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Abstract 

In modern power system operation, it is crucial to achieve fast and accurate monitoring of the electrical equipment status. 
To achieve this fast and accurate detection, this study proposes a generative adversarial network that combines edge 
features to amplify and recognize infrared images of devices, aiming to improve the model’s training effect. This model 
extracted edge features from infrared images to eliminate background noise in infrared images to achieve the goal of 
improving the accurate monitoring of the status of electrical equipment. The results showed that on the balanced dataset, 
the recognition accuracy of the model could reach about 96%, and the recognition effect of the model was relatively stable. 
On imbalanced datasets, the highest model recognition accuracy was around 89%, and the model recognition accuracy 
fluctuated greatly. The constructed model effectively improves the accuracy of monitoring the operating status of electric 
energy equipment, achieving fast and accurate monitoring of this state. This study can achieve rapid monitoring of the 
operating status of electric energy equipment, effectively reducing the operation and maintenance costs of the power 
system. 
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1. Introduction

In the context of digital transformation, the power
industry is urgently in need of efficient monitoring 
systems to ensure the safety and stable operation of power 
equipment [1-2]. The electrical Equipment Status 
Monitoring (ESM) is a technology for monitoring the 
main equipment in the power system. During the 
operation of Electrical Energy Equipment (3E), 
temperature changes may occur due to the electric heating 
effect. The status detection of electric energy equipment is 
to monitor the temperature status of the equipment to 
reflect its operating status. Timely and accurate ESM can 
ensure the safety of system operation. Data mining 
technology, as a product of the intelligent era, is 
particularly crucial in the monitoring of the status of 
power equipment. It can analyze a large amount of data 
generated by equipment to predict potential failures and 
performance degradation of the equipment [3-4]. However, 
due to the complexity of the operation of 3E and the 
enormous amount of data generated, as well as the 
changing characteristics, developing a fast and accurate 
monitoring system to adapt to rapidly changing industrial 
demands remains a technical challenge [5-6]. To improve 
the efficiency and accuracy of state detection for electric 
energy equipment, this study designs a device state 
detection method based on data mining technology. 

This study innovatively proposes a monitoring system 
framework that integrates data mining algorithms, and 
specifically optimizes the operational characteristics and 
data attributes of power equipment. The research results 
provide an effective means to improve the response speed 
and accuracy of power equipment monitoring, and are of 
great significance for the future intelligent management 
and preventive maintenance of power equipment. 

This study will be conducted from four aspects. Firstly, 
it will provide an overview of the current research status 
of power ESM and Infrared Image (IFI) data mining. 
Secondly, the research on power ESM combines Edge 
Feature Monitoring (EFM) and Generative Adversarial 
Networks (GAN). The third is the experimental analysis 
of the electrical ESM network, and finally the summary of 
the research content. 

2. Related works

The electrical ESM is meaningful for the safe
Operation of the Power System (O-PS), and effective 
status monitoring can help workers better maintain the 
power system. Jin X et al. gave an integrated method to 
detect anomalies and diagnose faults to extract health 
related information from monitoring and data collection 
of wind turbine conditions. This method could detect 
anomalies and diagnose corresponding faulty components 
before the wind turbine was shut down for maintenance [7]. 
Zhao et al. compared various state monitoring methods 

for DC link capacitors to improve the reliability of 
systems. It introduced the design process of capacitor 
common mode, summarized the main principles of 
capacitor parameter estimation, and derived various 
possible common mode schemes. At last, application 
suggestions were proposed [8]. To ensure the long-term 
reliability and extend the lifespan of solar photovoltaic 
systems, it is necessary to optimize their monitoring, 
operation, and maintenance. Di Lorenzo G et al. proposed 
a new remote monitoring technology that reduces or 
eliminates duplicate component failures by investigating 
and resolving faults in photovoltaic systems. These 
technologies contributed to improving fault reporting and 
corrective action systems, enhancing the reliability and 
availability of photovoltaic systems [9]. Wang B et al. 
proposed an automatic diagnosis method built on infrared 
insulator image instance segmentation and temperature 
analysis to improve the efficiency of on-site diagnosis of 
substation insulators. This method had high recognition 
accuracy and computational speed, and had a huge 
potential practicality in the field of diagnosing power 
equipment [10]. 

