. The specific flow is as follows: 

Step 1: Input features are selected from wind power data, 
encompassing wind speed and historical power.  

Step 2: The signals undergo CEEMDAN decomposition, 
yielding n signal components with distinct center frequencies. 

Step 3: Calculate the decomposed components' FE values 
and identify non-stationary parts.   

Step 4: Non-stationary components are superimposed and 
reconstructed before undergoing secondary decomposition 
via SGMD.  

Step 5: The SCSO-DBiLSTM network utilizes the 
processed signal as input, and SCSO optimizes the number of 
hidden layer units in the DBiLSTM.  

Step 6: Construct a multi-objective loss function 
optimization network and train it.  

Step 7: The wind power prediction model, which has been 
trained, is utilized to obtain the final wind power prediction 
results. 

Figure 8. The framework flowchart of the proposed 
prediction method 

3.4. Construction of the Multi-Objective 
Optimization Loss Function 

The specific mathematical expression of the loss function 
designed in this work, which contains the prediction 
accuracy, stability, and pass rate, is given as: 

2
M

k k
1

k 1 cap

p y1L min
M C=

  − =      
∑    (2) 

( ) ( )( )
M 2

2 k k rediction true
k 1

1L min p y E P Y
M 1 =

 = − − − − 
∑  (3) 

M

1 k
k 1

1r B
M =

= ∑   (4) 

k k

cap

k

k k

cap

p y
1, 1 0.75

C
B

p y
0, 1 0.75

C

  −
− ≥     = 

 − − <   
 

  (5) 

( )3 1L max r=   (6) 
where Prediction = {pk, k = 1, 2, 3, ..., M} is the predicted 

power sample; Ytrue = {yk, k = 1, 2, 3, ..., M} is the real power 
sample; pk is the kth predicted power sample point. yk is the k 
th real power data sample point, M is the sample capacity, 
Ccap is the total capacity of the power-on, E denotes the 
expectation. 

L1 and L2 are optimization objectives for accuracy and 
stability, respectively. They are defined as the root mean 
square error and the variance between the predicted and true 
values of power. L3 represents the qualified rate prediction. 
Accuracy, stability and pass rate are considered together in 
constructing the loss function. The function expression is 
shown in Eq. (7). 

( )1 1 2 2 3L L L 1 Lθ θ= + + −                                 (7) 
where θ1 represents the weight control parameter of L2, θ2 

represents the weight control parameter of L3. 
In the iterative process of the algorithm, the first j iterations 

prioritize optimizing the accuracy rate L1, while the weights 
of stability L2 and qualification rate L3 are increased after the 
j iterations. The expressions for θ1 and θ2 are shown in Eqs. 
(8) and (9).

( ) ( )( )t 200

1 1 in 1 up 1 maxt min 1 ,θ θ θ θ
−

− − −= +        (8) 

( ) ( )( )t 200

2 2 in 2 up 2 maxt min 1 ,θ θ θ θ
−

− − −= +      (9) 
Where, t represents the number of iterations, θ1-in and θ2-in 

indicate the initial weight parameters of L2 and L3, θ1-up and 
θ2-up correspond to the positive factors, and θ1-max and θ2-max 
denote the maximum control coefficients of θ1 and θ2, 
respectively. The control coefficients of θ1 and θ2 regulate the 
overweighting of stability and pass rate. 
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4. Experimental Results and Analysis

4.1. Data Set Introduction 

Taking the collected data from wind power plants in a specific 
region as an example, the data sampling period spans from 
January 1, 2017, to December 15, 2018. The sampling 
interval is 15 minutes, yielding 96 sample points per day over 
713 days, resulting in 68,448 sample points. The 2017 data 
serves as the training set, while data from January 1, 2018, to 
December 15, 2018, constitutes the test set. 

4.2. Experimental Setup 

In this study, the values for θ1 and θ2 are fixed at 0.001, while 
θ1-up and θ2-up are set at 0.01. Additionally, θ1-max and θ2-max are 
established at 0.2. The implemented network model utilizes 
the Adam optimizer with a learning rate of 0.0002, a batch 
size of 200, and an epoch length of 1000. 

