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Abstract 

Due to the increasingly severe climate problems, wind energy has received widespread attention as the most abundant 
energy on Earth. However, due to the uncertainty of wind energy, a large amount of wind energy is wasted, so accurate 
wind power prediction can greatly improve the utilization of wind energy. To increase the forecast for wind energy 
accuracy across a range of time scales, this paper presents a multi-time scale wind power prediction by constructing an 
ICEEMDAN-CNN-LSTM-LightGBM model. Initially, feature selection is performed using Lasso regression to identify 
the most significant variables affecting the forecast for wind energy across distinct time intervals. Subsequently, the 
ICEEMDAN is utilized to break down the wind power data into various scales to capture its nonlinear and non-stationary 
characteristics. Following this, a deep learning model based on CNN and LSTM networks is developed, with the CNN 
responsible for extracting spatial features from the time series data, and the LSTM designed to capture the temporal 
relationships. Finally, the outputs of the deep learning model are fed into the LightGBM model to leverage its superior 
learning capabilities for the ultimate prediction of wind power. Simulation experiments demonstrate that the proposed 
ICEEMDAN-CNN-LSTM-LightGBM model achieves higher accuracy in multi-time scale wind power prediction, 
providing more reliable decision assistance with the management and operation of wind farms. 
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1. Introduction  1

As global environmental issues continue to deteriorate, an 
increasing number of countries are incorporating 
environmental protection as one of their national policies[1]. 
Among these issues, energy problem is a major concern for 
many countries, as the overindulgence in fossil fuels like 
coal and oil leads to significant emissions of harmful gases 
into the atmosphere, further deteriorating the environment. 
Furthermore, fossil fuels are non-renewable resources with 
limited reserves on Earth. As a result, an increasing number 
of countries are turning to renewable energy sources. Wind 
energy, in particular, has garnered significant attention due 
to its plentiful reserves on our planet. According to the 
World Energy Outlook, the total amount of wind power 
generated globally installations generation is projected to 
more than double by 2030, exceeding 2000 GW[2]. This 
indicates the increasing significance of wind energy in the 
global energy mix. Additionally, based on data from the 
International Energy Agency, wind power generation 
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accounted for approximately 5% of the global total 
electricity consumption in 2019, amounting to 1.32 trillion 
kilowatt-hours[3]. Accurate multi-time scale wind power 
forecasting can provide valuable reference for urban grid 
dispatching. Currently, several methods exist for wind 
power forecasting, including time series forecasting, single 
model forecasting, and ensemble model forecasting. Time 
series forecasting performs well when dealing with stable 
data, but its performance deteriorates when faced with 
unstable and highly fluctuating data. Ensemble models, on 
the other hand, can combine the strengths of different 
models to achieve higher forecasting accuracy and speed.. 
Zhang et al.[4] combined backpropagation neural networks, 
ARMA models, LS-SVMs and used data decomposition 
algorithms to decompose the original data by frequency, 
thereby improving wind power forecasting accuracy. Wang 
et al.[5] created a small-scale BP neural network that 
included statistical analysis and weight convergence., 
improved feature extraction through an improved mutual 
information algorithm, and significantly increased the 
stability, effectiveness, and anticipating wind energy 
precision. Farah et al.[6] used clue-based random missing 
(CMAR) and pattern-based K-nearest neighbor algorithm 
(PkNN) for feature extraction of the original data, and 

EAI Endorsed Transactions on 
Energy Web 

| Volume 11 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Q. Gao

2 

constructed a hybrid model using CNNs and LSTM neural 
networks, which effectively improved the precision of 
monthly forecasts for wind energy. Ning et al.[7] proposed a 
technique of wind energy forecasting using the EMD-
CCTransformer. To begin with, the original wind power 
data is decomposed according to the frequency levels using 
the Empirical Mode Decomposition (EMD) algorithm. 
Subsequently, an attention mechanism from a hybrid 
convolutional model is integrated into the system, 
culminating in the formation of an entirely new model. 
Upon testing, this novel model has effectively enhanced the 
precision of the wind energy production forecast. While the 
aforementioned techniques have successfully increased the 
wind power production forecast accuracy, they can only 
predict a single time scale, and reprocessing of the data is 
required for predictions at other time scales, which has 
certain limitations. 