GAN has a wide range of applications in various image 
processing fields and is an excellent IFI processing 
algorithm. Liu M et al. proposed an overview of GANs to 
improve their performance in image and video synthesis 
tasks, with a particular focus on applications of visual 
synthesis. GAN could generate high-resolution realistic 
images and videos, leading to the creation of many new 
Apps in content creation [11]. Maeda H proposed using 
generative models to generate Road Damage (RD) images 
to address the insufficient data for RD detection in 
infrastructure inspections. It combined the gradually 
growing GAN with Poisson mixture, artificially generated 
RD images, and added them to the training data to 
improve the RD detection accuracy. When the number of 
original images was small and relatively large, the 
synthesized images were measured at 5% and 2%, 
respectively, significantly improving the detection 
accuracy [12]. Pavan Kumar M R et al. proposed the use of 
deep neural networks, including variational auto-encoders, 
auto-regressive models, and GANs, to solve the problem 
of high-dimensional data generation. GANs had received 
widespread attention in generating high-quality images 
and data augmentation. These methods could generate 
high-quality data required for various tasks [13]. Zhao B et 
al. proposed a GAN-based infrared small target detection 
mode to solve the existed related problems. This method 
automatically learned target features through a GAN 
model and reconstructed the target using a U-Net 
generator. The five-layer discriminator and L2 loss could 
enhance the data fitting ability of the generator. Numerous 
experiments had shown that this method performed well 
on various backgrounds and targets, significantly 
improving the IoU value of detection results [14]. Jiang Y 
et al. proposed a CT image synthesis method based on 
conditional GAN to handle the matter of insufficient CT 
imaging data of COVID-19. This approach could generate 
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high-quality and realistic CT images of COVID-19 for 
medical imaging tasks based on deep learning. This 
method was superior to other advanced image synthesis 
ways and was expected to be used in various machine 
learning applications [15]. 

In summary, the electrical ESM is essential for the 
safety and stability of the O-PS. However, the current 
effectiveness of electrical ESM is poor and cannot 
accurately provide feedback on its status. Therefore, this 
study proposes to use infrared monitoring technology to 
detect 3E, and use EOGAN technology to analyze and 
process the images of 3E. 

3. Combining EFM and GAN for power
equipment status monitoring

The electrical ESM helps workers determine the O-PS, 
which is crucial for its safety and stability. This study 
focuses on the ESM from two aspects. The first part is the 
EFM analysis of power equipment, and the second part is 
the exploration of Infrared Image Generation (IIG) of 
power equipment grounded on EOGAN. 

3.1. EFM of electrical energy equipment 

The edge features of power equipment can guide the 
IIG of power equipment. Using device edge features as 
prior knowledge for weakly supervised learning can finish 
the guidance of IIG [16]. EFM is divided into four basic 
steps: scale normalization and grayscale, Gaussian 
filtering denoising, mathematical morphology processing, 
and edge detection. The original IFIs have differences in 
size due to different sources. The research relies on 
real-time detection data as the data source, using detection 
data from the Supervisory Control and Data Acquisition 
(SCADA) system as algorithm input. There are 
differences between the image data collected by SCADA. 
Inconsistent dimensions can cause obstacles in image 
processing and analysis, therefore, scale normalization of 
the image is necessary before EFM. Compared to visible 

light images, IFIs lack significant contrast, resulting in 
unclear boundaries between the device area and the 
background area, which affects subsequent image analysis 
and feature extraction work. Grayscale conversion can 
highlight the brightness information of an image, ignore 
color information, and increase contrast in the image. The 
calculation formula for converting IFIs to grayscale 
images is equation (1). 