4.3. Evaluation indicators 

To quantitatively assess the predictive performance of 
different methods, we have chosen the qualification rate (QR), 
the mean absolute pairwise percentage error (MAPE), and the 
root mean square error (RMSE) as the evaluation criteria in 
this study. The mathematical equations are as follows: 

m
k k

k 1 k

p y1MAPE
M y=

−
= ∑     (10) 

( )
M

2
k k

k 1

1RMSE p y
M =

= −∑   (11) 

In the wind power prediction results, the smaller the error 
indicators MAPE and RMSE are, the higher the prediction 
accuracy is. The closer the QR is to 1, the better the model 
performance is. 

4.4. Experimental results and analysis 
Ablation Experiment 

The efficacy of the proposed network design was evaluated 
through ablation experiments on the network structure, with 
the results presented in Table 2. The impact of each module 
on performance improvement can be seen in Table 2. The 
intelligent optimization of hyperparameters for DBiLSTM 
using SCSO significantly improved network performance. 
Further improvements were achieved by integrating 
CEEMDAN signal decomposition into the SCSO-DBiLSTM 
framework, resulting in a 2.77% increase in QR metrics, a 
decrease in RMSE and MAPE to 8.568% and 1.8%, thereby 
underlining the substantial influence of signal decomposition. 
Incorporating the SGMD decomposition method led to 
improvements across all metrics, suggesting that quadratic 
decomposition of non-smooth signals based on CEEMDAN 
decomposition can augment model performance. The 
application of multi-objective optimization loss to guide 

network training resulted in a 76.61% improvement in QR 
performance and a decrease in RMSE and MAPE to 5.9385% 
and 11.61%, respectively. The ablation experiment 
underscored the effectiveness and essentiality of the proposed 
network structure design. 

Table 2. Ablation experiment of network structure 

Models QR/% RMSE/
% 

MAPE/
% 

DBiLSTM 65.37 12.311
3 17.2 

SCSO-DBiLSTM 68.89 10.335
8 15.4 

CEEMDAN + 
SCSO-DBiLSTM 71.66 9.4502 13.2 

Secondary 
Decomposition + 
SCSO-DBiLSTM 

75.45 6.7405 12.5 

Secondary 
Decomposition + 

SCSO-DBiLSTM + 
Multi-objective 
Optimization 

76.61 5.9385 11.61 

Figure 9 depicts the wind power prediction results for 
various algorithm structures. The proposed model 
demonstrates significantly higher prediction accuracy 
compared to other models. 

Figure 9. The framework flowchart of the proposed 
prediction method 

Ablation experiments were further employed to assess the 
impact of multi-objective optimization loss on the proposed 
model. The results of these experiments are detailed in Table 
3. The simultaneous implementation of stability and accuracy
optimization losses yielded significant enhancements in the
MAPE and QR. Notably, MAPE was reduced from 12.36%
to 12.05%, and QR improved from 75.53% to 75.96%. The

EAI Endorsed Transactions on 
Energy Web 

| Volume 11 | 2024 |



H. Chen et al.

8 

integration of the stability loss component markedly 
diminished the variance of wind power prediction errors, 
improving the model’s predictive stability and qualification 
rate. 

Introducing the qualification rate loss to the model resulted 
in marked improvements across various performance metrics. 
Specifically, the QR improved from 75.96% to 76.61%, while 
the RMSE and MAPE decreased to 5.9385% and 11.61%, 
respectively. A comparative analysis of the ablation 
experiments on optimization loss reveals that incorporating 
multi-objective optimization loss significantly bolsters the 
model’s accuracy, stability, and qualification rate. 

Table 3. Ablation experiment of multi-objective 
optimalloss 

Target Loss QR/% RMSE/% MAPE/% 
L1 75.53 6.6536 12.36 

L1 + θ1L2 75.96 6.1269 12.05 
L1 + θ1L2 + θ2(1 - L3) 76.61 5.9385 11.61 

Comparison with Classical Methods 
In order to fully validate the performance of wind power 
prediction, the proposed model is compared with Back 
Propagation Neural Network (BPNN)[30], LSTM[16], and 
Logic Gated Unit Network (GRU)[31], and the results are 
shown in Table 4. This table demonstrates the enhanced 
predictive capabilities of time series modeling methods, 
particularly LSTM, GRU, and our proposed approach, which 
exhibit lower RMSE, MAPE, and higher QR than the BPNN 
model. Notably, the proposed model outperforms the others 
across all metrics, including QR, RMSE, and MAPE. 