In addition, temporal and spatial characteristics are also 
factors that cannot be ignored in wind power prediction. Zhu 
et al.[8] studied the problem of simultaneous wind speed 
prediction at multiple stations based on temporal and spatial 
correlation, and built a CNN-MLP wind power prediction 
model, which can better extract temporal and spatial 
characteristics of wind power to improve the prediction 
accuracy of the model. In addition to using the neural 
network model to extract the spatio-temporal characteristics, 
some scholars also extracted the spatio-temporal 
characteristics of wind power by means of graph learning. 
He et al.[9] used graph learning and time series analysis 
tools to analyze a large number of actual data of wind farms, 
and then used mathematical algorithms to express the 
probability distribution and traffic rate of wind power. And 
the finite state Markov chain model is used to build the 
prediction model of wind power, and finally the accurate 
prediction of wind power is realized. 

To achieve the anticipated amount of wind energy 
produced at different time scales and further bolster the 
precision and speed of wind energy forecasting, this essay 
suggests a multi-time scale wind energy forecasting model 
based on Lasso-CNN-LSTM-LightGBM. It includes: 

1) There are many features in the original data, and
different time scales require consideration of different 
features. Dynamic feature extraction is performed through 
the Lasso model. 

2) The ICEEMDAN algorithm breaks down the data
frequency in ascending sequence from high to low, 
amplifying the potential connections between influencing 
factors and wind power at different frequencies. 

3) A combination neural network model of CNN-LSTM-
LightGBM is constructed, where CNN extracts the hidden 
features in the spatial properties of the data of wind power, 
The LSTM network extracts hidden features within the 
temporal characteristics of the data., and the LightGBM 
model further extracts and classifies the output of the plane 
layer. Compared to single models, this combination model 
has higher forecasting accuracy and speed. 

2. Data processing

2.1. Feature extraction based on the Lasso 

The Lasso model is a regression model based on improved 
linear decomposition, which achieves data classification by 
studying the coupling relationship between different 
variables[10]. The distinctive feature of the Lasso model is 
the introduction of an L1 regularization term in regression 
analysis, which allows certain coefficients to be precisely 
reduced to zero, thereby achieving the purpose of variable 
selection (feature selection). In general, regression can be 
expressed as follows[11]: 

0 1 1b b b n ine χ χ χα α ω α ω α ω θ= + + + + + +        (1) 

In the given equation, be  represents the actual value of 
the b th dependent variable; n  represents the total count of 
features; 0α  represents the intercept; bα  represents the 
regression coefficient of the b th feature value; bχω
represents the observed value of the χ th feature value 
applied to the b th feature value. χθ  represents the residual 
value. The loss function can be expressed as: 

2( )Loss a A Bα= −                 (2) 

In the given equation, Loss represents the loss function; 
B  represents the dependent variable; A  represents the 
outcome; α  represents the regression coefficients. 

Due to the problem of overfitting that often occurs in 
raditional regression models, the Lasso model introduces a 
shrinkage parameter on top of the traditional regression 
model. By reducing the variance through the shrinkage 
parameter, the Lasso model can avoid overfitting. The 
model can be represented as follows: 

( ) ( ) ( )L Loss Pα α ρ α= +                 (3) 

In the given equation, L  represents the loss function after 
introducing the shrinkage parameter; ( )Loss α  is the 
original loss function; ( )Pρ α  represents the shrinkage 
parameter. 

The Lasso model not only effectively avoids overfitting 
problems, but also can effectively handle situations with 
small data size, large number of features, and discontinuity. 

2.2. Processing of raw data based on 
ICEEMDAN  

The Improved Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise is derived from the 
Empirical Mode Decomposition technique. The EMD 
algorithm eliminates the need for manually defining the 
frequency scale during the decomposition process, thereby 
effectively reducing errors arising from human intervention 
in the computational procedure[12]. 

However, many researchers have discovered through 
experimentation that when decomposing large datasets, 
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there can arise situations where a single data point may 
simultaneously represent both a maximum and a minimum 
value—a phenomenon known as endpoint divergence. This 
phenomenon of endpoint divergence can lead to significant 
errors, adversely affecting the predictive accuracy of the 
final model. Additionally, when the timescale of the data 
exhibits abrupt changes, intrinsic mode functions (IMFs) of 
different timescales may appear within the same IMF, 
stripping the component of any practical physical 
significance and affecting the final prediction accuracy.  