*0.299 *0.587 *0.114Grey R G B= + +  (1)

In equation (1), Grey  represents the grayscale value

of pixels in the IFI. , ,R G B  are the values of red, green,
and blue colors in the image. Gaussian filtering is one of 
the most commonly used smoothing techniques in the 
field of image processing, which has excellent effects in 
eliminating Gaussian noise and can maintain the overall 
structure of the image, reducing excessive blurring. The 
Gaussian filtering operation is equation (2). 

*GrayI I Gσ σ=
    (2) 

In equation (2), Iσ  means the denoised image. GrayI

is the original grayscale image. G  represents a 2D
Gaussian kernel. σ  denotes the standard deviation, and
Gσ  can be defined as equation (3).

( )2 2 2/2

2

1
2

x yG e σ
σ πσ

− −
=

    (3) 

In equation (3), x  and y  represent the Horizontal
and Vertical (H/V) coordinates of pixels. The grayscale 
processing and denoising of IFIs are shown in Figure 1. 

Original image

Grayscale

Grayscale image

Gaussian filtering 
noise reduction

Denoised image

Figure 1. Gray measurement and noise reduction of IFIs 

After size normalization, grayscale transformation, and 
Gaussian filtering denoising, the overall image is 
relatively rough and contains irrelevant objects. Unrelated 
objects can reduce the feature extraction ability of edge 

detection. Mathematical morphology is a vital branch in 
digital image processing, widely utilized in tasks such as 
image noise reduction, contour extraction, morphology 
measurement, image segmentation, and image 
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reconstruction [17]. The basic operations in mathematical 
morphology are dilation and erosion, which expand 
objects by adding pixels to the image. The corrosion 
operation removes pixels near the edge of the object, 
which can be used to eliminate small noise and small 
protrusions, and it also makes the object contour more 
delicate. The input image can be viewed as a function that 
maps Euclidean space E  to a real number. If the

function of the input image is assumed to be ( ),f x y
.

( ),b x y
 is the operator, then the image dilation

operation is defined as equation (4). 

( )( ) ( ) ( )sup
y E

f b x f y b x y
∈

⊕ = + −  
    (4) 

In equation (4), sup  represents the minimum upper
bound. The corrosion operation is equation (5). 

( )( ) ( ) ( )inf
y E

f b x f y b x y
∈

⊕ = − −  
    (5) 

In equation (5), it represents the maximum lower 

bound of inf . When using this method to process
images, it is necessary to open the image, that is, first to 
corrode and then expand as shown in equation (6). 

( ) .f b f b b= ⊕ 
    (6) 

After mathematical morphology processing, edge 
detection processing can be performed on the IFI of the 
device. This study uses the Sobel algorithm for edge 
detection, which can identify the boundaries of regions in 
the image and detect edges by calculating the spatial 
gradient of image grayscale. The Sobel algorithm uses 
two 3x3 convolution kernels to perform H/V gradient 
approximation calculations on the image, respectively. 
After calculating the H/V gradients of the image using 
convolutional kernels, the two gradients need to be 
merged to obtain a total gradient amplitude and direction. 
After obtaining the gradient amplitude, comparing it with 
the preset or adaptively calculated threshold to determine 
whether the pixel is located at the edge. If the gradient 
amplitude is higher than the threshold, the pixel is marked 
as an edge. The mathematical morphology processing and 
edge detection processing are shown in Figure 2. 