Table 4. Performance comparison with classical 
algorithms 

Models QR/% RMSE/% MAPE/% 
BPNN 52.92 18.55 37.29 
LSTM 67.35 8.57 19.33 
GRU 65.67 9.03. 22.04 
Ours 76.61 5.9385 11.61 

Figure 10 visually represents wind power prediction 
results over one consecutive day using various 
methodologies. T The graph clearly illustrates that the 
proposed model surpasses several alternative techniques. 

Figure 10. The framework flowchart of the proposed 
prediction method 

Comparison of Predicted Effects for Four Seasons 
To further validate the proposed model's generalization 
performance and take into account various seasonal wind 
conditions, extensive prediction comparison experiments 
were conducted in spring, summer, autumn and winter. The 
results are detailed in Table 5. 

Table 5. Performance comparison between different 
seasons 

Seaso
ns 

Model 
Structure 

QR/
% 

MAPE/
% 

RMSE/
% 

Sprin
g 

BPNN 48.7
2 36.84 18.47 

LSTM 66.2
3 18.87 8.50 

GRU 63.4
1 21.01 8.99 

Ours 74.7
1 10.18 5.8755 

Sum
mer 

BPNN 53.9
9 38.50 18.62 

LSTM 71.8
6 19.42 8.62 

GRU 68.1
7 22.45 9.10 

Ours 77.7
0 12.28 5.9418 

Autu
mn 

BP 51.5
2 37.26 18.54 

LSTM 70.0
7 19.36 8.59 

GRU 67.5
9 22.42 9.05 

Ours 76.9
4 11.71 5.9167 

Winte
r BPNN 49.5

5 37.11 18.57 
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LSTM 68.7
9 19.27 8.52 

GRU 66.9
3 21.58 9.02 

Ours 75.8
6 11.35 5.8970 

Table 5 indicates that the MAPE and RMSE for various 
methods are typically lower in spring and higher in summer. 
This finding implies that the geographical location facilitates 
more accurate predictions in the spring, with decreased 
accuracy observed during summer. This variation could be 
due to the more stable wind speeds experienced in the area 
during the spring, as opposed to the more fluctuating wind 
speeds expected in the summer. The proposed model 
demonstrates superior accuracy in forecasting results for all 
four seasons compared to the other three methodologies. 

5. Conclusion

This work proposes an ultra-short-term wind power 
prediction method based on CEEMDAN-FE-SGMD and 
multi-objective optimization to enhance prediction accuracy. 
The method's performance is validated using specific 
numerical examples. The key findings are as follows: 
Incorporating a quadratic decomposition into the data reduces 
the randomness and volatility of the original signal, thus 
improving the performance of the wind prediction model. 
Compared to the DBiLSTM model, the QR exhibits a notable 
11.24% improvement, while the MAPE and RMSE indexes 
decrease by 5.59% and 6.3728%, respectively. The model is 
trained using a multi-objective optimization loss that 
amalgamates accuracy, stability, and economy. The proposed 
method effectively reduces the model’s prediction error 
variance, thereby enhancing both the model’s strength and the 
grid-connection qualification rate. The optimization of the 
DBiLSTM network is facilitated through the SCSO 
algorithm, which favorably impacts the network’s learning 
capabilities. 

To validate the effectiveness of the model, three types of 
experiments were conducted: ablation experiments, single 
prediction model comparison experiments, and performance 
comparison experiments across different seasons. The 
ablation experiments’ results indicate that the CEEMDAN-
FE-SGMD module and the multi-objective optimization loss 
function module within the proposed model significantly 
enhance the model’s prediction performance. The single 
prediction model comparison experiments demonstrate that 
the proposed method provides the most effective prediction, 
affirming its substantial advantage in prediction performance. 
Different prediction models were used to predict wind power 
in varying wind conditions across the four seasons. The 
results reveal that the proposed model exhibits the highest 
prediction accuracy, confirming its robust generalization 
performance. 

The proposed methodology enhances the precision of 
offshore wind power prediction through multi-objective 

optimization, thereby improving stability and qualification 
rates. Nonetheless, it is critical to acknowledge that the 
reliability of the results is not quantifiable. Therefore, 
additional research in this field is necessary to evaluate and 
validate the dependability of the methodology thoroughly. 
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