Figure 1 displays the procedure diagram for data 
decomposition using ICEEMDAN. 

Figure 1. The procedure diagram for data 
decomposition using ICEEMDAN 

ICEEMDAN effectively addresses the endpoint effect 
and mode mixing problems encountered in the EMD 
decomposition process. The computational steps involve: 

1) Determine the number of times N  to add noise and
obtain N  initial quantities ( )N tτ : 

1( ) ( ) ( )N k k Nt t A wτ τ β −= +          (4)

In the given equation, kA  is the k th component acquired 
through EMD, jγ  represents residuals acquired through 
EMD, β  represents a constant. w  is a noise that does not 
affect the sequence. 

2) Take the average of all 1I  values to obtain the first-
order IMF component from the ICEEMDAN decomposition 
as well as the residual 1( )r t [13]: 

1
1

1

1I ( ( ))
N

N
j

A t
N

τ γ
=

= −∑              (5)

1 1( ) ( )r t t Iτ= − (6)

3) Add Gaussian white noise to 1( )r t  to obtain the 
second-order data, and the decomposed sequence is 1 ( )jH t
[14]: 

2
1 1 1( ) ( ( ) ( ))j

k k NH t A r t A wβ γ−= + −                (7) 

4) Take the average of 1 ( )jH t  to acquire the IMF2 in 
ICEEMDAN decomposition: 

2 1
1

1I ( )
N

j

j
H t

N =

= ∑      (8) 

5) Perform the aforementioned procedure until the raw
data ( )kr t  can no longer be decomposed. The number of 
IMF is k . The raw data is decomposed as follows: 

1
( ) ( ) ( )

k

k k
i

t I t r tτ
=

= +∑     (9) 

3. Model building

3.1. Convolutional Neural Networks 

Convolutional Neural Networks have been structurally 
optimized compared to traditional neural networks and It is 
mainly divided into five functional parts: input, 
convolutional, pooling, fully connected, and output[15]. 
Data from the input layer is sent into the convolutional layer 
and performs local extraction before passing it on to a 
nonlinear activation function, which calculates the output of 
each neuron within the convolutional layer. Within the same 
output plane, CNNs maintain a weight sharing computation 
strategy, which has the ability to speed up a neural network's 
training process and decrease model complexity. After a 
convolutional neural network, its result is: 

1 1 2 2( )out in in in
j k k nN N N N bφ ω ω ω= + + + +               (10) 

In the given equation, out
jN  represents the output value of 

a neuron, 1
inN  stands for a neuron's input value, kω  stands 

for the weights, φ  represents the activation function, and nb
represents the bias term[16]. 

After a convolutional layer, a nonlinear activation 
function is typically employed. The purpose of this function 
is to introduce nonlinearity to tackle nonlinear problems and 
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enhance the model's ability to process complex data. 
Activation functions apply a nonlinear transformation to 
feature values, thereby boosting the network's expressive 
power. 

Pooling layers, also known as subsampling layers, 
primarily serve to decrease the feature maps' spatial 
dimensionality, cutting down on the amount of computation 
and the number of parameters. 

Fully connected layers usually follow the convolutional 
and pooling layers. Their role is to integrate the learned 
high-level features for tasks such as classification or other 

functions. The fully connected layer connects the neurons 
between the previous and the former to enable the 
correlation of data. These layers often utilize the Softmax 
function to compute probability distributions or classify data. 

Normalization layers, which include local response 
normalization or batch normalization, help to enhance the 
network's generalization capabilities, speed up training, and 
reduce dependence on the initialization of weights. 
Normalization layers standardize the feature maps, ensuring 
a more stable training process for the network. Figure 2 
shows computational process of the CNN. 

Figure 2. The computational process of the CNN 

3.2. LSTM Neural Networks 

An enhanced variant of RNNs are Long Short-Term 
Memory networks. LSTM is designed to address the 
difficulties traditional RNNs face when processing long-
term dependencies. In contrast to the conventional recurrent 
neural network models, LSTMs incorporate four key 
components: input, output, forget, and memory components. 
The role of the forget gate is to selectively discard 
information during the neural network training process to 
ensure better data propagation, while the memory cell is 
tasked with retaining information. This kind of operation 
process effectively solves various problems in the process of 
recurrent network operation, and greatly improves the 
accuracy of prediction[17]. 