Denoised image

Corrosion and 
expansion

Gradient calculation 
and merging

Extended image Device edge image

Figure 2. Mathematical morphology and edge detection and treatment 

3.2. EOGAN-based infrared image 
generation for power equipment 

GAN is a deep learning model used for unsupervised 
learning tasks, whose core lies in the adversarial game 
dynamics between generator G and discriminator D [18-19]. 
The basic responsibility of generator G is to learn how to 
produce realistic data. G starts from a random noise 
distribution and gradually learns mapping relationships to 
generate samples that match the true data distribution. 
During the training process, the generator continuously 
tries to improve its camouflage ability, so that the 
generated data can deceive the discriminator. 
Discriminator D is a binary classification network whose 
task is to distinguish whether the input samples are "real". 
It accepts synthesized samples from the generator and 
samples from real datasets, and attempts to accurately 
determine whether these samples are from the real 
distribution or the generator. The discriminator 
continuously improves its discriminative ability and 

continuously identifies the generated samples from the 
generator. This adversarial process is trained through 
backpropagation and gradient descent. The network 
parameters of the generator and discriminator are 
constantly updated, with the aim of maximizing the 
deception ability of the generator and the discriminative 
ability of the discriminator, respectively. As the training 
progresses, the fake samples generated by the generator 
will become increasingly difficult to distinguish from the 
real samples, and the judgment task of the discriminator 
will also become more and more difficult. The function of 
GAN is equation (7). 

( ) ( ) ( ) ( ) ( )( )( )( )~ ~min max , min max log log 1
z zz p z z p zG GD D

V D G D x D G z= Ε +Ε −

(7) 

In equation (7), z  represents the noise vector. rp

represents the prior distribution of the sample. ( )D x
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and ( )( )D G z
 are the evaluation of the discriminator

on real samples (RS) and the samples generated by the 
generator (GS) using noise. In an ideal state, the training 
of GAN will end at a Nash equilibrium point, where the 
GS cannot be distinguished from the RS, and the 
discriminator can only make random guesses. The data 
generation process of GAN cannot be controlled, and 

when using this network for IIG and recognition, the 
complexity of image background information may cause 
GAN to not converge. Edge detection can extract edge 
features from IFIs and eliminate noise in background 
information [20]. Therefore, this study proposes to combine 
edge detection with GAN to obtain EDGAN. The training 
process of this network is Figure 3. 

Edge feature 
extraction

Real image

Edge 
feature 

Edge 
feature 

Infrared Image 
Generator

Synthetic image samples

Raw data pairs

Composite 
data pairs

Discriminator 
network

Figure 3. The training process of EDGAN 

Conditional features are added to EDGAN; therefore, 
the network data is a supervised learning process. In the 
GAN of IFI processing, the original IFI x and the 
extracted edge features y are combined into the original 
data pair to guide model training. Generator G receives 
noise z and edge y, producing a realistic infrared 

composite image 
( )G x y

. These composite images are 
fused with edge features y to form composite data pairs, 
which together serve as training inputs for discriminator 
D. In adversarial training, G's goal is to generate images
that are hard to distinguish by D, while D strives to
distinguish between true and false, competing with each
other to ultimately generate high-quality IFIs and capture
detailed edge features, and supplement and enhance the
sample data during the training process. In EDGAN, the

loss function 
( ) ( ) ( )( ),D G D
EDGANL θ θ

of discriminator D is 
equation (8). 

( ) ( ) ( )( ) ( ) ( )( )( ), log log 1
data

D G D
EDGAN x p zL D x y D G z yθ θ −= Ε −Ε −

(8) 

In equation (8), 
( )D x y

and 
( )( )D G z y

 are the
evaluation of the discriminator on real IFIs and 

synthesized IFI. 
( )Gθ  represents the discriminator

parameter. 
( )Dθ  represents the generator parameter. In

each training session, the discriminator parameters are 
updated by reducing the random gradient. The generator 
loss function is equation (9). 

( ) ( ) ( )( ) ( )( ), logG G D
EDGAN zL D G z yθ θ = −Ε

(9) 

To further optimize the generation results of the 
generator, this study adds an L1 distance loss function in 
equation (9), as shown in equation (10). 

( ) ( )1 , , 1.
,L x y zL G x G y z= Ε −

(10) 

After adding the loss function, the generator needs to 
pass the detection of the discriminator and make the 
generated image closer to the real image. After that, the 
generator’s loss function can be expressed as equation 
(11). 

( ) ( ) ( )( ) ( )( ) ( ), , 1.
, log ,G G D

EDGAN z x y zL D G z y x G y zθ θ λ= −Ε + Ε −
(11) 

In equation (11), λ  represents the loss function
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parameter. After training, the EDGAN can generate 
realistic and key information preserved IFIs of electrical 
equipment based on edge features. The generation process 
is Figure 4. 

Edge feature 
extraction

Real image Edge feature 

Trained image 
generator

Composite 
image samples

Figure 4. The training process of EDGAN 

The IIG results of electrical equipment generated by 
the EDGAN model can be used to monitor the operating 
status of electrical equipment through IFI recognition 
technology. The designed equipment operation status 
monitoring is to transform equipment identification and 
fault detection problems into data-driven classification 
problems. Convolutional Neural Networks (CNN) are 
commonly utilized in image feature extraction. Therefore, 
this study applies CNN for deep feature extraction in 
device status monitoring, and then uses transfer learning 
method to perfect the model’s training and learning speed. 
The designed electrical ESM framework is Figure 5. 

Edge feature 
extraction

VGG 
network

Original 
image dataset

Transfer 
learning

Expanded 
dataset

Image 
Generator

Composite 
image

Replace 
last layer

Freeze the 
first half

VGG feature 
extraction

Classifier End 

Figure 5. Electrical ESM framework 

In this framework, VGG16 is used as the feature 
extraction network, and transfer learning and VGG16 
model are used to recognize and detect faults in real IFIs 
and synthetic images. The input image size is 224*224, 
and after mining and feature extraction, a feature vector 
with a size of 7*7*512 is generated. By using a deep 
learning framework, power equipment identification and 
fault detection are transformed into classification 
problems. Softmax classifier is a commonly used 
classification model. This function converts a set of real 
numbers into a probability distribution, so that each real 
value corresponds to a probability value. If the training set 
function is assumed to be equation (12). 

( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1 ;

2 ;

;

i i

i i
i

i i

p y x

p y x
h x

p y k x

θ

θ

θ

θ

 =
 
 

= =  
 
 

=  



    (12) 

In equation (12), 
( )( )ih xθ represents the training set 

function. k  represents the classification category.
According to maximum likelihood estimation, the loss 
function of Softmax classifier is equation (13). 

( ) ( ){ }
( )

( )

1

1 1 1

1 1 log
i

j

iT
l

xn k
i

xk
i j i

eJ y j
n e

θ

θ
θ

= = =

 
 = =
  
∑∑

∑ (13) 

In equation (13),  is the judgment of its true or 
false proposition. represents the Softmax loss 

function. is the quantity of samples. The overall 
architecture of the power ESM method based on the 
EDGAN model is divided into three stages: edge feature 
extraction, IIG of power equipment, and power ESM. The 
overall architecture is Figure 6. 
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Figure 6. Overall framework of IFI amplification of electrical equipment based on EDGAN 

When monitoring the operating status of 3E, it is not 
only needed to identify the status of O-PS, but also to 
perform semantic segmentation of equipment faults. 
Gated recurrent neural network is an effective feature 
mining model. This study proposes to use this model to 
conduct data mining on equipment fault status and 
analyze the changes in the basic image of equipment 
under the operation status of equipment faults. When 
repairing electrical equipment, it is necessary to 
continuously capture infrared images of the equipment. 
After capturing the equipment images, the equipment's 
infrared images will be directly uploaded to the image 
processing center. The image processing center processes 
the infrared images of the equipment based on the 
research and design model, and then uploads the data. The 
number of electric energy devices is relatively small, and 
the detection time for each device is long. The algorithm 
processing module has enough time to complete image 
processing and diagnostic work. 