(1) Forget Gate
The forget gate determines what type of information the

neurons in the LSTM should discard, using the Sigmoid 
function to facilitate the forgetting of information from the 
previous step's neurons. The operation formula is as follows: 

( [ , ] )forgetforget U x bρ ρ ρ ρµ ω= +         (11) 

In the given equation, µ  represents the Sigmoid 
activation function, forgetω  represents the weight, Uρ  
represents the output value of the preceding neuron, xρ  
reflects the neuron's input value., and bρ  stands for the bias 
correction term[18]. 

(2) Input Gate
In a Long Short-Term Memory (LSTM) network, the

input gate selects the information that the neurons should 
retain and enters it into the neuron's state. The input gate 
consists of two parts: the Sigmoid gate and the tanh gate. 
The Sigmoid gate determines which components of the 
neuron to update, while the tanh gate is responsible for 
creating an alternate component. Finally, these two 
components are combined together. The update component 
for the Sigmoid gate is shown in Equation 12, and the 
update component for the tanh gate is shown in Equation 13. 

( [ , ] )Input U x bρ ρ ρ ρ ρµ ω= +          (12) 

tanh( [ , ] )T i U x bρ ρ ρ ρ ρ ρω= +          (13)

In the given equation, ρω  A represents the weights of the 
input gate. 

(3) Output Gate
The main capability of the output gate is to output the

data predicted by the network. After receiving the 
information passed on from the previous neuron, it 
computes the output value using the Sigmoid function. Here 
is the formula: 

( [ , ] )o oOut U x bρ ρ ρµ ω= + (14)

The operation formula is as follows: Outρ  represents the 
final output of information. µ  represents the Sigmoid 
activation function, oω  represents the weight, Uρ  represents 
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the output value of the preceding neuron, xρ  reflects the 
neuron's input value, and ob  stands for the bias correction 
term. Figure 3 shows the structural diagram of the LSTM. 

Figure 3. The structure of the LSTM 

3.3. LightGBM regression model 

LightGBM is a decision tree algorithm framework 
developed by Microsoft Corporation, which aims to improve 
the overall computing speed of the model. Through 
experiments, it is found that the LightGBM model has 
excellent ability to process a large amount of data, and its 
core distributed computing method is to first divide the data 
into multiple parts, and then perform gradient operation on 
each part to finally realize the model's capacity to make 
precise predictions. 

LightGBM is characterized by a distributed decision tree 
algorithm, which can significantly reduce the complexity of 
the computation process and simplify the computation 
process in the recalculation process. In particular, it has 
good ability to deal with discrete data that are free from 
continuous characteristic curves. In addition, LightGBM has 
two special structures compared to other models[19]: 

1. Gradient-based One-Side Sampling: This structure is a
special structure for collecting data, which allows the 
LightGBM model to exclude the data with a modest gradient 
during the recalculation phase and keep only the data with a 
big gradient. This structure allows it to reduce the amount of 
data that needs to be processed without ensuring the overall 
continuity of the data. 

2. Exclusive Feature Bundling (EFB): EFB is a feature
dimensionality reduction technique that bundles mutually 
exclusive features into a single feature. By bundling sparse 
features, EFB reduces the number of features that need to be 
processed, thus decreasing computational complexity. 

LightGBM also supports various parallel learning 
strategies and can handle a large number of categorical 
features without the need for explicit feature transformation. 
LightGBM continuously divides the original data into 
calculations by establishing a decision tree, and the 
prediction results are expressed as[20]: 

1
( ) ( )F x F x

κ

κ β
β =

= ∑           (15) 

In the given equation, ( )F xκ  represents the anticipated 
amount; ( )F xβ  is the resultant amount of the β th tree. 
Figure 4 shows the data splitting process of LightGBM. 