4. Analysis of the monitoring effect of 3E
status based on EOGAN

In Chapter 2, a method for monitoring the 3E status 
based on EOGAN was proposed. To verify the feasibility 

of this method, experimental analysis was conducted in 
Chapter 3. Chapter 3 has two parts. Part 1 is the analysis 
of model simulation experiments, and Part 2 analyzes the 
actual application results of the model. 

4.1. Model simulation experiment analysis 

The experiment used IFIs from daily inspections of X 
City Power Supply Bureau as experimental data. The 
experimental image resolution was 640 × 480, and the 
thermal sensitivity was 0.06 ℃. Among them, there were 
1200 images in the normal operating state and 900 images 
in the faulty operating state. The dataset for normal 
operation includes five types of electrical equipment, 
namely lightning arresters, circuit breakers, current 
transformers, voltage transformers, and Y-shaped circuit 
breakers. Random Forest (RF) and Support Vector 
Machine (SVM) are two common classification 
algorithms. To compare the impact of different classifiers 
on the final results, an unbalanced dataset was constructed 
with 1900 data samples, and the performance of three 
classifiers under different sample amplifications was 
analyzed. The result is displayed in Figure 7. 
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Figure 7. Changes in performance under the amplification of the different samples 

Figure 7 (a) shows the recognition accuracy of 
different classifiers under different sample amplifications. 
As the sample size increased, the recognition accuracy of 
all three classifications continued to increase. When each 
sample was amplified to 800, the recognition accuracy of 
softmax was 97.8%, SVM was 96.7%, and RF was 92.2%. 
Figure 7 (b) shows the F1 scores of different classifiers 
under different sample amplifications. The changes in F1 
scores for the three classifications were similar to the 
changes in recognition accuracy, both increasing with the 
expansion of samples in each category. When each class 
of samples was amplified to 800, the F1 score of softmax 

increased to 97.7 points, while the scores of the other two 
classifiers were lower than softmax. With the continuous 
increase of sample data, the accuracy and F1 score of the 
model are also increasing. The research designed model is 
recognized for maintaining high robustness and scalability 
when dealing with constantly expanding data samples. To 
validate the effect of imbalanced datasets on the 
classification accuracy, both the balanced and an 
imbalanced dataset were constructed, and the accuracy 
and loss of the model on the two datasets were compared, 
as shown in Figure 8. 
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Figure 8. Effect of different datasets on the model training results 

Figure 8 (a) shows the recognition accuracy on two 
datasets. As the iterations increased, the recognition 
accuracy on both datasets continued to increase. On a 
balanced dataset, the recognition accuracy could reach 
around 96%, and the recognition performance was 
relatively stable. On imbalanced datasets, the highest 
model recognition accuracy was around 89%, and the 
model recognition accuracy fluctuated greatly. Figure 8 (b) 

shows the comparison of model loss on two datasets. The 
model could effectively converge on both datasets. After 
the model converged on a balanced dataset, the damage 
degree could be reduced to below 0.2, while on an 
imbalanced dataset, the loss degree remains around 0.4. 
To further analyze the impact of two types of data on the 
model, the model identification confusion matrix was 
plotted on both datasets, as shown in Figure 9. 
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Figure 9. Model identification confusion matrix under different datasets 

Figures 9 (a) and (b) show the identification confusion 
matrices on imbalanced and balanced datasets. By 
observing the confusion matrix, many circuit breakers and 
power transformers were incorrectly identified as voltage 
transformers (trained on the imbalanced dataset). The 
model (balanced dataset) using the EDGAN method 
largely avoided this problem. EDGAN enhanced minority 
class samples through GAN, increasing their weights 

during the training process, thereby balancing the samples 
from different categories in the dataset, enabling the 
model to better learn the features of each category and 
classify them more accurately. This study also analyzed 
the confusion matrix of the model for fault detection of 
electrical equipment under two datasets, as shown in 
Figure 10. 
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Figure 10. Failure detection confusion matrix under different datasets 

Figures 10 (a) and 10 (b) show the fault detection 
confusion matrices for imbalanced and balanced datasets. 
Due to the small amount of fault samples in the 
imbalanced dataset, the model recognized 39 fault images 
as normal images. In a balanced dataset, as the fault 
samples increased, the recognition performance also 
significantly improved. When the fault samples were 
small, the training and learning effect was poor, and the 

monitoring effect of the equipment status was also 
reduced. In order to further analyze and study the 
performance of the designed model in the face of 
imbalanced datasets, the EDGAN model was used to 
perform data augmentation on a small number of samples 
in the imbalanced dataset. The accuracy of the model 
before and after data augmentation was compared, as 
shown in Figure 11. 
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Figure 11. Comparison of model accuracy before and after data enhancement 

Figure 11 (a) shows the model accuracy without data 
augmentation, and Figure 11 (b) shows the model 
accuracy after augmentation on an imbalanced dataset. It 
can be seen that after data augmentation, the accuracy of 

the model in imbalanced datasets can also be improved to 
around 96%. The use of EDGAN can enhance sample 
data and effectively improve model training effectiveness. 

4.2. Analysis of practical application of the model 

To further analyze the feasibility of the constructed 
electrical ESM model in practical application, IIG 
monitoring was carried out on the electrical equipment 

within the daily inspection scope of X City Power 
Supply Bureau. Figure 12 shows the detailed results. 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Status monitoring results of electric power equipment 

Figures 12 (a) to (d) all show Normal: 100%. 12 (e) is 
Normal: 80%. 12 (f) is Normal: 95%. Figures 12 (g) to (i) 
show Warning: 100%. The research method could 
effectively compare the temperature distribution patterns 
under normal and abnormal conditions, thereby accurately 
identifying abnormal situations in equipment operation. 
Threshold method and clustering method were commonly 

used methods for image semantic segmentation. To 
further analyze whether the proposed model can enhance 
the semantic segmentation effect of electrical equipment 
image faults, a comparison was made between the 
threshold method, clustering method, and EDGAN model 
in image fault semantic segmentation based on fault 
detection. Figure 13 is a comparison chart. 
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Figure 13. Fault image semantic segmentation results 

Figure 13 (a) shows the original image. 13(b) to (d) 
show the segmentation result of the threshold, clustering 
method, and EDGAN methods. Compared to the other 
two semantic segmentation methods, the EDGAN model 
had better semantic segmentation performance. However, 
due to the presence of overlapping occluded parts in the 
image, some device edges were missing or incorrectly 
segmented. 

5. Conclusion

This study aimed to construct a data mining-based
rapid monitoring system for the status of power 
equipment to achieve real-time and accurate monitoring 
of O-PS status. The excellent performance of using 
EDGAN method had been demonstrated through the use 
of IFI data from daily inspections by X City Power 
Supply Bureau. Experiments had shown that the 
amplification of fault samples significantly improved 
classification accuracy and F1 score on existing 
imbalanced datasets, especially with the use of softmax 
classifier. The model's performance on balanced datasets 
was extremely stable, with a recognition accuracy of 96%. 
The balanced dataset generated through EDGAN could 
effectively lift the accuracy of fault identification and 
low-down false positives compared to the original 
imbalanced dataset. In practical application analysis, the 
model demonstrated excellent monitoring capabilities for 
the operation status of power equipment, accurately 
identified normal and abnormal states, and proposed 
preventive measures. The constructed electrical ESM 
model can effectively achieve electrical ESM and provide 
equipment fault alarms. The construction of this model 
can enhance the stable O-PS and ensure the safety of 
electricity consumption for residents. However, the 
training effect of this model on imbalanced datasets is 

poor. In the future, the training process of the model can 
be further optimized to enhance its learning ability and 
improve its robustness. 
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