Figure 4. The data splitting process of LightGBM 

3.4. CNN-LSTM-LightGBM model 

This part mainly introduces the CNN-LSTM-LightGBM 
neural network combination model, which integrates the 
advantages of the three models and compensates for the 
shortcomings of each other. The model can realize wind 
power prediction at different time scales. The following is 
the model's prediction process: 

After determining the time scale of wind power 
prediction, Lasso model is used to extract the wind power 
characteristics under the changed time scale. The second 
step employs the original time series into many Intrinsic 
Mode Function components using the ICEEMDAN 
decomposition technique. The third step involves feeding 
the information into the CNN module to extract latent 
feature information contained within the data. The fourth 
step utilizes the LSTM module to extract time-sequential 
features from the data. The fifth step involves optimizing the 
forecasted information through the LightGBM module, 
culminating in the output of data that satisfies the 
convergence criteria. Figure 5 shows process diagram of 
CNN-LSTM-LightGBM. 
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Figure 5. Process diagram of CNN-LSTM-LightGBM 

4. Model simulation 

Using actual operational information from a wind power 
plant in Liaoning, China, with a wind power data sampling 
interval of 5 minutes, this study focuses on ultra-short-term 
and short-term wind power forecasting. The Lasso-
ICEEMDAN-CNN-LSTM model was implemented using 
the Matlab2020a programming language on a computing 
platform running the Windows 10 operating system, with an 
Intel i7-12700 processor, RTX3060Ti graphics card, and 
32GB of RAM. 

Firstly, the wind power dataset including seven feature 
vectors is input into the Lasso model. The Lasso model 
extracts features based on the actual forecasting temporal 
scale requirements, selecting those with the greatest impact. 
Subsequently, the ICEEMDAN model decomposes the 
features and wind power data. The decomposed dataset is 
then fed into the CNN-LSTM-LightGBM model. Within 
this model, the CNN component receives input data of size 
1x6, with a convolution kernel of 3 and a pooling layer of 
size 1x1. After convolution, pooling, and fully connected 
computations, the processed feature information is flattened 
and used as input for the LSTM model. The LSTM model's 
neuron size and number of hidden layers have an impact on 
the predicting inaccuracy and require optimization to 
achieve the best network structure. Testing revealed that the 
first layer of the LSTM neural network has 64 neurons, and 
the second layer has 32 neurons. The LightGBM model has 
a maximum tree depth of 3, a count of 50 learners, a 
learning rate of 0.01, a complexity control of 32, a booster 
type of gbdt, and a minimum record count of 25 for the 
leaves[21]. 

To verify the superiority of the Lasso-CNN-LSTM-
LightGBM model, this paper selects three other models for 
comparative analysis: the BP neural network, and SVM, 
across both very short-term and short-term forecasting time 
scales. Figure 6 shows the wind speed after decomposition 
by ICEEMDAN. 

 

 

Figure 6. The wind speed after decomposition by 
ICEEMDAN 

Figure 7 shows the wind power after decomposition by 
ICEEMDAN, and Figure 8 shows the predicted values for 
each IMF. In Figure 8, it can be observed that the errors 
primarily manifest in the IMF component with the highest 
frequency. As illustrated in Figure 9, the comparison of 
predicted values versus actual values for three different 
models is presented. It is evident from the figure that the 
CNN-LSTM-LightGBM model achieves the highest 
predictive accuracy. In this study, statistical assessment 
metrics such as the symmetric Mean Relative Error (s_MRE) 
and the Mean Absolute Error (MAE) are utilized as 
evaluation criteria. The error metrics for the predicted values 
of each model are presented in Table 1. 
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Figure 7. The wind power after decomposition by 
ICEEMDAN 

 

Figure 8. The predicted values for each IMF 

 

Figure 9. The comparison of predicted values versus 
actual values for three different models 

Table 1. The error metrics for the predicted values of 
three models 

Model s_MRE MAE 
CNN-LSTM-LIGHTGBM 86.8% 0.037 
BP 60.02% 0.091 
SVM 47.25% 0.169 

5. Conclusion 

An approach to multi-time scale wind power forecasting is 
proposed in this essay. It combines the ICEEMDAN 
algorithm with the Lasso-CNN-LSTM-LightGBM 
composite model. Using actual data from a wind power 
plant in Liaoning for simulation analysis, the proposed 
composite model demonstrates superior forecasting 
performance when compared to the BP and SVM models. 

6. Discussion 

The limitation of this paper is that at present, most of the 
data of wind power influencing factors are collected from 
the NWP database, so the prediction accuracy of wind 
power is largely limited by the data accuracy provided by 
the NWP database. After ICEEMDAN algorithm is used to 
decompose wind power data, the prediction accuracy of the 
residual component of the neural network model is low. In 
the future, a model can be built to solve the above problems 
to improve the original data, and the residual component can 
be improved separately to improve the prediction accuracy 
of the model. 
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